UVa

Refactoring Planning for Design Smell
Correction in Object-Oriented Software

PhD Thesis

Francisco Javier Pérez Garcia

supervised by
Yania Crespo Gonzalez-Carvajal

Universidad de Valladolid - ETSII - Departamento de Informatica - grupo GIRO

July 6th, 2011 - Valladolid

Outline

+ |Introduction
+ State of the Art

+ Thesis Proposal

+ Refactoring Strategies

+ Refactoring Planning
* Prototype
+ Case Studies

+ Conclusions

Introduction

Design Smells

Design smells

+ Problems in software's structure

+ Can be detected statically

+ Co not produce compile-time or run-time errors

+ Negatively affect software quality factors.

+ Kent Beck and Martin Fowler. Bad Smells in Code, chapter 3. In
Refactoring: Improving the Design of Existing Code, 1999.

+ Referred as defects, flaws, disharmonies, antipatterns, by other
authors.

+ Design Smell is proposed as a unifying term.

Refactorings

Refactorings

+ structural transformations

+ to perform design changes

+ without modifying the system’s observable behaviour.

+ William Opdyke. Refactoring Object-Oriented Frameworks. PhD Thesis,
1992

+ behaviour preserving invariants + preconditions + transformations

+ Kent Beck and Martin Fowler. Refactoring: Improving the Design of
Existing Code, 1999.

+ bad smells as a guide for refactorings

+ Low-level, composite and big refactorings

The problem to solve

PrintServer Document
lastDocument: Document content: String
name: String
formatSummary(): String author: String

setLastDocument(d: Document): veid creationDate: Date
getLastDocument: Document

printDocument(): void formatDocument: String
formatSummary(): String

+ formatSummary () of PrintServer suffers from Feature Envy

+ Trivial strategy: apply Move Method from PrintServer to Document
+ Refactoring precondition violation: same signature conflict

+ Additional refactorings are needed to enable the precondition

+ Different refactoring sequences for each particular case

The problem to solve

+ What is the problem?
+ Automated or semi-automated support
+ To schedule sequences of refactorings (refactoring plans)
+ To correct software design smells

+ Why is it a problem?

+ Preconditions can disable the application of a refactoring over the
current system

+ Refactoring sequences have to be planned ahead for each case
+ Why it is an important problem?
+ Design smells have a negative effect over software quality factors

+ Strategic refactorings are complex refactoring processes

Thesis Objectives

+ Provide support for computing Refactoring Plans:
+ for enabling the precondition of a set of refactorings.
+ for applying design smell correction specifications.

+ Provide a way to help software developers use the techniques
elaborated in this PhD Thesis Dissertation.

+ Evaluate the effectiveness, efficiency and scalability of the approach
presented in this PhD Thesis Dissertation by developing a prototype.

Thesis Statement

The activity of refactoring, when complex refactoring
sequences have to be applied as in the case of design

smell correction in Object-O

riented software, can be

assisted by means of refactoring plans that can be

obtained automatically.

State of the Art

Brief History of Design Smell Management (DSM)

Heuristics for Good OO Design

(1996 Riel) "Object-Oriented Design Heurstics"

v \\ /[

[Precise Correction Specifications]

>

(2008 Trifu) "Towards Automated Restructuring ...'

!

Detection Correction

+ More precise specifications lead to better automation
+ Correction lacks formal specifications and automation support

11

file://localhost/Users/jperez/Documents/curro/investigacion/TESIS/defensa/smellHistory.svg
file://localhost/Users/jperez/Documents/curro/investigacion/TESIS/defensa/smellHistory.svg

Design Smell Management Survey and Taxonomy

<

<

Design Smell
Management

[1..7] [1..7] [1..7]

‘ Design Smell \ ‘ Target Artefact \
L L é L
‘ Specification \ ‘ Detection \ ‘ Visualisation \ ‘ Impact Analysis \
e —— T —— S — A ——
.- I ~. - I ~. oF I ~. .- I ~.
Technique Automation Result
Support

Comprehensive study with Tom Mens, Naouel Moha and Carlos Lopez
Design smell management taxonomy with feature modeling notation

