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Resumen

La evolucion de un sistema software suele conllevar cierto grado de deterioro de su estructura.
Esto ocurre principalmente porque el mantenimiento se centra més en la correccién de bugs y
en la inclusiéon de nuevas funcionalidades que en el seguimiento y la mejora de su arquitectura y
disenio. La malas practicas de diseno, causadas a menudo por la inexperiencia, el conocimiento
insuficiente o la urgencia, originan design smells (“malos olores en el disefio”): problemas en
la estructura de un sistema, que no producen errores de compilaciéon o de ejecucién, pero que
afectan negativamente a los factores de calidad del software.

Las refactorizaciones constituyen una técnica clave en la evoluciéon del software. Pueden
emplearse para mejorar la estructura y la calidad de un sistema sin modificar su comportamiento
observable. De ahi que parecen ser también la técnica més apropiada para corregir design smells.
La mayoria de enfoques de gestion de design smells se centran en sugerir cuales serian los cambios
y las estructuras més adecuadas para remediar un mal olor y recuperar la intencién del disefio
original. Estas sugerencias se suelen dar en términos de refactorizaciones.

Una de las dificultades que presenta la aplicacién de estas sugerencias de refactorizacion
radica en que es inusual que las precondiciones de las refactorizaciones se cumplan en el momento
deseado de su aplicaciéon. El desarrollador, por lo tanto, tiene que planificarlas con antelacion
y aplicar una cantidad significativa de cambios adicionales para resolver esto. En un proceso
de refactorizacién que persiga un objetivo complejo, como la correccién de design smells, es
practicamente inevitable la aparicién de este problema.

La presente Tesis Doctoral esté orientada a a mejorar la automatizacion de las actividades de
refactorizacion enfocadas a la correccion de design smells. La propuesta desarrollada se basa en
la definicion de estrategias de refactorizaciéon y en la instanciaciéon de planes de refacto-rizacion a
partir de estas. Las estrategias de refactorizacion son especificaciones automatizables de secuen-
cias de refactorizacién complejas dirigidas a un objetivo particular, como la correcciéon de design
smells. Los planes de refactorizacion son secuencias de refactorizacion ins-tanciadas a partir de
estrategias de refactorizacion, que pueden ser aplicadas sobre un sistema para conseguir de forma
efectiva ese objetivo. Las estrategias y los planes de refactorizaciéon permiten computar las refac-
torizaciones preparatorias requeridas, ayudando al desarrollador a resolver el incumplimiento de
las precondiciones.

La planificaciéon automéatica es una rama de la inteligencia artificial orientada a calcular las
secuencias de acciones que se deben realizar para lograr un objetivo determinado. El estudio
que se presenta demuestra que es una técnica apropiada para instanciar planes de refactorizacion
y, por lo tanto, para respaldar procesos de refactorizaciéon complejos. Hemos observado que la
planificacién mediante redes de tareas jerarquicas proporciona, de entre los diferentes enfoques
de planificacién existentes, el mejor equilibrio entre estrategias procedimentales y basadas en
busqueda para el problema de planificacién de refactorizaciones. Asi, la investigaciéon que se
presenta en este documento, muestra que la generaciéon de planes de refactorizacion —basados
en planificaciéon de redes de tareas jerarquicas— es un enfoque muy apropiado para ayudar a la
automatizacion de la actividad de correcciéon de design smells.

Palabras clave: refactorizacion, bad smells, design smells, correccion de design smells, estrate-
gias de refactorizacion, planes de refactorizacion, planificacién automaética, planificacion de redes
de tareas jerarquicas.






Abstract

The evolution of a software system often implies a certain degree of deterioration of the system’s
structure. This mainly happens because maintenance efforts concentrate more on bug correction
and the addition of new functionality, than on the control and improvement of the system’s
architecture and design. Bad design practices, often due to inexperience, insufficient knowledge
or time pressure, are at the origin of design smells. Design smells are problems encountered in
the system’s structure which do not produce compile or run-time errors, but negatively affect
software quality factors. Correcting or, at least, reducing design smells can improve software
quality.

Refactoring is a key technique in software evolution. It can be used to improve the structure
and quality of a software system without changing its observable behaviour. Consequently, refac-
toring also seems to be the most adequate technique to correct design smells. Most design smell
management approaches focus on suggesting which are the best redesign changes to perform, and
which are the best structures to remedy a smell in order to recover the original design intent.
These suggestions are often given in terms of refactorings.

One of the difficulties in applying refactoring operations is that it is rare that the preconditions
of the desired refactorings could be fulfilled by the system’s source code in its current state.
Therefore, the developer has to plan ahead and apply a significant amount of additional changes
to solve this problem. This is a recurring issue appearing when a refactoring process pursues a
complex objective, such as correcting design smells.

This PhD Thesis Dissertation is aimed at improving the automation of the refactoring activity
when it is oriented to the correction of design smells. The approach is based on the definition of
refactoring strategies and the instantiation of refactoring plans from them. Refactoring strategies
are specifications of complex refactoring sequences aimed at a certain goal, such as the correc-
tion of design smells, that can be easily automated. Refactoring plans are refactoring sequences,
instantiated from refactoring strategies, that can be applied to the system to effectively achieve
that goal. Refactoring strategies and refactoring plans allow the necessary preparatory refac-
torings to be computed, thus helping the developer to circumvent the violation of refactoring
preconditions.

Automated planning is an artificial intelligence branch that seeks to generate sequences of
actions that will achieve a certain goal when they are performed. The study presented in this
document demonstrates that automated planning is a suitable technique for instantiating refac-
toring plans and thus, for supporting the problem of performing complex refactoring processes.
We have found that hierarchical task network planning provides, among all the existing plan-
ning approaches, the best balance between search-based and procedural-based strategies for the
problem of refactoring planning. Therefore, this research introduces the generation of refactoring
plans —based on hierarchical task network planning— as an approach to support the automation
of the design smells correction activity.

Keywords: refactoring, bad smells, code smells, design smells, design smell correction, refac-
toring strategies, refactoring plans, automated planning, hierarchical task network planning.
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Typographical Notes

The following typographical conventions are used in this dissertation:

e Names of programming languages, tools, products, etc. are written in smallcaps font, eg.
Lisp, JAVA, ECLIPSE, etc.

e Names of refactorings are capitalized and written in bold style, eg. MOVE METHOD.
e Names of design smells are written in italics, eg. Large Class.

e Code listings and excerpts are written in typewriter font, eg. (create—getter ?package
?class ?field ?getter-name).

e Elements of a model are written in bold italics, eg. Precondition, Entity.

e Quotes from other authors are written in italics, enclosed between double quotes, eg. “this
is a quote”, and placed in a separate paragraph when significantly relevant or large, eg.

“This is a large quote”
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Chapter 1

Introduction

Software evolution is a fundamental part of the software development process, that often re-
sults in an increase of software entropy and, as a consequence, in the decay of software struc-
ture [EGKT01]. This mainly happens because maintenance efforts concentrate more on bug
correction and the addition of new functionality, than on the control and improvement of the
system’s architecture and design |Bro75|.

Problems in the software’s structure can manifest in the form of design smells. Design
smells [BF99a| are design problems that come from “poor” design choices, leading to ill-structured
software. This may hinder further development and maintenance! by making it harder for
software developers to change and evolve the software. Design smells do not produce compile
or run-time errors, but negatively affect software quality factors. In fact, this negative effect on
quality factors could lead to real compile and run-time errors in the future. Correcting or, at
least, reducing design smells can improve software quality. The most desirable approach would
be to prevent them, but a systematic technique to detect and correct software design smells once
they have appeared is still needed. Since the aim of design smell correction is not to change the
system’s behaviour —the system is working, it is not necessary to fix its behaviour— design smells
are corrected with refactorings.

Refactorings are source code transformations that change the system’s internal design while
preserving its observable behaviour [Opd92|. Refactorings can be used to improve, in general,
certain quality factors such as reusability, understandability, maintainability, etc. More specifi-
cally, refactorings can help to achieve a particular system structure, such as introducing a design
pattern [Ker04] or consolidating the system’s architecture [NLOG6].

Refactoring operations are defined in terms of preconditions and transformations. Precon-
ditions define the situations under which a refactoring operation can be safely applied without
altering the system’s behaviour. The transformation part specifies which are the changes to be
performed to the system. Refactoring operations are meant to be executed in small steps, so
that more complex refactorings can be executed by the composition of simpler ones. Behaviour
preservation is also easier to check in the case of simpler refactorings.

When a refactoring process aims to solve a complex problem, such as the correction of
design smells, a significant amount of changes is needed. Refactorings’ preconditions can help
to assure behaviour preservation, but at the same time they hinder the application of complex
transformation sequences because they restrict the applicability of refactoring operations. If any

!The maintainability is the ease with which a software system or component can be modified to correct faults,
improve performance, or other attributes, or adapt to a changed environment [ISO01].



2 CHAPTER 1. INTRODUCTION

precondition of any operation in the intended transformation sequence, is not fulfilled at the time
of its application, the whole sequence can not be applied. This makes it hard for the developer
to perform complex refactoring processes, such as the correction of design smells.

Some authors have tried to circumvent this problem [KKO04|. Static composition of refactor-
ings avoids the violation of the preconditions of the intermediate refactorings for predefined or
fixed refactoring sequences. The definition of the refactorings to be applied, in the case of de-
sign smell correction, is made in terms of correction strategies which are mainly heuristics. The
application of this kind of refactoring sequences has an increased difficulty since the intended
correction strategy has to be instantiated for each specific use. This means that the developer
has to find out the suitable refactoring sequence for each particular case from the wide range of
choices defined by the correction strategy.

