
PhD Thesis

July 6th, 2011 - Valladolid

Refactoring Planning for Design Smell
Correction in Object-Oriented Software

Universidad de Valladolid - ETSII - Departamento de Informática - grupo GIRO

Francisco Javier Pérez García

supervised by
Yania Crespo González-Carvajal

1

Outline

✤ Introduction

✤ State of the Art

✤ Thesis Proposal

✦ Refactoring Strategies

✦ Refactoring Planning

✤ Prototype

✤ Case Studies

✤ Conclusions

2

Introduction

3

Design Smells

Design smells

✦ Problems in software's structure

✦ Can be detected statically

✦ Co not produce compile-time or run-time errors

✦ Negatively affect software quality factors.

✦ Kent Beck and Martin Fowler. Bad Smells in Code, chapter 3. In
Refactoring: Improving the Design of Existing Code, 1999.

✦ Referred as defects, flaws, disharmonies, antipatterns, by other
authors.

✦ Design Smell is proposed as a unifying term.

4

Refactorings

Refactorings

✦ structural transformations

✦ to perform design changes

✦ without modifying the system’s observable behaviour.

✤ William Opdyke. Refactoring Object-Oriented Frameworks. PhD Thesis,
1992

✦ behaviour preserving invariants + preconditions + transformations

✤ Kent Beck and Martin Fowler. Refactoring: Improving the Design of
Existing Code, 1999.

✦ bad smells as a guide for refactorings

✤ Low-level, composite and big refactorings

5

PrintServer

formatSummary(): String

setLastDocument(d: Document): void

getLastDocument: Document

printDocument(): void

lastDocument: Document

formatDocument: String

formatSummary(): String

content: String

name: String

author: String

creationDate: Date

Document

The problem to solve

✤ formatSummary() of PrintServer suffers from Feature Envy
✤ Trivial strategy: apply Move Method from PrintServer to Document
✤ Refactoring precondition violation: same signature conflict
✤ Additional refactorings are needed to enable the precondition
✤ Different refactoring sequences for each particular case

6

The problem to solve

✤ What is the problem?

✦ Automated or semi-automated support

✦ To schedule sequences of refactorings (refactoring plans)

✦ To correct software design smells

✤ Why is it a problem?

✦ Preconditions can disable the application of a refactoring over the
current system

✦ Refactoring sequences have to be planned ahead for each case

✤ Why it is an important problem?

✦ Design smells have a negative effect over software quality factors

✦ Strategic refactorings are complex refactoring processes

7

Thesis Objectives

✤ Provide support for computing Refactoring Plans:

✦ for enabling the precondition of a set of refactorings.

✦ for applying design smell correction specifications.

✤ Provide a way to help software developers use the techniques
elaborated in this PhD Thesis Dissertation.

✤ Evaluate the effectiveness, efficiency and scalability of the approach
presented in this PhD Thesis Dissertation by developing a prototype.

8

Thesis Statement

The activity of refactoring, when complex refactoring
sequences have to be applied as in the case of design
smell correction in Object-Oriented software, can be
assisted by means of refactoring plans that can be
obtained automatically.

9

State of the Art

10

Brief History of Design Smell Management (DSM)

✤ More precise specifications lead to better automation
✤ Correction lacks formal specifications and automation support

Detection Correction

Heuristics for Good OO Design

(1996 Riel) "Object-Oriented Design Heurstics"

Bad Smells Catalogs

(1999 Fowler) "Refactoring; Improving the ..."

Correction Catalogs

(2004 Kerievsky) "Refactoring to Patterns"

Precise Smell Specifications

(2006 Lanza, Marinescu) "OO Metrics ...''

Precise Correction Specifications

(2008 Trifu) "Towards Automated Restructuring ..."

 Automated Smell Detection

(2008 Moha) "DECOR: Détection et Correction ..."

Automated Correction

???

Detection Correction

Heuristics for Good OO Design

(1996 Riel) "Object-Oriented Design Heurstics"

Bad Smells Catalogs

(1999 Fowler) "Refactoring; Improving the ..."

Correction Catalogs

(2004 Kerievsky) "Refactoring to Patterns"

Precise Smell Specifications

(2006 Lanza, Marinescu) "OO Metrics ...''

Precise Correction Specifications

(2008 Trifu) "Towards Automated Restructuring ..."

 Automated Smell Detection

(2008 Moha) "DECOR: Détection et Correction ..."

Automated Correction

???