Activity

LJ
Correction

More than 100 references analysed

22 tool reviews available at http://www.infor.uva.es/DesignSmells

+ Analyst4j, ArgoUML, Argus CodeWatch, CodePro Analytix, Cultivate, Eclipse, FxCop,
inCode, jDeodorant, JRefactoy, M2 Resource StandarMetrics, PMD, Reek, Revjay,
Roodi, SA4), STAN, Structure101, StyleCop, Together, TRex, XRefactory

12

http://www.infor.uva.es/DesignSmells
http://www.infor.uva.es/DesignSmells

Analysis of 22 Design Smell Management Tools

Supported Actlwt
Specification Impact
Analysis
9 2

Degree of Automation

Manual
Detection 0
Correction 1
Type of Result
I __Correction B
f: Correctlon Suggestlons Refactorlngs / Actlons
8 1 |

—_—— T =

+ Automated DSM is mature in detection, has to be improved in correction.
+ Refactoring Suggestions for correction are not directly applicable.

13

Thesis Proposal

Proposal: Refactoring Strategies and Refactoring Plans

Refactoring Strategies

+ heuristic-based specifications

+ automation-suitable

+ describe complex behaviour-preserving transformations
+ aimed at a certain goal

Refactoring Plans

+ sequences of instantiated transformations

+ achieve a certain goal

+ can be applied over a system in its current state

+ behaviour-preserving transformation sequence

15

The Thesis in a Nutshell

Brown Refactoring
Beck : T Strategies
Wake =T Requirements \
Kerievsky w 2l
Marinescu e e L‘. ccccc = %ﬁ —
Demeyer / ccccc T -) ‘ J
Trifu T——
 — Design S_mell
Correction
Specifications
e Refactoring
Strategies
Specification
Language
P———
Evaluation Jetien Refactorin.g Plan /
2 Case Studies Computation
—— Requirements

P ——

16

Refactoring Strategies

Model for Current Correction Strategies

parameter
e 1.* 0..* 1 0.x
System Entit Design Smell Correction Strat
y y affected of esign sme possible strategies frection Strategy
input | 0..* output| 1.* ? 1
Toa
compute parameters
EAIAE 1<> Step
y
1= 1.
Control
1 J! |
g 1 1 0. Composed Apply Transformation
= Query - Condition
precondition 1. 1]
1 . | |
< Alternatives Loop
1
1
1 <> 1
Numerical Query Structural Query Lexical Query Quality-Based Condition Transformation
JAN i : i
Duplicated Code Query Entity-Kind Query User Query change Non-Behaviour Preserving Transformation Behaviour-Preserving Transformation
0.* 0..* | favoured 0..* |disfavoured 1
Metric Quality Factor

Voo 1
check

[Brown etal., 1998],[Beck and Fowler, 1999], [Wake, 2003], [Kerievsky, 2004],
[Lanza and Marinescu, 2006], [Demeyer etal., 2008], [Trifu, 2008]

18

Automation-Suitable Correction Specifications

+ Applicability of refactorings
+ representation of system entities at a low level of detalil
+ representation of refactoring preconditions
+ support computing refactoring preconditions
+ support computing refactoring effects

+ Heuristic descriptions of correction specifications
+ corrections knowledge is compiled in natural language, heuristics are
hard to specify in an algorithmic language
+ steps, loops and alternatives with unspecified order or without
decision conditions
+ incremental improvement of the available knowledge
+ alternative correction strategies

+ Additional elements in correction strategies
+ invocation of strategies and substrategies
+ calls for user interaction

19

Refactoring Strategies

Transformation

. ;

Non-Behaviour-Preserving Transformation Behaviour-Preserving Transformation

0. ZF

—<> Refactoring Refactoring Strategy <>
0.~

+ NBP transformations
+ building blocks for other transformations

+ Refactorings
+ can include: simple queries, atomic AST changes, NBP
transformations, deterministic control constructs

+ Refactoring strategies
+ can include: complex queries, atomic AST changes, any
transformation, non-deterministic control constructs
+ aimed at a goal (apply big refactorings, remove smells)