Several techniques have been developed to support the different activities of design smell
management. For example, metrics, structure analysis, and other techniques have been proved
to be very useful in revealing smells and in suggesting changes to reduce or to remove them. A
convenient way to present these suggestions is through the proposal of refactorings. The problem
is that, as already mentioned, it is rare that the preconditions of the desired transformations
could be fulfilled by the system’s source code at its current state. This means that additional
transformations are needed in order to “prepare”’ the system for the desired evolution. Therefore,
suggesting refactorings is not enough to allow systematic correction of design smells. For the
correction activities, reviewing the state-of-the-art reveals there is a need for an approach to
plan and generate executable design correction strategies. The suggestions, that the existing
approaches produce for correction, cannot be executed as they are.

This PhD thesis dissertation tackles this problem. This research is aimed at improving the
automation of the refactoring activity when it is oriented to the correction of design smells.
Indeed, any activity involving complex refactoring processes might be improved if we can pro-
vide a more automated method to compute the sequence of refactoring operations needed to
accomplish a certain objective. The approach proposed is based on the generation of refactoring
plans. We define refactoring plans as the specification of refactoring sequences, that match a
system redesign proposal or a correction suggestion, and which could be generated to apply a
smell correction specification in each particular case. Thereby the desired refactorings can be
executed over the current system’s source code. Refactoring plans allow to compute the prepara-
tory refactorings needed, thus helping the developer to circumvent the violation of refactoring
preconditions.

Formal theories, such as graph transformation or first order logic, can be used to analyse
a set of available refactorings, within a context given by the current system’s source code and
a redesign proposal, in order to obtain the refactoring plan. We ourselves have explored the
graph transformation approach before developing the proposal presented in this Thesis. This
exploration has served us for gaining insight and acknowledgment in the problem. This Thesis
analyses the current state of the art on correction of design smells. This helps us to define
the main characteristics of the problem and to model a solution by introducing the concept of
Refactoring Plans. The approach presented in this dissertation to improve the automation of
refactorings is based on automated planning [GNT04], and more specifically on hierarchical task
network planning [GNTO04, chapter 11]. This technique is analysed to reveal its suitability for
the refactoring planning problem. We show finally, how refactoring plans can be supported with
hierarchical task network planning and demonstrate its application with a case study.
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1.1 Overview of the problem

1.1.1 What is the problem to solve?

The problem to solve in this PhD Thesis Dissertation is to give an automated or semi-automated
support to refactoring planning in the use of refactorings for correcting Object-Oriented software
design smells. This will involve the definition of a framework for the instantiation of design-smell-
removing suggestions into correction plans which could be effectively applied through refactor-
ings, because the system’s behaviour should be preserved. This problem can be encompassed
within a wider scope. The results derived from this dissertation could benefit other scenarios
where complex refactoring sequences are needed in order to achieve a particular design goal or
improvement.

The main problem to solve will be to give automated or semi-automated support to
refactoring planning in the context of using refactorings to correct software design
smells.

1.1.2 Why is it a problem?

Techniques to detect design smells and correct them are maturing and increasing in num-
ber: detection of bad smells with metrics [LM06, CLMMO6|, usage of structural patterns to
find smells [MohO8], Formal/Relational Concept Analysis to propose reorganisation of Object-
Oriented entities [PCMLO03, MBGO6], just to cite a few of them. The open problem is still that
all the change suggestions given by the existing approaches and tools are not directly applica-
ble over a system. They are given in terms of refactorings, but these refactorings are rarely
directly applicable. Additional and preparatory refactorings and complex refactoring sequences
have to be planned ahead. It does not matter how precisely these refactoring suggestions are
given out [TSGO4]. They can only be general specifications that have to be instantiated in a
very specific situation, for a particular system at a particular state. Those design smell correc-
tion descriptions can not anticipate every possible instantiation. Therefore, the responsibility to
instantiate this smell correction specifications is entirely left to the developer. The refactorings
to execute are often very complex sequences, quite different from the ones originally suggested
by the smell management tool.

Not only refactorings have to be planned ahead when they are applied in the particular
scenario of correcting design smells, but also when they are employed for any other objective on
a daily basis. According to the study conducted by Murphy-Hill and Black in [MHBOS|, there is
a need to improve the usability of refactoring tools in order to achieve a wider adoption of this
technique by developers. Specifically, they found that precondition violation is a problem which
has not been addressed yet. When a developer tries unsuccessfully to apply a refactoring with
a refactoring tool, most of the errors identified are violations of the refactoring preconditions.
Other problems included how to understand and avoid these violations and how to decide which
refactorings to apply. At the current state of refactoring tools, the assistance offered by the
IDEs proves not helpful enough. Current tools just print error messages with few useful details.
These authors propose to improve refactoring tools with better user interfaces that could help
the developer to understand the precondition violations.

Thus, there is a clear need to improve the automated assistance for the developer when it
comes to understand precondition violations and how to solve them in order to apply a desired
refactoring.
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1.1.3 Why is it an important problem?
Refactoring involves “many refactorings”

Developing a solution for refactoring precondition fulfillment opens the door to an improvement
on the automation of complex refactoring processes, such as design smell correction with refactor-
ings. The automated generation of complex refactoring sequences, aimed at enabling refactoring
preconditions, can help to apply a desired single refactoring or a set of refactorings. The ap-
proach can then be easily extended and generalised for planning refactoring sequences aimed at,
for example, design smell correction.

The problem of precondition fulfillment can help improve the refactoring process in a wide
variety of scenarios. In a refactoring process, refactoring operations are not executed in an
isolated way. Instead, refactorings are applied in sequences, often encompassing wider changes
to the code. Some examples of scenarios where complex refactoring sequences appear are:

e Refactoring compositions, defined by Opdyke, such as “high-level refactorings” [Opd92,
page 79|, and “composite refactorings” [Opd92, page 74]. Complex refactorings like these
can be built upon simpler or lower-level ones. For example, to apply the high-level refac-
toring CREATING AN ABSTRACT SUPERCLASS [Opd92, page 79|, Opdyke compiles a
specification that includes low-level refactorings such as: CREATE EMPTY CLASS |[Opd92,
page 56|, CREATE MEMBER FUNCTION |Opd92, page 57|, DELETE MEMBER FUNC-
TIONS [Opd92, page 59|, CHANGE VARIABLE NAME |Opd92, page 60|, CHANGE MEM-
BER FUNCTION NAME |[Opd92, page 61|, CHANGE TYPE |Opd92, page 62|, CHANGE
ACCESS CONTROL MODE [Opd92, page 63|, REORDER FUNCTION ARGUMENTS [Opd92,
page 66|, ADD FUNCTION BODY [Opd92, page 67|, MOVE MEMBER VARIABLE TO
SUPERCLASS [Opd92, page 72|, and composite refactorings such as: CONVERT CODE
SEGMENT TO FUNCTION |Opd92, page 75|, MOVE CLASS |Opd92, page 76]. Composite
refactorings are refactorings built upon low-level ones but involving less complexity than
high-level ones.

e Refactoring specifications from Fowler et al. [FBB199]. Refactorings can enable or disable
the precondition of other refactorings. Fowler et al. describe these dependencies among
refactorings in his specifications. In order to accomplish the execution of a particular refac-
toring operation, this process must often be performed along with the execution of other
refactorings which enable the precondition of the first one. For example, REPLACE CONDI-
TIONAL WITH POLYMORPHISM |[FBBT99, page 255 often requires executing REPLACE
TYPE CODE WITH SUBCLASSES [FBB199, page 223|, EXTRACT METHOD [FBB199,
page 110], MOVE METHOD [FBB199, page 142], etc.

e Refactorings aimed at a certain goal, such as introducing or removing design patterns [Ker04],
or removing design smells [BF99al. As an example, according to Fowler et al., in order to
remove a Data Class, one should have to apply a number of refactorings including; EN-
CAPSULATE FIELD [FBB'99, page 206], ENCAPSULATE COLLECTION [FBB199, page
208|, REMOVE SETTING METHOD [FBB"99, page 300, MOVE METHOD |[FBB*99, page
142], EXTRACT METHOD [FBB"99, page 110] and HIDE METHOD |[FBB*99, page 303].

All these scenarios can benefit from an approach which enables the automated generation of
refactoring sequences or plans, to build up complex refactorings. This PhD thesis dissertation is
driven by the last case, but the first two cases are also indirectly supported.
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Regarding design smells

As stated by Lehman in his laws of software evolution |Leh96|, it is a well known and verified
fact that software evolves or else, it becomes obsolete and progressively less useful:

“An E-type program? that is used must be continually adapted else it becomes progres-
swely less satisfactory.” I - Law of Continuing Change

Moreover, as already mentioned at the begining of this chapter, software design decay is a
recurrent process |[Bro75, EGK101]. One way to address design decay is through the detection
and correction of design smells, i.e., what Kerievsky calls “paying design debt” [Ker04] or Neil et
al. call “strategic refactoring” [NLO6|.

Design smells can certainly have a bad influence on software quality factors. Although, up
to our knowledge, there are not any really conclusive experiments on the subject, the common
software engineering knowledge confirms this idea.