11

file://localhost/Users/jperez/Documents/curro/investigacion/TESIS/defensa/smellHistory.svg
file://localhost/Users/jperez/Documents/curro/investigacion/TESIS/defensa/smellHistory.svg

Design Smell Management Survey and Taxonomy

✤ Comprehensive study with Tom Mens, Naouel Moha and Carlos López
✤ Design smell management taxonomy with feature modeling notation
✤ More than 100 references analysed
✤ 22 tool reviews available at http://www.infor.uva.es/DesignSmells

✦ Analyst4j, ArgoUML, Argus CodeWatch, CodePro Analytix, Cultivate, Eclipse, FxCop,
inCode, jDeodorant, JRefactoy, M2 Resource StandarMetrics, PMD, Reek, RevJav,
Roodi, SA4J, STAN, Structure101, StyleCop, Together, TRex, XRefactory

[1..*]

Design Smell

Design Smell

Management

[1..*]

Target Artefact

[1..*]

Activity

Specification Detection CorrectionVisualisation Impact Analysis

Automation

Support
Technique Result

12

http://www.infor.uva.es/DesignSmells
http://www.infor.uva.es/DesignSmells

Analysis of 22 Design Smell Management Tools

Supported Activity
Specification Detection Visualisation Correction Impact

Analysis
9 22 7 9 2

Manual InteractiveInteractive Fully Automated
Detection 0 1212 10
Correction 1 88 0

CorrectionCorrection
Correction Suggestions Refactorings / Actions

8 1

Degree of Automation

Type of Result

✤ Automated DSM is mature in detection, has to be improved in correction.
✤ Refactoring Suggestions for correction are not directly applicable.

13

Thesis Proposal

14

Proposal: Refactoring Strategies and Refactoring Plans

Refactoring Strategies

✦ heuristic-based specifications

✦ automation-suitable

✦ describe complex behaviour-preserving transformations

✦ aimed at a certain goal

Refactoring Plans

✦ sequences of instantiated transformations

✦ achieve a certain goal

✦ can be applied over a system in its current state

✦ behaviour-preserving transformation sequence

15

Prototype

The Thesis in a Nutshell

Structural Query

Query

Numerical Query Lexical Query

Duplicated Code Query Entity-Kind Query User Query

System Entity Design Smell
affected of

1..* 0..*
Correction Strategy

1 0..*

possible strategies

Step

Composed

Alternatives Loop

Condition

Quality-Based Condition Transformation

Non-Behaviour Preserving Transformation Behaviour-Preserving Transformation

1..*
1

1

1..*output
1..*

1

Metric Quality Factor

1..* 1

change

1

0..*

1

0..* favoured

1

0..* disfavoured

1..* 1

1

1..*

1..*
parameter

1

check

1

1..*
precondition

compute parameters
1

0..*1

0..*input

Apply Transformation

1

1

Control
1..*

1

1

1

Refactoring
Strategies
Requirements

Brown
Beck
Wake
Kerievsky
Marinescu
Demeyer
Trifu

strategies
strategies
strategies

Design Smell

Correction

Specifications

Refactoring
Strategies
Specification
Language

Refactoring StrategyRefactoring

Non-Behaviour-Preserving Transformation Behaviour-Preserving Transformation

Transformation

0..*

1..*

0..*

0..*

0..1

1..*

Refactoring Plan
Computation
Requirements

Evaluation
2 Case Studies

16

Refactoring Strategies

17

Model for Current Correction Strategies

Structural Query

Query

Numerical Query Lexical Query

Duplicated Code Query Entity-Kind Query User Query

System Entity Design Smell
affected of

1..* 0..*
Correction Strategy

1 0..*

possible strategies

Step

Composed

Alternatives Loop

Condition

Quality-Based Condition Transformation

Non-Behaviour Preserving Transformation Behaviour-Preserving Transformation

1..*
1

1

1..*output
1..*

1

Metric Quality Factor

1..* 1

change

1

0..*

1

0..* favoured

1

0..* disfavoured

1..* 1

1

1..*

1..*
parameter

1

check

1

1..*
precondition

compute parameters
1

0..*1

0..*input

Apply Transformation

1

1

Control
1..*

1

1

1

[Brown etal., 1998],[Beck and Fowler, 1999], [Wake, 2003], [Kerievsky, 2004],
[Lanza and Marinescu, 2006], [Demeyer etal., 2008], [Trifu, 2008]

18

Automation-Suitable Correction Specifications

✤ Applicability of refactorings
✦ representation of system entities at a low level of detail
✦ representation of refactoring preconditions
✦ support computing refactoring preconditions
✦ support computing refactoring effects

✤ Heuristic descriptions of correction specifications
✦ corrections knowledge is compiled in natural language, heuristics are

hard to specify in an algorithmic language
✦ steps, loops and alternatives with unspecified order or without

decision conditions
✦ incremental improvement of the available knowledge
✦ alternative correction strategies

✤ Additional elements in correction strategies
✦ invocation of strategies and substrategies
✦ calls for user interaction