20

Refactoring Strategy Specification Language

strategy remove-feature—-envy move-method (method)
body
alt
branch
apply remove-feature—envy move-method-to-user—-class (method)
branch
apply remove-feature—envy move-method-to-data-class (method)
branch
apply remove-feature-envy move-method-to-envied-class (method,env-class)
end
end
strategy remove-feature—-envy move-method-to-envied-class (method, env-class)
precondition
get—-envied-class (method, env-class)
get—-movemethod—-reference (method, env-class, reference)

body
apply move-method all-sts (method, env-class, reference)
end
strategy move—-method all-sts (method, tgt-class, reference)
body
alt

branch apply move-method trivial (method, tgt-class, reference)
branch apply move-method basic (method, tgt-class, reference)
end

end

21

Refactoring Plans

Refactoring Plans from Refactoring Strategies: Requirements

+ Software Model

oo

+ low level of detail, representation of method’s bodies

+ AST-based model

Computation of refactoring precondition and effects over the model
Deterministic and non-deterministic control constructs

Incomplete specifications

+ Computation with the available knowledge

+ Incrementally improvement of the available knowledge

Support to represent and manage all elements of refactoring strategies

23

Refactoring Planning as an Automated Planning Problem

system description AST + transformations
— y \ 4
— initial state —» — current AST .
L planner refactoring planner
— objectives —»L — remove smell —»
plans refactoring plans
execution status l
\ 4
‘ controller \ ‘ software developer \
actions source code transformations
observations l source code l
‘ system \ ‘ software system \

events

Automated Planning Refactoring Planning

24

Choosing the Right Planner

+ Many kinds of planning approaches
+ select the most appropriate given the problem characteristics

+ Classical Planning (8 assumptions - restricted model)

+ Neoclassical planning (relaxed assumptions)

» domain-configurable planners
Hierarchical Task Network (HTN) Planning

+ Refactoring Planning - characteristics of the problem
+ huge states and search-spaces
+ heuristic knowledge available as “recipes”
+ some unmet assumptions

25

Hierarchical Task Network (HTN) Planning

task1

(method2)
__precondition1 precondition2
| Goal

task2 task3 task4 operator1

< precondition3)
‘ ADD | ‘ DEL |

+ Tasks: Methods and operators - “recipes” about how to execute a task

method1

+ Preconditions: first-order-logic queries - gather system information

+ Goal: Execute a task

26

Refactoring Planning as an HTN Planning Problem

World’s state: AST represented by first-order logic predicates
Operators: atomic changes to the AST (mainly add, delete and replace)
Tasks: transformation parts

refactoring parts

non-behaviour preserving transformations
refactorings

refactoring strategies

Goal: Executing a smell correction strategy
Executing a refactoring application strategy

Planning problem: Execute a particular refactoring strategy over a particular ver-
sion of a system

+ JSHOP2: the HTN planner selected
+ forward search in the same order as the plan should be executed
+ very expressive and efficient

+ first-order-logic inference engine

4

4

external queries
two stages planning process: precompilation + planning

27

Implementation of Refactoring Strategies: alternatives

AN

Refactoring

Strategies

Translation Rules

(DSL)

Deterministic alternative

if COND1 then
SRS L

elseif COND2 then
STEPS?2

else
SWERS 3

end

Refactoring \

Planning
Domain
(HTN)

;; 1f invocation
(Lf—-xx ARGS)

cra Lt elEEEalio. e Calo
(:method (if—-xx ARGS)
(COND1)
(SSHRETI=NS S

(CONDZ2)
(STEES2)

()
(STEPS3)

28

Implementation of Refactoring Strategies: alternatives

u Refactoring)
Refactoring Planning
Strategies Translation Rules Domain

(DSL) (HTN)
-

Non-Deterministic alternative

ol e o CE Bl o T
(alt—xx ARGS)

alt oo mallic ceiEanlEdlomn
branch COND1 (:method (alt-xx ARGS)
body (COND1)
STEPS1 (STEPS1)
branch COND?2)
body (:method (alt-xx ARGS)
STEPSZ (COND2)
branch (STEPS2)
body)
STEPS3 (:method (alt—-xx ARGS)
end ()

(ESUMEI=ESICH)

29

Prototype

Refactoring Planning Domain

+ 3 Refactoring Strategies:
+ for removing design smells
» Remove Data Class and Remove Feature Envy
+ for applying a complex refactoring
+ Move Method
+ 9 Refactorings:

+ Encapsulate Field, Move Method, Rename Method, Rename Field,
Rename Parameter, Rename Local Variable, Remove Field, Remove
Method and Remove Class.