In his PhD dissertation [Mar02], Marinescu uses quality models to establish the relationships
between design smells and software quality factors. He calls these models factor strategy mod-
els [Mar02, pages 87-108|. This mapping between design smells and software quality factors
allows to describe which design smells can have a negative impact over a certain quality factor,
and vice versa, which quality factors can be deteriorated by a particular design smell. The rela-
tionships defined within these models are weighted, so that the degree of impact of each design
smell can be taken into account too. He also applies this approach to present a model definition
for maintainability [Mar02, pages 145-147]. With this maintainability model he tries to describe
how this quality factor can be negatively affected by some design smells, such as Feature Enuvy,
Temporary Field, Shotgun Surgery, Refused Bequest, God Class, God Package, God Method, Data
Class, etc.

Marinescu also presents a case study to evaluate the factor strategy models [Mar(02, pages
109-130]. In his PhD dissertation, two versions of a large-sized business application related to
computer-aided route planning were analysed. The first version is composed of 93,000 lines of
code, 18 packages, 152 classes and 1284 methods. The second version, containing 115,600 lines
of code, 29 packages, 387 classes and 3446 methods, has grown in functionality while at the
same time it has been redesigned to remove some of the design smells detected within the first
version. The author states that the use of factor strategy models shows how maintainability is
significatively improved between the two versions of the system.

In [LWNO7a|, Lozano et al. argue that in order to evaluate the impact of design smells over
the maintainability of a system, the evolution of the system and design smells themselves have
to be analysed through the different versions of the system. On the basis of this premise, the
same authors present in [LWNO7b| a case study for the design smell known as Duplicated Code
(they actually use the term “code clones”). This preliminary experimental work revealed that
clones introduce implicit dependencies in the code, causing an increased maintenance effort and
the appearance of other design smells like shotgun surgery.

Ratzinger et al., describe in [RFG05] how they conducted a succesful case study for detecting
and correcting design smells in an industrial picture archiving and communication system. In

2E-type refers to the software that models human processes, organisation and activities. This type of software
naturally evolves as its problem domain does. The “E” stands for evolutionary. Other software types defined by
Lehman are: S-Software, which can be formally derived from the specification; and P-Software, which can be
specified and derived formally but the actual computation has to be addressed through heuristics and aproxima-
tion [Leh&0].
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this paper, they explain how correction of change-coupling related smells lead to an improvement
on the evolvability of the system.

Certain authors try to explore in which situations a bad smell reveals as bad design and in
which cases it does not. Even though duplicated code is considered a design smell that affects
maintainability in a negative way —Fowler et al. mention it as “Number one in the stink parade”
[FBBT99, page 76|, there are some specific situations in which duplicated code can be considered
a good design choice. In [KGO06|, Kasper et al. try to compile eight patterns of duplicate code
usage (they use the term “code clones”) to analyse in which cases it is a problem. They also
describe the special cases in which duplicated code is not a problem but, on the contrary, it can
be the best design choice. In the end, the paper is a warning to smell detection practices. It
also confirms the meaning of the term “smell”. not all smells are actually design problems. An
automated procedure to manage design smells has to provide a way to discern between these
cases, either automatically or in a developer-assisted way.

The improvement produced through refactoring, not necessarily aimed at the correction of
design smells over the design of a system and, as a consequence, over its quality factors, has been
evaluated and logged by many other authors.

Kataoka et al. describe in [KIAF02| a method to evaluate the effect of refactoring over the
maintainability of the system by computing coupling metrics. The case study presented in this
paper shows how the application of certain refactorings actually enhanced the maintainability of
the system.

Moser et al. present in [MAPT08| a case study aimed at assessing the impact of refactoring
in a close-to-industrial environment. The system analysed is a commercial software product
to monitor applications for mobile Java-enabled devices. The software project was carried out
in an Agile development environment. The development team was composed of professional
developers and students. Their results indicate that refactoring not only increases aspects of
software quality, but also improves productivity.

Stroggylos et al. analyse in [SSO7b| whether refactoring is being effectively used as a means to
improve software quality within the open source community. In order to do this, they evaluate
the logs of the version-control system hosting the source code of some popular open source
software systems, such as APACHE HTTPD, APACHE Loc4J, MYSQL CONNECTOR/J and JBOSS
HIBERNATE, to detect changes marked as refactorings. They examined how the software metrics
are affected by the usage of refactoring practices. They conclude that not every refactoring
process produces design and quality improvement. On the contrary, their findings showed how
some metrics, such as LCOM —lack of cohesion of methods [CK91|- can increase, indicating a
worse design, if developers do not apply refactorings in an effective way.

Neil et al. argue in [NLO6| that refactoring has to be planned ahead in order to be successful,
always having the objective of design improvement in mind. They suggest to follow a “strategic
refactoring” approach which they describe as “design-pattern-based refactorings with architec-
tural awareness”. This technique advises to plan refactorings through the correction of design
defects and the introduction of design patterns. They indicate that according to their studies,
strategic refactoring using design patterns is the most effective way to repair decaying code for
Object-Oriented systems. They review a case study where this has been successfully applied,
but they warn that design can deteriorate further if refactorings are misapplied.
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1.2 Thesis statement, objectives and contributions
This dissertation is structured around this thesis statement:

The activity of refactoring, when complex refactoring sequences have to be applied, as
in the case of design smell correction in Object-Oriented software, can be assisted by
means of refactoring plans that can be obtained automatically.

The thesis statement is addressed by decomposing it into the following research hypotheses:

e State of the art in automated design smell management is mature in detection but still has
to be improved in correction.

e Refactoring Suggestions produced by current design smell detection tools are not directly
applicable.

e Design smell correction with refactorings corresponds to the general schema of applying
complex refactoring sequences with a strategic objective.

e Complex refactorings can be assisted with refactoring planning, by enabling refactoring
preconditions with preparatory refactorings that can be obtained automatically.

e Design smell correction, as a special kind of complex refactoring process, can be assisted
by means of refactoring planning.

1.2.1 Objectives
The dissertation is aimed at the following objectives:

1. Provide an automated or semi-automated support to plan ahead the preparatory refac-
toring sequences —refactoring plans— that can enable the precondition of a desired set of
refactorings.

2. Provide an automated or semi-automated support to assist the generation of refactoring
sequences —refactoring plans— that can transform a system, following a redesign proposal
while preserving the system’s behaviour. More specifically, to provide an automated or
semi-automated support to the generation of refactoring plans for design smell correction.

3. Provide a way to help software developers use the techniques elaborated in this PhD Thesis
Dissertation.

4. Evaluate the effectiveness, efficiency and scalability of the approach presented in this PhD
Thesis Dissertation by developing a prototype which implements this approach and by
performing an experimental study with it.

1.2.2 Summary of contributions

This PhD thesis dissertation presents the following contributions:

e A review on the design smells’ literature, a historic overview of design smell management
approaches, and a terminology proposal, aimed at clarify and unify the terms and concepts
related to this subject.
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e A survey on design smell management and a taxonomy, based on feature models and co-
written with other authors, to characterise the present and future approaches and tools.

e The definition of refactoring strategies as a means of writing automation-suitable specifi-
cations of complex refactoring processes.

e The definition of a refactoring strategy specification language that software developers can
use to write strategies for design smell correction and other complex refactoring processes.

e The definition of refactoring plans as specific refactoring sequences, instantiated from refac-
toring strategies, that can be effectively applied over a system in its current state.

e The definition of the requirements an approach has to fulfill in order to support the com-
putation of refactoring plans.

e A technique to instantiate refactoring strategies into refactoring plans by means of auto-
mated planning.

A base line and reference prototype for future research in automated refactoring planning.

1.3 Structure of the dissertation

The reminder of this dissertation is structured as follows.

Chapter 2 presents the context of the problem that motivates this dissertation. It describes
what design smells are, while proposing an unifying terminology for this kind of software prob-
lems. A historical overview on design smells is also performed. The chapter also comprises a
brief introduction to refactoring in general and refactoring automation in particular and describes
the relationship between design smells and refactorings. This reveals that the need to improve
the design smell correction activity can drive the improvement of the automation of complex
refactoring processes.

Chapter 3 reviews the state of the art in design smell management. It compiles a compre-
hensive survey on the approaches and tools that relate to the detection, correction, visualisation,
etc. of design smells. The analysis is performed through the definition of a taxonomy, based on
feature models, that serves to identify, characterise and compare the existing approaches and the
future ones.

Chapter 4 defines refactoring strategies and refactoring plans. First of all, this chapter analy-
ses how design smell correction is currently supported through heuristic correction specifications.
Refactoring strategies and refactoring plans are presented then, as a means for writing more for-
mal specifications for complex refactoring processes, that can foster the automation of the design
smell correction activity. Finally, this chapter describes the characteristics of the problem of
automating the instantiation of refactoring strategies into refactoring plans.

Chapter 5 discusses which are the most convenient techniques to support the automated
instantiation of refactoring strategies, and presents hierarchical task network planning as the
technique selected. A brief introduction on automated planning and on hierarchical task network
planning is included. The remainder of this chapter is dedicated to an analysis on how refactoring
strategies can be translated and automated on top of this technique.

Chapter 6 describes a case study that validates the approach presented in this dissertation.
The specifications for correcting two design smells —Feature Envy and Data Class— are compiled
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into refactoring strategies and translated then into a refactoring planning domain, in order to
be automated. The refactoring planner is executed over a set of open source systems, which
present several manifestations of this design smell, to obtain the proper refactoring plans that
will remove the smell. This chapter describe these experiments and discuss their results. The
design smell correction proposal presented in this dissertation is also characterised using the
taxonomy defined in Chapter 3.