19

Refactoring Strategies

✤ NBP transformations
✦ building blocks for other transformations

✤ Refactorings
✦ can include: simple queries, atomic AST changes, NBP

transformations, deterministic control constructs
✤ Refactoring strategies

✦ can include: complex queries, atomic AST changes, any
transformation, non-deterministic control constructs

✦ aimed at a goal (apply big refactorings, remove smells)

Refactoring StrategyRefactoring

Non-Behaviour-Preserving Transformation Behaviour-Preserving Transformation

Transformation

0..*

1..*

0..*

0..*

0..1

1..*

20

Refactoring Strategy Specification Language

6.1. A REFACTORING PLANNING DOMAIN 141

strategy remove-feature-envy all-sts (method)
body
alt
branch apply remove-feature-envy trivial (method)
branch apply remove-feature-envy move-method (method)
end

end

strategy remove-feature-envy trivial (method)
body
apply remove-method (method)

end

strategy remove-feature-envy move-method (method)
body
alt
branch

apply remove-feature-envy move-method-to-user-class (method)
branch

apply remove-feature-envy move-method-to-data-class (method)
branch

apply remove-feature-envy move-method-to-envied-class (method,env-class)
end

end

strategy remove-feature-envy move-method-to-user-class (method)
precondition
method-fqn(method, pkg-name, class-name, method-name)
user-query("Package name of new class for method",

(pkg-name, class-name, method-name),
tgt-pkg-name)

user-query("Class name of new class for method",
(pkg-name, class-name, method-name),
tgt-class-name)

class-fqn(tgt-class, tgt-pkg-name, tgt-class-name)
body
apply remove-feature-envy move-method-to-envied-class (method, tgt-class)

end

strategy remove-feature-envy move-method-to-data-class (method)
precondition
smell("data class", env-class)
get-envied-class (method, env-class)

body
apply remove-feature-envy move-method-to-envied-class (method, env-class)

end

strategy remove-feature-envy move-method-to-envied-class (method, env-class)
precondition
get-envied-class (method, env-class)
get-movemethod-reference (method, env-class, reference)

body
apply move-method all-sts (method, env-class, reference)

end

Listing 6.9: Draft of some strategies that may be defined to remove a Feature Envy method.

6.1. A REFACTORING PLANNING DOMAIN 141

strategy remove-feature-envy all-sts (method)
body
alt
branch apply remove-feature-envy trivial (method)
branch apply remove-feature-envy move-method (method)
end

end

strategy remove-feature-envy trivial (method)
body
apply remove-method (method)

end

strategy remove-feature-envy move-method (method)
body
alt
branch

apply remove-feature-envy move-method-to-user-class (method)
branch

apply remove-feature-envy move-method-to-data-class (method)
branch

apply remove-feature-envy move-method-to-envied-class (method,env-class)
end

end

strategy remove-feature-envy move-method-to-user-class (method)
precondition
method-fqn(method, pkg-name, class-name, method-name)
user-query("Package name of new class for method",

(pkg-name, class-name, method-name),
tgt-pkg-name)

user-query("Class name of new class for method",
(pkg-name, class-name, method-name),
tgt-class-name)

class-fqn(tgt-class, tgt-pkg-name, tgt-class-name)
body
apply remove-feature-envy move-method-to-envied-class (method, tgt-class)

end

strategy remove-feature-envy move-method-to-data-class (method)
precondition
smell("data class", env-class)
get-envied-class (method, env-class)

body
apply remove-feature-envy move-method-to-envied-class (method, env-class)

end

strategy remove-feature-envy move-method-to-envied-class (method, env-class)
precondition
get-envied-class (method, env-class)
get-movemethod-reference (method, env-class, reference)

body
apply move-method all-sts (method, env-class, reference)

end

Listing 6.9: Draft of some strategies that may be defined to remove a Feature Envy method.

138 CHAPTER 6. CASE STUDY

strategy move-method all-sts (method, tgt-class, reference)
body
alt
branch apply move-method trivial (method, tgt-class, reference)
branch apply move-method basic (method, tgt-class, reference)
end

end

strategy move-method trivial (method, tgt-class, reference)
body

apply move-method (method, tgt-class, reference, false)
end

strategy move-method basic (method, tgt-class, reference)
body
apply mm-pre-refactorings renaming (method, tgt-class)
apply mm-pre-refactorings access-methods (method, tgt-class)
apply mm-pre-refactorings access-fields (method, tgt-class)
apply move-method allow-delegate (method, tgt-class, reference)

end

strategy move-method allow-delegate (method, tgt-class, reference)
body
alt
branch apply move-method (method, tgt-class, reference, false)
branch apply move-method (method, tgt-class, reference, true)
end

end

Listing 6.7: A strategy defining di�erent approaches that increase the chances of applying the Move
Method refactoring successfully.

members to public visibility. After scheduling these preparatory transformations, the fourth
substrategy in the basic strategy will try to apply the Move Method refactoring. This will be
attempted by two alternative substrategies in no particular order. One of them will try to apply
the Move Method refactoring without keeping a delegate method, and the other will invoke
the refactoring, explicitly forcing the planner to leave the delegate. Finally, the fifth substrategy
in the basic strategy will modify the visibility of the moved-method if needed.