+ > 150 system queries:

+ structural, lexical, numerical (metrics), user queries

+ 8 external Java procedures

31

Prototype Overview

Refactoring HTN Domain Definition Refactoring
Planning > Scripts Planning
Domain Problem
S —
System's Initial State I

- Java
Eclipse Program JSHOP2
+ Element

Java P JTransformer Facts

Source
Code

N

N
Refactoring

iPlasma Smells Plan

Refactoring Planning Domain: strategies + refactorings + NBPT + queries
JTransformer: to obtain a predicate-based representation of the system
IPlasma: to produce smell-entity reports

JSHOP2: to compute refactoring plans from strategies for a particular case

32

Remove Data Class Strategy

TR AR & O ol B N * T e A
remove-data-class all-sts (class)
- strategy (smell)

- ~

~
5 ~

“ — | ||strategy (refact.)

remove-data-class trivial (class) remove-data-class reorganize-class (class)
‘ refactoring |

remove-class (class)

remove-data-class move-client-methods (class)

remove-data-class move-fe-methods (class)

remove-feature-envy move-method-to-envied-class (method, env-class) remove-data-class clean-class (class)

move-method all-sts (method, tgt-class, reference) encapsulate-fields non-private (class)

remove-getters unused (class)

remove-setters unsued (class)

encapsulate-field (field, getter-name, setter-name) remove-method (accessor)

33

Remove Data Class Strategy: example of a plan

apply-refactoring:
apply-refactoring:

apply-refactoring:
apply-refactoring:

apply-refactoring:
apply-refactoring:
apply-refactoring:

apply-refactoring:

ply-refactoring:

apply-refactoring:
apply-refactoring:
apply-refactoring:
apply-refactoring:
apply-refactoring:

apply-remove-smell:

show-method (org.jwebap.asm.attrs, stackmapattribute,
gettypeinfolabels)

move-method (from, org.jwebap.asm.attrs, stackmapattribute,
getframelabels, to, org.jwebap.asm.attrs, stackmapframe,
through, frame, keeping-delegate, false)

show-method (org.jwebap.asm.attrs, stackmapattribute, writetypeinfo)

move-method (from, org.jwebap.asm.attrs, stackmapattribute,
writeframe, to, org.jwebap.asm.attrs, stackmapframe,
through, frame, keeping-delegate, false)

show-method (org.jwebap.asm.util.attrs, asmstackmapattribute, asmify)

show-method (org.jwebap.asm.util.attrs, asmstackmapattribute,
declarelabel)

show-method (org.jwebap.asm.util.attrs, asmstackmapattribute,
asmifytypeinfo)

move-method (from, org.jwebap.asm.util.attrs, asmstackmapattribute,
asmify, to, org.jwebap.asm.attrs, stackmapframe,
through, f keeping-delegate, false)

encapsulate-field
encapsulate-field
encapsulate-field
remove-method (org

remove-method (org
remove-method(org

(org.jwebap.asm.attrs, stackmapframe, label,
getlabel, setlabel)

(org.jwebap.asm.attrs, stackmapframe, locals,
getlocals, setlocals)

(org.jwebap.asm.attrs, stackmapframe, stack,
getstack, setstack)

. jwebap.asm.attrs, stackmapframe, setlabel) (SETTER)

. jwebap.asm.attrs, stackmapframe, setlocals) (SETTER)

. jwebap.asm.attrs, stackmapframe, setstack) (SETTER)

remove-data-class (org.jwebap.asm.attrs, stackmapframe) cleanclass

34

Case Studies

Experiment Description

Experiment Goal (GQM template)

object of study = refactoring planning approach

purpose characterisation and evaluation
focus effectiveness, efficiency and scalability
stakeholders researcher
context our reference prototype

Experiment Procedure:

execution of the refactoring planner
obtaining refactoring plans from refactoring strategies
two case studies: removing Feature Envy and Data Class

<
<
<
« for a set of 9 open-source systems.