Chapter 7 summarises the outcome of this dissertation, discusses its results, contributions
and limitations and presents the open research perspectives.






Chapter 2

Context

2.1 Design smells: definitions and terminology

Bad design practices, often due to inexperience, insufficient knowledge or time pressure, are at
the origin of design smells. They can arise at different levels of granularity, ranging from high-
level design problems, such as antipatterns [BMMIM98|, to low-level or local problems, such
as code smells [BF99a]. Often, these problems are not isolated, but are usually symptoms of
more global defects. Design smells are quite different from software defects (also referred to as
bugs) which are “deviations from specifications or expectations which might lead to failures in
operation” [FN99, Hal77|.

A number of techniques and tools have been proposed in the literature both for the detection
and correction of design smells. The detection techniques proposed consist mainly in defining
and applying rules for identifying design smells. The correction techniques often consist in
suggesting which refactorings could be applied to the source code of a system to restructure it,
thereby correcting, or at least reducing, its code and design problems.

Design smell management refers to the techniques, tools and approaches addressed to detect,
correct or reduce design smells. Correcting, or at least, reducing smells can improve software
quality. As such, the goal of a smell management process is to change the system’s structure
to improve its internal quality factors, in particular its understandability and maintainability!.
The activities of design smell management range across: smell specification, information/model
extraction, smell detection, smell correction, impact analysis, and verification. Among these
activities, correction and detection are the most significant ones.

This PhD thesis dissertation only deals with approaches that are directly related to the
management of structural issues in object-oriented software. More precisely, this dissertation
only addresses problems that can be detected statically in the source code and are related to
object-oriented design. A lot of work exists on the identification and correction of different kinds
of problems in specific types of software systems, such as databases |[BGQRO07, JFRS07| and
networks [PP07]. These works are outside the scope of this document. The specification and
detection of object-oriented design smells is related to the more general field of design pattern
specification and detection (eg. [GA08|). However, such works are also outside the scope of the
study presented in this dissertation.

'A good reference on software quality factors can be found in the ISO9126 standard [ISOO01].

11
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2.1.1 On the notion of the term “smell”

First of all, the use of the term “smell” to refer to software design problems must be explained.
The interesting connotation of the term “smell” is that it describes a situation where there are
hints that suggest there can be a problem. In order to decide whether the problem really exists
or not, the situation has to be examined in more detail. The term “smell” can be used to
describe a “bad structure” in a program that is evident and obvious, and harmful itself. At the
same time, it can be used to describe a design situation that is not so obviously noxious, or a
certain software structure that is not disadvantageous by itself, but can indicate the existence
of a problem somewhere else in the design. Either way, the term “smell” expresses quite well
the shades of gray in the harmfullness that the associated software structure can represent. The
term also express well the idea that the design has to be carefully analysed in order to confirm
the occurence of the possible problem. A Lazy Class smell, for example, refers to a class that
does not hold enough responsibilities. The smell reveals a potential design problem. If the class’
features make sense to be somewhere else, or if the class was added to make room for planned
changes that were never made, then the class should be removed. If, on the contrary, the class
holds responsibilities that cannot be anywhere else and the benefits of this design are greater
than reallocating the class’ features, then the class should be kept as it is.

Since the introduction of the term “code smell” —the original concept related to “smells”™
there has been a spread of different terms to refer to a family of very similar concepts. The
term “defect” has also been used to refer to software design problems |TSFB99, MGMDO08§|, and
the term “flaw” has also been used sometimes [CLMMO06, Tri08, Mar01]. In this PhD thesis
dissertation, the term “smell” is used, to distinguish it from “defect” or “flaw”, since the latter
two terms are associated more frequently with run-time and compile errors. The subsections
below are aimed at clarifying the terminology and making a proposal to unify the different terms
appearing in the “smell” literature.

2.1.2 Code smells

The term “code smell” was introduced by Kent Beck? to define those structural problems in the
source code that can be detected by experienced developers. As written by Kent Beck:

“ A code smell is a hint that something has gone wrong somewhere in your code. ”

The suspect structure may not be causing serious harm (in terms of bugs and failures) at the
moment, but it has a negative impact on the overall structure of the system and as a consequence,
on its quality factors. Code smells can clutter the design of a system, making it harder to under-
stand and maintain. Moreover, the presence of code smells can warn about wider development
problems such as wrong architectural choices or even bad management practices.

The term was presented in [BF99a|, where a compilation of “bad smells in code” can be found
too. A brief description of the term can also be extracted from the book:

[

‘...structures in the code that suggest (or sometimes scream for) the possibility of
refactoring. ”

This description states the relationship between code smells and refactorings. Code smells reveal
where and how to refactor and, inversely, refactorings become the preferred way to remove code
smells.

2See http://c2.com/cgi/wiki?CodeSmell
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Examples of code smells, to cite just a few, are a field that is set only in certain circumstances
—Temporary Field [FBB1T99, page 84]-, a method with a large number of arguments —Long
Parameter List [FBB199, page 78] or a subclass that does not use some of the methods and
fields inherited from its superclass —Refused Bequest [FBB199, page 87|. Another typical example
of code smell is the presence of Duplicated Code [FBB199, page 76]. This situation appears
when a concept —an expression, algorithm, etc.— is used in many places across a software system,
because it has not been correctly identified within the design and it has been copied wherever
needed. Duplicated code makes it unnecessarily more difficult to maintain the system’s structure
because it becomes a source of multiple problems: errors in duplicated code can spread through
the system, changes to duplicated code should also be applied to the multiple copies, etc. The
code should be refactored in order to unify the duplicated structures into a single definition of
the concept they represent. Duplicated code can be the consequence of a design problem, a quick
patch to achieve a deadline, or a deep-rooted bad practice of copy-paste reuse.

2.1.3 Design smells

We refer to “design smells” as a concept similar to “code smells” but in more general sense. This
term, being proposed here, covers the whole range of problems related to the software’s structure,
i.e., the “design” part. Different design smells affect the software at a different granularity level,
from methods (eg. Long Parameter List [FBBT99, page 78|) to the whole system architecture
(eg. Stovepipe System [BMMIMO98, page 159]). This could be one of the reasons why some
authors have made further additions to the smell terminology. The design smell concept appears
in the literature under a variety of names: design flaws [Tri08, SLT06|, disharmonies [LMOG6|,
defects [MGMDOS8|, etc. In [Moh08], a distinction is made between smells appearing in Fowler’s
refactoring book [FBBT99], and in Brown’s antipatterns book [BMMIMO8|, being identified as
code smells and design smells, respectively.

Robert C. Martin refers to “design smells” [Mar03] as higher-level smells that cause the decay
of the software system’s structure. He states they can be detected when software starts to exhibit
the following problems:

e Rigidity: The design is hard to change because every change forces many other changes
in other parts of the system.

e Fragility: The design is easy to break. Changes cause the system to break in places that
have no conceptual relationship with the part that was changed.

e Immobility: It is hard to disentangle the system into components that can be reused in
other systems.

e Viscosity: Doing things right is harder than doing things wrong. It is hard to do the right
thing because sometimes it is just easier to do “quick hacks”.

e Needless Complexity: The system is over-designed, containing infrastructure that adds
no direct benefit.

e Needless Repetition: The design contains repeating structures that could be unified
under a single abstraction.

e Opacity: The system is hard to read and understand and does not express its intent well.
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In spite of the different terminology used in the literature, all the problems the authors
describe are problems related to a bad design, such as a misidentified or overlooked abstraction,
a misused pattern, an under- or over-engineered design, etc. For the sake of simplicity, and in
order to unify the existing terminology, we propose to use the term “design smell”. We also
propose, for the term, the following definition:

Definition 1. A design smell is a problem encountered in the software’s structure (code or
design), that does not produce compile-time or run-time errors, but negatively affects software
quality factors.

This is the interpretation that will be used in this dissertation, when referring to design smells.
The term “smell”, when referring to software’s structure, has widely acquired, and is already being
associated with, negative connotations, as in “code smell”. Therefore, we have decided to drop
the “bad” adjective from the term “smell” because the negative sense is already implicit in it when
referring to “software smells”. The term “design” has been chosen to describe the fact that the
referred problems are related to structure, design choices, patterns or formations in the design.
We meant “design” much in the sense of software design expressed by Reeves [Ree92]: engineering
decisions that take place not only while developing models but while building all the software
artefacts, including source code. We refer, therefore, to a variety of structural problems that can
spread across different levels of abstraction and refinement. The key difference between design
smells and other kinds of software problems lies in the presence or absence of compile-time or
run-time errors. That is why the definition explicitly states that errors are not the pernicious
effect of design smells, but their negative effect on software quality factors. This negative effect
on quality factors can result in a variety of problems such as those cited by Robert Martin. In
fact, this negative effect on quality factors could lead to, or boost, the materialization of actual
errors in the future.

“Design smell” is a unifying term, covering the whole gamut of problems described in this
chapter. Nevertheless, given the different variants of design smell definitions presented in the
literature, a brief classification and terminology for them is being proposed.

e Low-Level Smells: Smells that can be detected by themselves.

e High-Level Smells: Smells which can be composed of other smells. High-level smells
can usually be described and detected as a confluence of other smells (low-level ones and
maybe high-level ones too).