A Feature Envy strategy

A method that su�ers from Feature Envy is a method that accesses and manipulates data from
other classes rather than its own. It accesses fields directly or through accessor methods. This
smell can be repaired by moving the method to the class whose fields it uses most or by reallocat-
ing the accessed data into the method’s class. It can also be noticed that there is a relationship
between the Feature Envy and Data Class design smells [LM06]. If a Feature Envy method
is accessing a Data Class, itis highly desirable to move the method to that class. A graphical
overview of the strategy for removing a Feature Envy smell is shown in Figure 6.8.

21

Refactoring Plans

22

Refactoring Plans from Refactoring Strategies: Requirements

✤ Software Model

✦ low level of detail, representation of method’s bodies

✦ AST-based model

✤ Computation of refactoring precondition and effects over the model

✤ Deterministic and non-deterministic control constructs

✤ Incomplete specifications

✦ Computation with the available knowledge

✦ Incrementally improvement of the available knowledge

✤ Support to represent and manage all elements of refactoring strategies

23

Refactoring Planning as an Automated Planning Problem

Automated Planning

planner

controller

system

system description

initial state

objectives

plans

observations

actions

events

execution status

refactoring planner

software developer

software system

AST + transformations

current AST

remove smell

refactoring plans

source code

source code transformations

Refactoring Planning

24

Choosing the Right Planner

✤ Many kinds of planning approaches
✦ select the most appropriate given the problem characteristics

✤ Classical Planning (8 assumptions - restricted model)

✤ Neoclassical planning (relaxed assumptions)
‣ domain-configurable planners

- Hierarchical Task Network (HTN) Planning

✤ Refactoring Planning - characteristics of the problem
✦ huge states and search-spaces
✦ heuristic knowledge available as “recipes”
✦ some unmet assumptions

25

Hierarchical Task Network (HTN) Planning

✤ Tasks: Methods and operators - “recipes” about how to execute a task

✤ Preconditions: first-order-logic queries - gather system information

✤ Goal: Execute a task

method1

 precondition1

task1

task2 task3

...method2

 precondition2

task4 operator1

 precondition3

ADD DEL

Goal

Execute a task

26

Refactoring Planning as an HTN Planning Problem

✤ JSHOP2: the HTN planner selected
✦ forward search in the same order as the plan should be executed
✦ very expressive and efficient
✦ first-order-logic inference engine
✦ external queries
✦ two stages planning process: precompilation + planning

5.3. JSHOP2: A HIERARCHICAL TASK NETWORK PLANNER 91

World’s state: AST represented by first-order logic predicates
Operators: atomic changes to the AST (mainly add, delete and replace)
Tasks: transformation parts

refactoring parts
non-behaviour preserving transformations
refactorings
refactoring strategies

Goal: Executing a smell correction strategy
Executing a refactoring application strategy

Planning problem: Execute a particular refactoring strategy over a particular ver-
sion of a system

Table 5.5: Interpretation of the refactoring planning problem as an HTN planning problem.

atomic transformations –add, delete and replace– over the basic elements of the AST. Refactor-
ing strategies, simpler refactorings and non-behaviour-preserving transformations (NBPT) are
implemented as tasks, which can be further decomposed into other tasks. This decomposition
construct will allow us to split strategies into simpler ones and to attach preconditions to them.
Therefore, this allows dependencies to be specified, and to avoid conflicts between behaviour-
preserving transformations or parts of them. Invocation of transformations, refactorings and
refactoring strategies will be described as task decompositions. Complex system queries and
preconditions are formulated over the logical terms representing the system’s AST. This is pos-
sible due to the rich expressiveness of the HTN forward planner we use. Depending on the goal
defined by a refactoring strategy, the task which implements it can be addressed to the applica-
tion of a refactoring, the removal of a bad smell, or any subpart of these activities. The domain
definition compiled in the task network represents the heuristic empirical knowledge, or “recipes”,
of the developer on how to apply these transformations.

The preliminary ideas on using an HTN planning approach to tackle the problem of design
smell correction with refactoring plans were presented in [Pér08].