36

Samples and Variables

System Version LOC PEF FE DC
1 Jtombstone 1.1.1 1938 32780 2 7
2 Groom 1.3 3699 35434 2 2
3 Lucene 1.9 17627 85064 18 16
4 Pounder 0.96 9410 98570 26 3
5 MyTelly 1.2 12625 133605 2 13
6 Jwebap 0.6.1 16417 141047 17 21
7/ dbXML 2.0 25862 199400 21 40
8 GanttProject 2.0.10 40775 241095 36 24
9 JfreeChart 1.0.11 80668 354543 45 29

+ Independent Variables:
+ PEF: number of program element facts - system size (obtained with JTransformer)
+ FE: number of Feature Envy design smells (according to iPlasma)

+ DC: number of Data Class design smells (according to iPlasma)
+ Dependant Variables:

+ P: Number of plans obtained for each system
+ Ty Total elapsed time (seconds) -> Ti=T.+ T,
+ T.: Precompilation time (seconds)

+ Tp: Planning time (seconds)

37

Summary of Results

Feature Envy Time is given in seconds.

PEFs Smells Plans % Mean T; Mean T. Mean T,
1 32780 2 1 50 29.52 23.02 6.49
2 35434 2 1 50 30.55 21.57 8.98
3 85064 18 3 16.67 64.1 53.71 10.4
4 98570 26 21 80.77 107.7 103.66 4.04
) 133605 2 0) o) 253.69 182.85 70.84
6 141047 17 9 52.94 182.03 148.05 33.98
7 199400 21 11 52.38 413.21 303.29 109.92
8 241095 36 13 36.11 244.79 385.46 159.32
9 354543 45 24 53.33 1065.54 960.83 104.71

Totals 169 83 49.11

Data Class

1 32780 7/ 6 85.71 26.28 22.5 3.78
2 35434 2 2 100 30.56 21.63 8.93
3 85064 16 16 100 62.96 53.48 9.48
4 98570 3 3 100 179.91 104.28 75.63
) 133605 13 11 84.62 206.36 186.15 20.21
6 141047 21 20 95.24 167.55 148.36 19.2
7 199400 40 40 100 431.47 300.36 131.11
8 241095 27 24 88.89 530.18 386.57 143.62
9 354543 29 23 79.31 1021.41 959.76 61.65

Totals 158 145 91.77

38

Probabilistic Upper Bounds for Planning Time

== Mean Planning Time -V Std. Deviation -&'0.75 -®0.90

1560
1440
2o 200,000 PEF ——
| |
1200 26,000 LOC !
S 1080 - "
L ° ‘ S0
o 960 90% cases < 16min. | —»=
— 840 ‘i |
g 720 o . }: | A
s 75% cases < 11 min. |} . "
T 00) 4 T
@ 480 . [
O 360 . v T -
§ o4 O ::::A:;’:u’u ::::",.‘ i (E ‘ ’.~A
P o
R L |; j;
0 50000 100000 150000 |] 2000 O Jl 250000 300000 350000 400000

Factbase Size

+ Upper bounds for T, computed with Chebishev’s Inequality for 75%
and 90% probability

39

Experiment Conclusions

« Effectiveness:
+ 50% plans for Feature Envy and 92% for Data Class

<

T

fficiency and scalability (analysis):

Precompilation time is tightly correlated to system size.

Planning time is very disperse.

Planning time does not follow a normal distribution.

Planning time depends on system size.

Results for the dependency between planning time and strategies are
not conclusive.

+ Probabilistic upper bounds of planning time are satisfactory.

S R 1) S

+ Efficiency and scalability (conclusions):
+ Planning time is reasonable for a prototype.
+ Precompilation time should be avoided.
+ Scalability is hard to infer, good for the tested sizes, promising results.

40

Conclusions

Contributions

+ Regarding Refactoring Strategies
+ A review on the design smells' literature
+ A survey on design smell management and a taxonomy
+ Definition of refactoring strategies

+ Definition of a refactoring strategy specification language

42

Contributions (2)

+ Regarding Refactoring Plans
+ Definition of refactoring plans
+ Definition of the requirements to compute refactoring plans

+ A technique to instantiate refactoring strategies into refactoring plans
by means of automated planning.

+ An initial refactoring planning domain, and a reference prototype for
future research

43

Future Work

+ Improve the refactoring planning domain

+ Improve the prototype

« Explore different application scenarios for the approach

44

UVa

Refactoring Planning for Design Smell
Correction in Object-Oriented Software

PhD Thesis

Francisco Javier Pérez Garcia

supervised by
Yania Crespo Gonzalez-Carvajal

Universidad de Valladolid - ETSII - Departamento de Informatica - grupo GIRO

July 6th, 2011 - Valladolid