An example of a low-level smell is Long Method [FBBT99, page 76|, while Brain Method
can be cited as an example of a high-level smell. According to the definition of Brain Method
in [LMO06, page 92|, the Long Method smell is one of the indicators used to detect this high-level
smell, other indicators being “excessive branching” and “many variables used”. On the contrary,
Long Method can be detected just by itself, by checking the number of lines of code in a method
against a certain threshold.

This dissertation also keeps an orthogonal classification for design smells by catalogue. It
happens to be the case that most smells from a specific catalogue fall into one of the previously
defined categories, but this will be left open. Most bad smells from [FBB199] are low-level smells,
and some disharmonies from [LMO06] are low-level smells too. Some disharmonies are high-level
smells, while antipatterns belong exclusively to the high-level smells category.

In the following Subsection, a more detailed review of the different design smell catalogues
existing in the literature is presented.
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2.1.4 Historical background on design smells

Several books relate to design smells. Webster [Web95| wrote the first book on smells in the
context of object-oriented programming, including conceptual, political, coding, and quality-
assurance pitfalls. Riel [Rie96] defined 61 heuristics characterising good object-oriented program-
ming. These heuristics deal with classes, objects, and relationships, enabling software engineers
to assess the quality of their systems manually, and provide a basis for improving design and
implementation.

Beck and Fowler compiled 22 code smells that are low-level design problems in the source
code of software systems [BF99a|. They present bad smells as hints to look for situations where
design problems may exist. These bad code smells suggest where and when the engineers should
apply refactorings. Code smells are described in an informal style and associated with a process
to locate them through manual inspections of the source code.

Brown et al. [BMMIM98| provided another source of smell specifications: the so-called “An-
tipatterns”. They focused on the whole software development process of object-oriented systems
and textually described 41 antipatterns, which are general object-oriented smells. Of these an-
tipatterns, 14 relate to software development (design smells), 13 relate to software architecture,
and the remaining 14 to project management. Belonging to the software development category
are the well-known antipatterns Blob and Spaghetti Code. In the present dissertation, we are not
interested in architecture and managerial antipatterns since they are quite difficult to detect in
source code.

Tiberghien et al. [TMMMO7]| described 47 design smells, most of which are from the other
smell catalogues. They use the term “design defects” (défauts de conception). The smells listed
are all about bad design, except for ‘code level defects”’, which address low-level code problems.

These books and catalogues provide in-depth views on heuristics, code smells, and antipat-
terns aimed at a wide audience for educational purposes. However, manual inspection of the code
for searching smells based only on textual descriptions is a time-consuming and error-prone ac-
tivity. Some works have analysed and compiled design smells with more detailed and structured
descriptions to ease their detection and correction.

Kerievsky [Ker04| integrated design patterns with bad smells. He also added some new smells
which complement the catalogue from Beck and Fowler [BF99a]. Design patterns are involved
with design smells, because some smells can originate from the misuse, or the lack of use, of
design patterns. Thus, detection of design smells can be performed through the identification
of these situations. Design patterns can also be a tool to correct smells. Kerievsky describes
strategies to remove design smells by the introduction of design patterns.

Lanza and Marinescu [LMO6| presented a catalogue of design smells called “disharmonies”,
along with the definition of detection strategies and recommendations for the correction pro-
cess. This approach introduces metrics-based rules to capture deviations from “good” design
principles. The term “disharmony” can be understood more as an attempt to unify the termi-
nology than as a kind of defect on its own. Many disharmonies are similar to bad smells in
terms of their abstraction level. Indeed, 7 out of 11 disharmonies are problems already presented
in [FBBT99]. Three types of disharmonies are described: identity, collaboration and classification
disharmonies. The definition of “detection strategies” within the description of disharmonies, is
a step towards precise specifications of design smells that can allow automated smell detection.
The recommendations for correction, are not so suitable for automation, but if used together
with the “detection strategies”, they are sufficiently structured to guide the developer through
the correction process.
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Figure 2.1: A brief history of design smell management.

Trifu [Tri08] described a set of 10 design smells, which he coined “design flaws”, and provided
“restructuring patterns” to detect and correct them. Restructuring patterns identify not only the
smell, but also the intention of the design. This is then used to propose a correction strategy,
which is a pseudo-code algorithm based on the application of refactorings and on the introduction
of design patterns.

Moha [Moh08] proposed a framework to specify, detect and visualise design smells. She
developed a domain-specific language that allows the user to specify smells [MGMDO0S8|. These
specifications are transformed into generated Java source code, which can be compiled and run
to search for smells. The specification process is manual but the detection and visualisation are
fully automated through DECOR, the tool that implements the approach.

From the above, a brief summary of the research history in the field of design smell man-
agement is presented in Figure 2.1. Since its early stages, when general guidelines of good
object-oriented design practices were provided [Rie96], the field has grown and evolved to pro-
pose more automated approaches, not only to smell detection, but to all of the different activities
of smell management, such as specification, correction, etc. Regarding correction and detection,
the field has evolved through the development of more formal specifications of design smells and
correction strategies and, as a consequence, this has also led to an improvement in the automation
of both, detection and correction.

Figure 2.1 highlights particular works which we consider to be significant in each improvement
step. In the current state of the art, automation for design smell detection has reached a good
maturity level, represented by works such as [LMO06, MohO8| and their respective prototype
tools [iPl, Pti], which demonstrate that there is a chance of seeing industry tools based on
them soon. Correction, on the contrary, lacks more successful works on precise and systematic
specification and automation. Nevertheless, works such as [Ker04, Tri08] have set the basis for
further improving the automation of the smell correction activity. We have observed that the
more systematic the approach in specifying design smell is, the more easier to automate the
correction of design smells is too.
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Two major approaches to design smell management can indeed be distinguished: to prevent
smells before they occur or to correct them once they have appeared. These two major approaches
are so different in nature that covering both will exceed the limits of this research. Moreover, the
former relates to almost any discipline aimed at object-oriented design. The present dissertation
will focus on the latter: approaches dealing with design smells that have already appeared in the
software artefacts. The proposed approach provides a framework to advance the current state
of the art in design smell management, in particular in automated correction supported by the
automation of complex refactoring processes.

2.2 Refactoring

Refactorings are structural transformations that can be applied to the source code of a software
system to perform design changes without modifying its observable behaviour.

Refactoring is rooted in software restructuring [Arn89, GN93|. Software restructuring is
related to any technique and methodology aimed at improving the structure of a software system.
More precisely, it is the activity of reorganising the design of a system in order to achieve
better modularisation. The changes that the system must accommodate through its unavoidable
evolution are the main cause of design degradation. These changes enforce the developer to
choose new abstractions and make new design decisions to revert the degradation process, which
would result in the restructuring of the system.

Refactoring appeared as the object-oriented version of restructuring. Opdyke’s PhD The-
sis [Opd92| is considered to be the first work on refactoring. In this work, the technique of
restructuring object-oriented programs is given the name of refactoring. The basis of refactor-
ing, which Opdyke introduced, can be summarised as:

e behaviour preserving invariants: conditions about the program that are not altered
after the application of a refactoring. Behaviour preserving is hard to specify and, thus,
to check (specially for non-formal languages), but if it is defined in terms of a finite set of
program properties we want to preserve, then behaviour preservation can be checked for
them.

e preconditions: conditions under which the application of a refactoring can be proved as
behaviour preserving. The condition of behaviour preservation can be verified by showing
that the refactoring does not affect the behaviour preserving invariants.

e low-level refactorings: primitive refactorings aimed at manipulating program entities at
the lowest level. They include, for example, creating, removing or renaming different kinds
of program entities: classes, methods, attributes, etc.

e high-level refactorings: complex refactorings, difficult to put into practice, which can be
undertaken by composing the low-level ones. Opdyke also mentions “composite refactor-
ings”, as refactorings also built from low-level ones, but with a degree of difficulty similar
to them, in contrast to high-level ones.

The refactoring technique gained popularity since the publication of [FBB199|, and its
widespread adoption in the Agile Programming Community®. In this book, Fowler et al. compile

3A good source of information on agile approaches is at: http://www.agilealliance.org
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a catalogue of 68 refactorings (and 4 “big refactorings”). Each refactoring definition in the cata-
logue presents the mechanics of each particular transformation, a short summary of the situation
in which the refactoring would be needed, its motivation and a short example. The catalogue
of smells included in the book (see Section 2.1.4), helps the developer to decide when and how
refactorings should be applied. Using bad smells, they suggest which particular refactorings can
be applied for each specific problem, in order to remove or to mitigate the bad smell and to
improve the system’s structure. In most cases, different refactorings have to be combined to
achieve the desired change.

Applying just a simple refactoring, such as renaming a member attribute, involves not only
the local change for that entity, but a number of non-local updates —everywhere the entity is
accessed— in order to maintain the references to the renamed member variable and to preserve
the program’s behaviour. This repetitive task is tedious for a developer and error-prone, but can
be painless and safe if automated.

Widespread usage of refactorings started with the introduction of the first refactoring tool:
the SMALLTALK REFACTORING BROWSER, developed by Roberts in his PhD dissertation [Rob99].
This tool assisted the user in the application of refactorings for SMALLTALK programs. Once
the refactoring to be applied has been selected by the user, the tool would automatically per-
form the repetitive and error-prone updates. Refactoring automation is considered the key to a
widespread adoption of the technique by software developers [Rob99]. Indeed, this could be said
for any technique, but it has been proved to be right with regard to refactorings. An increasing
number of tools, from industry and academia, are available to automate the execution of refactor-
ing operations. While refactoring tools were initially stand-alone applications (the SMALLTALK
REFACTORING BROWSER?*, REFACTORIT®?, BICYCLE REPAIR MANS, etc.), the trend has turned
to major IDEs integrating refactoring functionality (INTELLIJ IDEA”. EcLIPSE®, NETBEANS?,
etc.). Refactoring support has become a mandatory feature for any software development tool,
as it has been shown, for example, in the refactoring survey by Mens and Tourwé [MT04].