5.3.2 Features of JSHOP2

JSHOP2 is an HTN partial-order forward planner developed by the University of Maryland [IN03,
Ilg06, JSHa]. It is a Java implementation of the SHOP2 (Simple Hierarchical Ordered Planner)
planning algorithm [NAI+03], which obtained one of the top prizes in the 2002 International
Planning Competition [icaa]. Being a forward planner, the search for a plan is performed in the
same order as the plan should be executed. This implies that the current state of the system
is available during the planning process, and therefore, this guarantees support for arbitrar-
ily complex queries that can be written in Prolog style as Horn-clause-like axioms. Being a
partial-order planner, the order constraints are delayed as much as possible during the planning
process. This allows methods to be decomposed into a partially ordered set of subtasks, and
it allows the creation of plans that interleave subtasks from di�erent tasks. According to the
authors, JSHOP2 scales well for problems of very large size.

The JSHOP2 planner includes a problem solver that computes system queries in an e�cient
way. Special queries, named “call terms”, allow Java functions, which are external to the planner

27

Implementation of Refactoring Strategies: alternatives

Deterministic alternative

Translation RulesB.7. ALTERNATIVES 217

B.7 Alternatives

if COND1 then
STEPS1

elseif COND2 then
STEPS2

else
STEPS3

end

;; if invocation
(if-xx ARGS)

;; if definition
(:method (if-xx ARGS)
(COND1)
(STEPS1)

(COND2)
(STEPS2)

()
(STEPS3)

)

There are two di�erent types of alternative constructs: the regular one and the non-deterministic
alternative. The regular alternative construct – if-then-else – is translated into a single
JSHOP2 method with as many branches as the original alternative. The branches in the
if-then-else alternative are matched by the method’s branches appearing in the same order.
The condition of each branch in the if-then-else construct is translated as the precondition of
the matching branch in the JSHOP2 method. The block of steps nested in the if-then-else
construct is transformed into the task decomposition list of the method’s branch. These steps
should be recursively translated as needed. The else part in the original structure is translated
into the last method’s branch, whose precondition is empty and, therefore, trivially true.

The JSHOP2 method representing the if-then-else statement has to be named with a
symbol with the prefix if- and a numeric su✏x, so that the resulting symbol provides a unique
name for the method in the refactoring planning domain. The if-then-else construct in the
original sequence of steps should be then replaced by the invocation of the if method. The
method’s arguments ARGS should contain all the variables appearing in the method that are
accessible from the original sequence of steps’ scope.

All the variables used in each branch precondition of the method, may have been bound,
therefore they have to be propagated. If the blocks of steps are being translated in a hierarchical
way, the variables should be stored as persistent variables using the store-rpvar method. If
the blocks of steps are being translated in a chained way, the next fragment’s method should be
invoked with the last task in the task decomposition list of all the branches, and the variables
should be passed as arguments.

The other kind of alternative construct is the non-deterministic alternative. it is translated in
a similar way as the regular alternative, although each alt branch is translated into a separated
JSHOP2 method. Each branch condition is translated into the precondition of each matching
method. An alt branch with an empty condition will produce a method with an empty precon-
dition. All methods share the same name and list of arguments and the original alt construct
in the original sequence of steps should be replaced by an invocation of the task these methods
implement. The name of this methods is a symbol with the prefix alt- and a numeric su✏x,
so that the resulting symbol provides a unique name for the method in the refactoring plan-
ning domain. The same procedures regarding how the bound variables have to be propagated
into and from the methods that were described for the regular alternatives, apply to the alt
non-deterministic construct. An example of alt translation is shown below.

B.7. ALTERNATIVES 217

B.7 Alternatives

if COND1 then
STEPS1

elseif COND2 then
STEPS2

else
STEPS3

end

;; if invocation
(if-xx ARGS)

;; if definition
(:method (if-xx ARGS)
(COND1)
(STEPS1)

(COND2)
(STEPS2)

()
(STEPS3)

)

There are two di�erent types of alternative constructs: the regular one and the non-deterministic
alternative. The regular alternative construct – if-then-else – is translated into a single
JSHOP2 method with as many branches as the original alternative. The branches in the
if-then-else alternative are matched by the method’s branches appearing in the same order.
The condition of each branch in the if-then-else construct is translated as the precondition of
the matching branch in the JSHOP2 method. The block of steps nested in the if-then-else
construct is transformed into the task decomposition list of the method’s branch. These steps
should be recursively translated as needed. The else part in the original structure is translated
into the last method’s branch, whose precondition is empty and, therefore, trivially true.

The JSHOP2 method representing the if-then-else statement has to be named with a
symbol with the prefix if- and a numeric su✏x, so that the resulting symbol provides a unique
name for the method in the refactoring planning domain. The if-then-else construct in the
original sequence of steps should be then replaced by the invocation of the if method. The
method’s arguments ARGS should contain all the variables appearing in the method that are
accessible from the original sequence of steps’ scope.

All the variables used in each branch precondition of the method, may have been bound,
therefore they have to be propagated. If the blocks of steps are being translated in a hierarchical
way, the variables should be stored as persistent variables using the store-rpvar method. If
the blocks of steps are being translated in a chained way, the next fragment’s method should be
invoked with the last task in the task decomposition list of all the branches, and the variables
should be passed as arguments.

The other kind of alternative construct is the non-deterministic alternative. it is translated in
a similar way as the regular alternative, although each alt branch is translated into a separated
JSHOP2 method. Each branch condition is translated into the precondition of each matching
method. An alt branch with an empty condition will produce a method with an empty precon-
dition. All methods share the same name and list of arguments and the original alt construct
in the original sequence of steps should be replaced by an invocation of the task these methods
implement. The name of this methods is a symbol with the prefix alt- and a numeric su✏x,
so that the resulting symbol provides a unique name for the method in the refactoring plan-
ning domain. The same procedures regarding how the bound variables have to be propagated
into and from the methods that were described for the regular alternatives, apply to the alt
non-deterministic construct. An example of alt translation is shown below.

Refactoring

Strategies

(DSL)

Refactoring

Planning

Domain

(HTN)

28

Implementation of Refactoring Strategies: alternatives

Non-Deterministic alternative

Translation Rules
Refactoring

Strategies

(DSL)

Refactoring

Planning

Domain

(HTN)

218 APPENDIX B. TRANSLATION OF THE REFACTORING STRATEGY LANGUAGE

alt
branch COND1
body
STEPS1

branch COND2
body
STEPS2

branch
body
STEPS3

end

;; alt invocation
(alt-xx ARGS)

;; alt definition
(:method (alt-xx ARGS)

(COND1)
(STEPS1)

)
(:method (alt-xx ARGS)

(COND2)
(STEPS2)

)
(:method (alt-xx ARGS)

()
(STEPS3)

)

B.8 Loops: while

while COND
loop VARS
STEPS

end

;; while invocation
(while-xx ARGS)

;; while definition
(:method (while-xx ARGS)

(:first
(COND)

)
(
STEPS
(while-xx ARGS)

)

() ; exit loop
()

)

A while loop is translated with a single method that contains two branches. The first branch
of the method is used for translating the loop’s elements, while the second branch has an empty
precondition and an empty task decomposition list that works as the loop’s exit branch. The
loop’s stay condition is translated as the first branch’s precondition. The block of steps in the
loop’s body is translated into the first branch’s task decomposition list. These steps should be
recursively translated if needed. The last task in the first branch’s decomposition list should be
a recursive invocation of the loop’s translated method.

Variable bindings taking place within the loop’s method precondition are discarded between
loop iterations by default. The variables in the loop VARS section should be kept between
iterations. In order to translate it, the variables in VARS should be included in the ARGS argument
list.

The method representing the while statement has to be named with a symbol with the
prefix while- and a numeric su�x, so that the resulting symbol provides a unique name for the
method in the refactoring planning domain. The while statement in the original sequence of
steps should be then replaced by the invocation of the method. The method’s arguments ARGS
should contain all the variables appearing in the method’s steps that are accessible from the

218 APPENDIX B. TRANSLATION OF THE REFACTORING STRATEGY LANGUAGE

alt
branch COND1
body
STEPS1

branch COND2
body
STEPS2

branch
body
STEPS3

end

;; alt invocation
(alt-xx ARGS)

;; alt definition
(:method (alt-xx ARGS)

(COND1)
(STEPS1)

)
(:method (alt-xx ARGS)

(COND2)
(STEPS2)

)
(:method (alt-xx ARGS)

()
(STEPS3)

)

B.8 Loops: while

while COND
loop VARS
STEPS

end

;; while invocation
(while-xx ARGS)

;; while definition
(:method (while-xx ARGS)

(:first
(COND)

)
(
STEPS
(while-xx ARGS)

)

() ; exit loop
()

)

A while loop is translated with a single method that contains two branches. The first branch
of the method is used for translating the loop’s elements, while the second branch has an empty
precondition and an empty task decomposition list that works as the loop’s exit branch. The
loop’s stay condition is translated as the first branch’s precondition. The block of steps in the
loop’s body is translated into the first branch’s task decomposition list. These steps should be
recursively translated if needed. The last task in the first branch’s decomposition list should be
a recursive invocation of the loop’s translated method.

Variable bindings taking place within the loop’s method precondition are discarded between
loop iterations by default. The variables in the loop VARS section should be kept between
iterations. In order to translate it, the variables in VARS should be included in the ARGS argument
list.