Although the automated execution of refactorings is the most mature field related to refac-
toring support, some works are leading towards other types of improvements. The remainder of
this section presents a brief overview of them.

2.2.1 Applying refactorings

As already mentioned, refactoring support is currently present in many refactoring tools. The
list of tools that support the automated application of refactorings is quite large. As a small
sample, we can refer to the ones previously mentioned: INTELLIJ IDEA, ECLIPSE, NETBEANS,
etc. and add more tools to this list, such as: XREFACTORY!?, JFACTORT¥ 1! JREFACTORY!?,
JBUILDER®!3 BORLAND® TOGETHER® !, etc.

http://st-www.cs.uiuc.edu/users/brant/Refactory
*http://www.aqris.com/display/A/Refactorit
Shttp://bicyclerepair.sourceforge.net
"http://www.jetbrains.com/idea
Shttp://www.eclipse.org

http://www.netbeans.org
Ohttp://www.xref.sk/xrefactory/main.html
Mhttp://old.instantiations.com/jfactor/default.htm
2http://Jjrefactory.sourceforge.net
Bhttp://www.codegear.com/products/jbuilder
Ynttp://www.borland.com/us/products/together/index.html
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Some authors, such as Murphy-Hill et al., are working in this field, researching the improve-
ment of usability in refactoring tools [MHB08, MHBO07|. Any approach which improves the
refactoring activity, even when it does not offer a fully automated support, is important and
relevant to improving the state of the art.

The door is still open for tools integrating more advanced refactoring support. This would en-
able more complex refactorings, such as the automated introduction of design patterns [GHJV95,
Ker04] or the application of “big” [FBBT99, chapter 12| or high-level [Opd92, pages 79-148] refac-
torings.

2.2.2 Developing refactoring tools

Another major field in refactoring support is the development of refactoring tools. Some re-
searchers focus on improving refactoring by studying how to develop better refactoring tools.

Tichelaar et al. developed, in [TDDNO00, Tic01|, a meta-model for object-oriented programs
(called FAMIX) that allowed the development of language independent refactoring tools. On top
of this meta-model, multiple tools related to refactoring, and more generally to reingineering,
have been developed by the MOOSE group!®.

Similarly, the language independent meta-model with support for generics, presented by
Crespo in [Cre00], has led to a variety of works on language independent refactoring tools and
reusable refactoring components [LMCP06, MLCP07, MCO08| within the GIRO group'®.

Works on composition and reuse of refactoring definitions [KK03, KKO04| will allow the de-
veloper to write and reuse self-defined refactorings and help construct more complex refactorings
from simpler ones.

Validation of the refactoring operations implemented by the different development tools is
also an important subfield. Automated testing of refactoring executing tools can help to debug
and improve them [DDGMO07]|. Behaviour-preservation of refactoring operations can be checked
by executing automatically generated test-suites over the original and the refactored versions of
a software system and comparing their results [SGSM10].

2.2.3 Mining refactorings

Refactorings are commonly integrated into development environments and are extensively used.
Finding and understanding refactorings is important to document and to understand a sys-
tem’s evolution. It will be useful to automatically determine when software evolution has been
behaviour-preserving: to verify a redesign process, or a handmade refactoring, to find and char-
acterise the stages of a system’s evolution, etc. Finding the refactorings applied to a component
will allow these changes to be reproduced in a program that uses it. Therefore, this could help to
make the program compatible with the component again after a refactoring process has broken
the API of the component.

Some authors have explored the possibility of finding refactorings through metrics analy-
sis [DDNOO], or through the computation of lexical distances between elements from different
versions of a system [DCMJO6].

We addressed this problem [Pér06, PC07a, PCO7b| representing programs with graphs and
the refactoring searching problem as a state space search problem. Within this approach, we
represented the original and the refactored versions of the system as graphs, and designated

Bhttp://moose.unibe.ch
%http://giro.infor.uva.es


http://moose.unibe.ch
http://giro.infor.uva.es

20 CHAPTER 2. CONTEXT

them as the start and goal states of a state space search problem. Refactorings held the role
of state changing operations. Within this approach, determining the existence of a refactoring
sequence between both versions of the system was tackled as a reachability problem. Finding
the refactoring sequence itself was addressed as the problem of finding a path from the start
state to the goal state. We applied a graph parsing algorithm in order to perform depth-first
searching to find refactoring sequences between two different versions of a software system. This
previous work helped us analyse and understand the characteristics of the problem of automating
refactoring sequences.

The size of the state space was revealed as the main problem. We concluded that if no
conditions are applied to restrict the allowed states or the applicable refactorings, the size of
the state space would probably be infinite. If we search for refactorings which can immediately
be executed over a system in a specific state, the number is huge, so it is the combinatorial
explosion during the searching process. We speculated that if refactoring descriptions were
expressed in terms of preconditions, transformations and postconditions, these preconditions
and postconditions would guide the search, and the size of the state space could be reduced.

2.2.4 Suggesting refactorings

The last major field in refactoring automation which deserves a small review is suggesting refac-
torings. Refactorings are transformations aimed at improving the design of a system. A very
important area in refactoring automation research is to help the developer, not only in applying
refactorings, but also in deciding when and how to refactor. This field is strongly related to the
correction of design smells. A developer refactors a system with a purpose in mind. One of these
motivations, aimed at the improvement of the system’s design, is often to remove, or at least
reduce, design smells. One possible way to suggest when and how to refactor in order to improve
the system’s design, is by showing where and when the design is defective.

Relations between metrics and bad smells have been studied by Méntyld in [M&n03|. In this
work, the catalogue of bad smells from [BF99a] is revisited using metrics to establish the inherent
relationships between bad smells. The study of dependencies between the different smells allows
the author to classify them, proposing a bad smell taxonomy. On the basis of this classification,
relations between metrics and bad smells are further analysed in [MCL05, CLMMO06]. These
works argue that the presence of bad smells may be revealed with metrics, and they explore how
bad smells can be paired with the refactorings that may correct them.

Tourwé and Mens presented, in [TMO03], an approach to provide an automated support for
identifying refactoring opportunities. They used the technique of logic meta programming to
detect bad smells and they defined a framework that uses the detected bad smells to propose the
refactorings which can improve the system’s design by removing them.

Detection of design patterns can also point out when and how to refactor. The work from
Kerievsky |[Ker04], already mentioned in Section 2.1.4, describes how to use design patterns to
guide the refactoring process. The identification of misused design patterns and the detection
of structures which could benefit from the introduction of a pattern could help reveal which
refactorings have to be applied. The improvement of the system’s structure will be performed
either by adding a design pattern, consolidating it or removing it.

Melton et al. described, in [MT06|, a proposal to suggest refactorings that would improve
the internal design of a system, making it easier to understand and less error-prone. They detect
candidate classes for refactoring by identifying those classes involved in long dependency cycles.
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In [MHVGO08a|, Moha et al. use Relational Concept Analysis (RCA) to suggest the best refac-
torings to improve cohesion and coupling metrics in the process of removing a Blob [BMMIMO9S|
from four different open-source software systems.

The work of Trifu [Tri08], already introduced in Section 2.1.4, presents a general framework to
develop restructuring patterns. His work focuses on very specific design smells and their possible
correction strategies. Although an automated approach to detection is presented, the application
of the complex correction strategies is not automated. His restructuring strategies describe very
precise algorithms to remove a very specific smell. Nevertheless, the execution of the strategies
must be performed by the developer, who may face the problem of unapplicable refactorings,
whose preconditions are not met by the system at the very moment of their application. Another
work from this author explicitly mentions the inherent difficulty of these complex refactoring
processes due to the problem of precondition fulfillment [TRO7].

The approach in the present PhD Thesis dissertation presents an automated framework that
developers can use to define refactoring specifications and to compile their heuristic knowledge on
refactoring mechanics. The developer can add strategies to execute complex refactoring sequences
such as introducing design patterns, invoking big refactorings from low-level refactorings, etc.
The proposed approach allows the application of these complex refactoring sequences by planning
the full sequence ahead and prior to the execution itself.

2.3 Design smell correction with refactorings

The context of this PhD dissertation, which has been overviewed in the present chapter, is
summarised in the following paragraphs.

The activity of design smell correction should not change the system’s behaviour. When
correcting design smells, the objective is not to remove bugs or errors. Hence, concerning the
observable behaviour, we aim to leave the system untouched. Once a design smell correction
process has been performed, the same outputs should be produced from the same inputs. Thus,
the most appropriate technique for software smell correction is a technique that allows the sys-
tem’s structure to be improved without changing its observable behaviour. This technique is, by
definition, refactoring [FBB*99].

As already mentioned, one of the difficulties in applying refactoring operations is that it is
rare for the preconditions of the desired refactorings to be fulfilled by the system’s source code
in its current state. The failure of some precondition of a particular refactoring, that forces
the developer to plan ahead how to solve the problem, is the most frequent scenario. This can
be done either by choosing another different refactoring path or by applying other preparatory
refactorings to enable the precondition which previously failed. This makes complex refactoring
processes even more difficult to undertake.