The method representing the while statement has to be named with a symbol with the
prefix while- and a numeric su�x, so that the resulting symbol provides a unique name for the
method in the refactoring planning domain. The while statement in the original sequence of
steps should be then replaced by the invocation of the method. The method’s arguments ARGS
should contain all the variables appearing in the method’s steps that are accessible from the

29

Prototype

30

Refactoring Planning Domain

✤ 3 Refactoring Strategies:

✦ for removing design smells

‣ Remove Data Class and Remove Feature Envy

✦ for applying a complex refactoring

‣ Move Method

✤ 9 Refactorings:

✦ Encapsulate Field, Move Method, Rename Method, Rename Field,
Rename Parameter, Rename Local Variable, Remove Field, Remove
Method and Remove Class.

✤ > 150 system queries:

✦ structural, lexical, numerical (metrics), user queries

✦ 8 external Java procedures

31

Eclipse

+

JTransformer

iPlasma

JSHOP2

Smells

Java
Source
Code

Java
Program
Element

Facts

Scripts
Refactoring

Planning
Domain

Refactoring
Planning
Problem

Refactoring
Plan

HTN Domain Definition

System's Initial State

Prototype Overview

✤ Refactoring Planning Domain: strategies + refactorings + NBPT + queries
✤ JTransformer: to obtain a predicate-based representation of the system
✤ iPlasma: to produce smell-entity reports
✤ JSHOP2: to compute refactoring plans from strategies for a particular case

32

Remove Data Class Strategy
remove-data-class all-sts (class)

remove-data-class reorganize-class (class)

remove-class (class)

remove-data-class trivial (class)

refactoring

alt

apply

strategy (refact.)

strategy (smell)

remove-data-class clean-class (class)

encapsulate-field (field, getter-name, setter-name)

encapsulate-fields non-private (class)

remove-getters unused (class)

remove-setters unsued (class)

 remove-feature-envy move-method-to-envied-class (method, env-class)

move-method all-sts (method, tgt-class, reference)

remove-method (accessor)

remove-data-class move-fe-methods (class)

remove-data-class move-client-methods (class)

33

Remove Data Class Strategy: example of a plan
apply-refactoring:!! show-method (org.jwebap.asm.attrs, stackmapattribute,

 gettypeinfolabels)
apply-refactoring:!! move-method (from, org.jwebap.asm.attrs, stackmapattribute,

 getframelabels, to, org.jwebap.asm.attrs, stackmapframe,
 through, frame, keeping-delegate, false)

apply-refactoring:!! show-method (org.jwebap.asm.attrs, stackmapattribute, writetypeinfo)
apply-refactoring:!! move-method (from, org.jwebap.asm.attrs, stackmapattribute,

 writeframe, to, org.jwebap.asm.attrs, stackmapframe,
 through, frame, keeping-delegate, false)

apply-refactoring:!! show-method (org.jwebap.asm.util.attrs, asmstackmapattribute, asmify)
apply-refactoring:!! show-method (org.jwebap.asm.util.attrs, asmstackmapattribute,

 declarelabel)
apply-refactoring:!! show-method (org.jwebap.asm.util.attrs, asmstackmapattribute,

 asmifytypeinfo)
apply-refactoring:!! move-method (from, org.jwebap.asm.util.attrs, asmstackmapattribute,

 asmify, to, org.jwebap.asm.attrs, stackmapframe,
 through, f keeping-delegate, false)

ply-refactoring:! ! encapsulate-field (org.jwebap.asm.attrs, stackmapframe, label,
 getlabel, setlabel)

apply-refactoring:!! encapsulate-field (org.jwebap.asm.attrs, stackmapframe, locals,
 getlocals, setlocals)

apply-refactoring:!! encapsulate-field (org.jwebap.asm.attrs, stackmapframe, stack,
 getstack, setstack)

apply-refactoring:!! remove-method(org.jwebap.asm.attrs, stackmapframe, setlabel) (SETTER)
apply-refactoring:!! remove-method(org.jwebap.asm.attrs, stackmapframe, setlocals)(SETTER)
apply-refactoring:!! remove-method(org.jwebap.asm.attrs, stackmapframe, setstack) (SETTER)

apply-remove-smell:! remove-data-class (org.jwebap.asm.attrs, stackmapframe) cleanclass

34

Case Studies

35

Experiment Description

Experiment Goal (GQM template)

object of study refactoring planning approach

purpose characterisation and evaluation

focus effectiveness, efficiency and scalability

stakeholders researcher

context our reference prototype

Experiment Procedure:

✤ execution of the refactoring planner
✤ obtaining refactoring plans from refactoring strategies
✤ two case studies: removing Feature Envy and Data Class
✤ for a set of 9 open-source systems.