Providing an approach for planning and generating executable design correction strategies will
ease the activity of design smell correction and will improve the state of the art. The correction
activity has not been explored in as much detail as the detection one. Most approaches focus
on suggesting which are the best redesign changes to perform, and which are the best structures
to remedy the smell and reflect the original design intent. The current automation of these
correction strategies faces some challenges. The suggestions made for design smell correction by
the existing approaches cannot be executed as they are. This is partially due to the heuristic
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nature of these correction specifications!”, and partially because of the problems associated with
the violation of refactoring preconditions that make these complex refactoring processes hard to
overcome.

17 This will be analysed in more detail in Chapter 4.



Chapter 3

A Survey on Software Design Smell
Management

This chapter reviews the state of the art in design smell management and presents a survey of
design smell management approaches, using feature diagrams as a graphical guidance to illustrate
it. This survey, and the taxonomy it defines, can help in various ways. Newcomers in the domain
can use it to get acquainted with the important aspects of design smell management, tool builders
may use it to compare and improve their tools, and software developers may use it to assess which
tool or technique is most appropriate to their needs.

This study has been co-written with Naouel Moha, Tom Mens and Carlos Lopez. A previous
version of the survey and the feature-model-based taxonomy presented in this chapter is available
as a technical report [PLMM11]|. A characterisation of a set of design smell management tools,
that follows the taxonomy defined in this previous study, have been performed [MASFPC11].
The results of this characterisation have also been published as a website!.

3.1 Overview of the survey

This chapter presents the results of a literature study that we have carried out on design smell
management techniques. We have also downloaded and evaluated numerous tools that automate
some of the design smell management activities. The results of our survey are presented as a
concise multi-dimensional classification framework, using feature diagrams as a graphical repre-
sentation [CE00]. Our framework can be used, among others, to compare the commonalities and
variabilities of different approaches and tools based on particular criteria of interest.

Due to the abundance of research literature available on the subject, we have deliberately
restricted our study in various ways. First of all, we only consider approaches that are directly
related to the management of structural problems that can be detected in software code and
design, in particular for object-oriented software. A lot of related work exists on the identification
and correction of different kinds of problems in specific types of software-related systems, such
as databases [BGQRO7, JFRS07|, and networks [PP07|, but these are outside the scope of this
survey. The specification and detection of design smells relate more generally to the field of design
pattern specification and detection (eg. [GA08]). Such approaches are also outside the scope of
this study. Finally, two major approaches to design smell management can be distinguished:

"http://www.infor.uva.es/DesignSmells

23


http://www.infor.uva.es/DesignSmells

24 CHAPTER 3. A SURVEY ON SOFTWARE DESIGN SMELL MANAGEMENT

———— . A [n..m]
An instance should implement An instance should implement An instance can implement a
Mandatory Feature | this feature ‘ a subset of 1..* features from Feature X range from n to m clones of
the set of grouped features this feature
—O—
. An instance can optionally An instance should implement

Optional Feature implement this feature exactly 1 feature from the set Feature X ) | Reference to feature model X

- 0@ of grouped features

——
This feature belongs to a set

Grouped Feature | of grouped features

Figure 3.1: Feature diagram notation used throughout this survey.

preventing smells before they occur; and correcting them once they have appeared. These two
approaches are so different by nature that a taxonomy covering both of them would not be very
meaningful. The survey presented here focuses on the second approach only.

The goal of this study is to present a survey of design smell management approaches, pro-
viding a framework to compare and analyse the current and future design smell management
techniques and tools. This survey can be used for a wide variety of purposes. Among others, it
can help software developers choosing a particular approach that is best suited for their needs,
it can help tool builders to assess the strengths and weaknesses of their tool compared to other
tools, and it can help scientists to identify limitations across tools or technology that need to be
overcome by improving the underlying techniques and formalisms.

3.1.1 Feature modelling notation

As a visual aid to guide our design smell management survey, we rely on a visual notation called
feature diagrams, that is inspired by the one used by Czarnecki and Helsen to present their
survey on model transformation [CHO6|. Feature diagrams are a visual representation of feature
models. Different symbols and notations for feature diagrams can be found in the literature.
The notation used in this study is shown in Figure 3.1.

Feature modelling [CEO00] is the activity of modelling the common and variable properties of
concepts and their interdependencies by organising them into a coherent model referred to as a
feature model. This model is used to represent a hierarchy of features, representing the common
and variable properties of concept instances and the dependencies between the variable features.

Feature models are a nice and intuitive way to represent a family of systems, or a concept
such as design smell management, through the analysis of the commonalities and differences
between the wide variety of approaches supporting it. Features are important properties of a
concept, and the aim of feature modelling is to describe a family or a concept, within a given
domain, through the analysis and specification of its particular occurrences. Features also serve
to capture and model the knowledge and terminology of that domain. The basis for feature
modelling can be found in Czarnecki and Eisenecker’s book [CEQ0].

During the analysis of the surveyed design smell management approaches and tools, we
have detected many commonalities shared between all of them, or between some subsets. For
example, all approaches address a certain type of target artefact. In the same way we have
identified relevant differences that can be used to characterise each approach. As an example
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Figure 3.2: Top-level variation points for comparing design smell management approaches.
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(see Section 3.3), an approach can search for design smells in source code, or in executable code,
models, etc. Consequently, for this survey, we have found feature diagrams to be an appropriate
and useful notation. Moreover, since all design smell management tools belong to a “family” of
approaches, they can be naturally described with feature diagrams.

The reader should note that this survey, and the feature diagrams that illustrate it, reflect
the current state of the art. Therefore, the features identified in some categories, such as “Smell
Property” in Section 3.2 or “Type of Representation” in Section 3.3, may be extended by future
approaches. For this reason, we have sometimes added to the feature diagrams elements that do
not match current approaches, but rather illustrate what we consider to be feasible or desirable
in future approaches. Such is the case of the “Target Artefact” multiplicity in Figure 3.2.

3.1.2 Top level features of the design smell management survey

The proposed feature diagram notation allows us to group design smell management activities,
tools, techniques or formalisms based on their commonalities. We adopt a multi-dimensional
classification, allowing us to describe and compare different approaches, based on the criteria of
interest. Within our classification, we do not consider general properties such as interoperability,
usability, or extensibility because these are tool-specific properties that can apply to any kind
of tools regardless of the domain of interest. As such, they are not specific or intrinsic to design
smell management approaches per se.

To present our survey in a structured way, each of the following sections discusses the main
features with respect to design smell management that can be used to group together approaches
sharing these features. We start by describing the top level features, constituting the main
common properties of our field of study. We then descend down the model to describe each
of the subfeatures. The root feature of our model is Design Smell Management. It represents
any approach dealing with design smell management. An instance of the model will represent
an incarnation of an existing approach, or even a non-existing one that would be feasible and
interesting to develop. The three top-level features of the Design Smell Management root feature
are shown in Figure 3.2 and explained below. These features describe properties common and
mandatory to every design smell management approach.

Design Smell. A wide range of design smells can be managed by different approaches. The
nature of the smells each approach addresses is a major top-level variation point.

Target Artefact. Any design smell management tool requires at least one software artefact on
which the smell can be observed. We will refer to this (set of) software artefact(s) as the Target
Artefact of the approach.
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Figure 3.3: Top-level Design Smell feature, and its subfeatures.

Activity. The third top-level variation point for design smell management approaches is the set
of activities explicitly supported by each approach. An example activity is smell specification.
Every approach requires a definition of design smells in order to be able to detect them, but only
some approaches present explicit support for the smell specification activity.

The next three sections of this chapter will discuss each of these three main features in detail,
by further decomposing them into subfeatures and using them to survey the state of the art in
design smell management.

3.2 Design smell

As introduced by the root feature diagram in Figure 3.2, a design smell management approach can
cover several smells. The Design Smell feature, depicted in Figure 3.3, allows to describe in more
detail the nature of those smells. This feature is split into five branches of mandatory features.
Most approaches are specialised in: (1) a certain type of smells, (2) smells at different levels
of abstraction, (3) smells affecting several program entities at a particular level of granularity,
and (4) smells that have internal properties of different natures. This classification of design
smells extends those proposed in [MLC06, MGDLM10]. Although we use it for the purpose of
establishing a classification framework for design smell management approaches, it is also useful
on its own, for classifying design smells themselves.

Type of Smell. This feature describes the type of design smells addressed by an approach.
By “type of smell” we refer to the catalogue in which the smell is defined. Some design smell
management approaches define their own set of smells [LMO06]|, but we the vast majority of them
are focused in those smells described in a small number of catalogues. Those represented in the
feature diagram of Figure 3.3 are the most widely referenced catalogues. To characterise a design
smell management approach, we should describe which catalogue(s) of smells it addresses.
Marinescu et al. [LM06| define disharmonies as design smells that affect single entities such
as classes and methods. The particularity of these disharmonies is that their negative effect on
the quality of design elements can be noticed by considering these design elements in isolation.
They identify three aspects that contribute to identify disharmony of a single entity: its size, its
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interface and its implementation. IPLASMA [iP]], INCODE and INFUSION [Int08| are three tools
that detect these disharmonies, using object-oriented metrics with customized filters.

Most of the studied approaches focus on those code smells specified in the catalogue of Fowler
et al. [FBB199], such as [AS09, CLMMO06, TCC08, Mun05, Sem07]. Munro [Mun05| proposed
metric-based heuristics with thresholds to detect code smells, which are similar to Marinescu’s
detection strategies [Mar02]. Alikacem and Sahraoui [AS09] proposed a language to detect smells
and violations of quality principles in object-oriented systems. This language allows specificying
rules using metrics, inheritance, or association relationships among classes, according to the
user’s expectations. It also uses fuzzy logic to express the thresholds of rule conditions.