36

Samples and Variables

✤ Independent Variables:
✦ PEF: number of program element facts - system size (obtained with JTransformer)
✦ FE: number of Feature Envy design smells (according to iPlasma)
✦ DC: number of Data Class design smells (according to iPlasma)

✤ Dependant Variables:
✦ P: Number of plans obtained for each system
✦ Tt: Total elapsed time (seconds) -> Tt = Tc + Tp
✦ Tc: Precompilation time (seconds)
✦ Tp: Planning time (seconds)

System Version LOC PEF FE DC
1 Jtombstone 1.1.1 1938 32780 2 7
2 Groom 1.3 3699 35434 2 2
3 Lucene 1.9 17627 85064 18 16
4 Pounder 0.96 9410 98570 26 3
5 MyTelly 1.2 12625 133605 2 13
6 Jwebap 0.6.1 16417 141047 17 21
7 dbXML 2.0 25862 199400 21 40
8 GanttProject 2.0.10 40775 241095 36 24
9 JfreeChart 1.0.11 80668 354543 45 29

37

Summary of Results
Feature EnvyFeature EnvyFeature EnvyFeature EnvyFeature EnvyFeature EnvyFeature EnvyFeature Envy

PEFs Smells Plans % Mean Tt Mean Tc Mean Tp
1 32780 2 1 50 29.52 23.02 6.49
2 35434 2 1 50 30.55 21.57 8.98
3 85064 18 3 16.67 64.1 53.71 10.4
4 98570 26 21 80.77 107.7 103.66 4.04
5 133605 2 0 0 253.69 182.85 70.84
6 141047 17 9 52.94 182.03 148.05 33.98
7 199400 21 11 52.38 413.21 303.29 109.92
8 241095 36 13 36.11 544.79 385.46 159.32
9 354543 45 24 53.33 1065.54 960.83 104.71

Totals 169 83 49.11
Data ClassData ClassData ClassData ClassData ClassData ClassData ClassData Class

1 32780 7 6 85.71 26.28 22.5 3.78
2 35434 2 2 100 30.56 21.63 8.93
3 85064 16 16 100 62.96 53.48 9.48
4 98570 3 3 100 179.91 104.28 75.63
5 133605 13 11 84.62 206.36 186.15 20.21
6 141047 21 20 95.24 167.55 148.36 19.2
7 199400 40 40 100 431.47 300.36 131.11
8 241095 27 24 88.89 530.18 386.57 143.62
9 354543 29 23 79.31 1021.41 959.76 61.65

Totals 158 145 91.77

Time is given in seconds.

38

0 50000 100000 150000 200000 250000 300000 350000 400000
0

120

240

360

480

600

720

840

960

1080

1200

1320

1440

1560

Mean Planning Time Std. Deviation 0.75 0.90

Factbase Size

Fe
at

ur
e

En
vy

 P
la

nn
in

g
Ti

m
e

(s
ec

s.
)

Probabilistic Upper Bounds for Planning Time

✦ Upper bounds for Tp computed with Chebishev’s Inequality for 75%
and 90% probability

0 50000 100000 150000 200000 250000 300000 350000 400000
0

120

240

360

480

600

720

840

960

1080

1200

1320

1440

Factbase Size

Da
ta

 C
la

ss
 P

lan
ni

ng
 T

im
e

(s
ec

s.
)

200,000 PEF
26,000 LOC

90% cases < 16 min.

75% cases < 11 min.

39

Experiment Conclusions

✤ Effectiveness:
✦ 50% plans for Feature Envy and 92% for Data Class

✤ Efficiency and scalability (analysis):
✦ Precompilation time is tightly correlated to system size.
✦ Planning time is very disperse.
✦ Planning time does not follow a normal distribution.
✦ Planning time depends on system size.
✦ Results for the dependency between planning time and strategies are

not conclusive.
✦ Probabilistic upper bounds of planning time are satisfactory.

✤ Efficiency and scalability (conclusions):
✦ Planning time is reasonable for a prototype.
✦ Precompilation time should be avoided.
✦ Scalability is hard to infer, good for the tested sizes, promising results.

40

Conclusions

41

Contributions

✤ Regarding Refactoring Strategies

✦ A review on the design smells' literature

✦ A survey on design smell management and a taxonomy

✦ Definition of refactoring strategies

✦ Definition of a refactoring strategy specification language

42

Contributions (2)

✤ Regarding Refactoring Plans

✦ Definition of refactoring plans

✦ Definition of the requirements to compute refactoring plans

✦ A technique to instantiate refactoring strategies into refactoring plans
by means of automated planning.

✦ An initial refactoring planning domain, and a reference prototype for
future research

43

Future Work

✤ Improve the refactoring planning domain

✤ Improve the prototype

✤ Explore different application scenarios for the approach

44

PhD Thesis

July 6th, 2011 - Valladolid

Refactoring Planning for Design Smell
Correction in Object-Oriented Software

Universidad de Valladolid - ETSII - Departamento de Informática - grupo GIRO

Francisco Javier Pérez García

supervised by
Yania Crespo González-Carvajal

45