The DECOR method developed by Moha et al. [MGDLM10| focuses mainly on Brown’s
antipatterns [BMMIMO98|. As another example, ANALYST4J [Ana0O8| allows the identification of
antipatterns and code smells in JAVA systems using metrics.

Some approaches use design patterns to search for design smells [GHJV95], either to look for
opportunities to apply a design pattern or to detect misapplication of patterns [GAAO01, Ker04,
TMO3]. Guéhéneuc et al. [GAAO1] use design patterns as reference structures, and detect design
smells as failed intents of applying design patterns. For this, they search for structures that
ressemble design patterns but slightly deviate from them. To correct these smells, they suggest
to transform these structures so they match the intended design pattern properly. In [Ker04],
Kerievsky proposes a more manual approach for detection and correction of design-pattern-
related smells. He instructs the developer to search for structures that reveal that a design
pattern has been misapplied, but he also describes situations where a design pattern is absent and
can be introduced, and situations where a design pattern is cluttering the design and therefore,
should be completely removed.

Roock and Lippert [SRO6| present a catalogue of ‘architecture smells” related to the orga-
nization of subsystems. Among these smells we can find dependency-related problems such as
cyclic dependencies. Such smells can be detected by tools like [Con99, STA, Tes08|.

Level of Smell. Another way to classify design smells is through the distinction between
low-level and high-level smells. Low-level smells focus on a single very specific problem. Code
smells [FBB199] such as are “long methods”, “data classes”, and “large classes” are examples of
low-level smells that refer to very specific situations observed in the code. High-level smells are
design smells that are composed of other smells, such as antipatterns. They focus on a variety
of similar (but different) problems. An example of a high-level smell is the Blob antipattern
[BMMIMO9S], also known as God Class. It reveals a procedural design (and thinking) implemented
with an object-oriented programming language. It manifests itself through a large controller
class that plays a God-like role in the program by monopolizing the computation, and which is
surrounded by a number of smaller data classes providing many attributes but few or no methods.
This high-level smell is composed of other low-level smells such as the code smells “data class”
and “large class”.

Smell Scope. This feature is used to describe the extent or scope of the different types of entities
involved in the supported smells. For most object-oriented languages, the different scopes would
be system, subsystem, package, class, method and statement. High-level smells usually represent
design problems with a wide scope, affecting several and/or large entities. Low-level smells, on
the contrary, have an effect over a well-defined and limited scope, i.e. within a single and small
entity. As illustrated by the multiplicity associated to this feature, a design smell can extend
over several entities belonging to different levels.
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Smell Properties. The nature of a code smell can be summarised and represented by the
smell indicators orproperties used in its specification. These properties can be decomposed into:
structural descriptions of “smelly” structures in the design of code; measurable specifications
based on metrics and measurable properties of the system; and lexical definitions based on
the names of the software entities. Design smell management approaches benefit from those
properties in order to tackle a particular activity. For example, in the Blob description, the large
class corresponds to a measurable property that can be easily computed by counting the number
of methods and attributes, whereas the data class is a structural property consisting of identifying
accessor methods. A lexical property in the Blob corresponds to the use of procedural names
(such as Main, Make, Create, Exec) used in the classes affected by such smell. iPlasma [iPl,
LMO06| uses the measurable properties of a Blob — referred to as God Class — to detect it, while
DECOR [MGDLM10, Tea09| additionally uses the lexical property to perform the detection.

3.3 Target artefact

The Target Artefact feature is a major variation point to distinguish design smell management
approaches. This feature refers to the software artefacts on which the smells can be observed. It
is shown in Figure 3.4, and its subfeatures are presented below.

3.3.1 Type of artefact

Any approach addressing the management of design smells, should focus on, at least, one type
of software artefact. The types of artefacts supported by an approach, and the way they are
represented internally, are tightly coupled to which smells can be managed and how.

A particular tool or technique often targets only a single type of artefact. In fact, we could not
find a tool that supports many types of artefacts. Nevertheless, it is feasible and desirable to build
a tool that uses different types of artefacts as complementary sources of information, thereby
improving its results. The manual detection process described by Travassos et al. [TSFB99|
illustrates the feasibility of this. To identify code smells, the developer is instructed to exam-
ine different types of models, such as requirements descriptions, use cases, class diagrams, class
descriptions, state diagrams, and interaction diagrams. This is shown in Figure 3.4 as a decompo-
sition of feature Type of Artefact into a set of OR grouped subfeatures. The most common types
of artefacts are source code and bytecode or executable code. In addition, several approaches
support detection of design smells by analysing software models. A tendency of modelling tools
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is, for example, to provide model warnings, so-called “critics”, to the user. This is done by
ARGOUML [Arg| and TOGETHER [Bor].

The vast majority of the available tools are aimed at managing source code smells. For
example, CHECKSTYLE [Che04] and HAMMURAPI [Ham07] load JAVA code and search for vi-
olations of coding standards. The concept of design smell is language-agnostic, so many other
programming languages may be supported as well. For example, REEK [Rut| and RoobI1 [Roo|
search for design problems in RUBY source code. Some authors, such as Ciupke [Ciu99] and
Sahraoui et al. [SGMOO| analyse smells in C++. FXCop [FXC06| and STYLECOP [Sty| find
deviations from code conventions in C# code. 1PLASMA [iP1, LM06], DEcOr [MGDLM10] and
INCODE-INFUSION [Int08] provide multi-language support for the analysis of C++, JAvVA and
C+# programs.

Another widely supported type of artefact is executable code —eg. binary code or bytecode.
Tools such as REVJAVA [Re]J] and STaN4J [STA]. analyse JAvA bytecode. The advantage of
addressing executable code is that these tools can be used even when the source code is not
present.

An emerging trend in many software fields, and especially in agile software development, is
to treat tests, and more precisely scripted tests [Mes07|, as first-class citizens. An increasing
number of authors have addressed the problem of smells in scripted tests [Mes07, vDMvdBKO1]
and propose approaches that provide support for managing design smells in scripted tests [NBO7,
VRDBDRO7].

3.3.2 Versions

A design smell management approach can benefit from the additional information that can be
extracted from a version repository that stores multiple versions of the target artefact(s) under
study. Some code smells from [FBB199|, such as Shotgun Surgery? are more easily identified by
analysing the change history of the system. Support for multiple versions of an artefact is an
optional subfeature that it is applicable to any type of artefact.

Several approaches [GDMRO04, RSG08, XS04| propose to use different versions of the target
artefact as input. Their supporting tools often include support to access version repositories (eg.
CVS, SVN, GIT, etc.), and to extract and analyse the software artefacts and their metadata
from these repositories. Some of these approaches |[GFGP06, LWNOQ7a| even claim that this is
the only way to detect some particular smells or to obtain a wider picture of a certain problem.

3.3.3 Type of representation

Every design smell management approach is based on an internal representation of the software
artefact the approach is dealing with. In order to analyse and process the targeted artefact, its
internal representation will be used. This feature is relevant because there is a strong dependency
between the internal representation and other aspects such as the technique, the expected results
or the automation support.

A common way of representing a software artefact is by means of an Abstract Syntax Tree
(AST). This type of representation is especially frequent in approaches that target source code
or executable code. A typical AST representation will keep the complete information available

2Whenever a change has to be made to a part of the system, many more little changes to other parts of the
system are needed too.
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in the examined artefact. Different approaches [TCCO08, Sli05, TK04, TCCO08| can simplify the
AST to keep just the relevant information needed for the task at hand, or even augment the
AST with additional details in order to ease the design smell management activities.

Other tools rely on a representation based on some Object Model. They use a specific meta-
model of the targeted artefact, such as MOON [Cre00, CLMMO06], FAMIX [Tic01, LMO06| or
MEMORIA [Rat04, iPl| This type of representation is mostly used to simplify the target arte-
fact. Just the information needed by the approach is extracted from the targeted artefact.
Analysis and manipulation of the targeted artefact is performed by programmed procedures
using a wide variety of programming languages, even custom-built Domain-Specific Languages
(DSL) |Gué03, MGLM™09].

Graph-based approaches can also be employed to analyse the target artefact in search of
design smells [EM02]. Graph theory can help analyse artefacts in search of defects, and graph
transformation techniques to apply corrections [MVDJO05|. De Lucia et al. [DLOVO0S| represent
classes as graphs and use measurable properties of these graphs to find refactoring opportunities
that will improve the cohesion of that classes.

Logic Formulas offer a similar formal support to represent software. This type of represen-
tation enables the use of logic-based techniques to manage design smells [Ciu99, TMO03|.

Some tools store the information extracted from the targeted artefact in a Relational Database.
This usually speeds up the task of querying the software model by taking advantage of a dedicated
and specialised query engine. This type of representation can be used just internally by a tool
[GFGPO06, SSLO1, TSGO04], or even be offered to its final users, enabling them to analyse the arte-
fact by means of structured and composable queries. For example, with SEMMLECODE [Sem07],
engineers can execute queries against source code, using a declarative query language called .QL,
to detect code smells.

These different types of representation can be combined. An artefact represented as an AST
can be analysed with graph algorithms, if it is formalised with graphs, or logic formulas. A model
can be stored in a relational database in order to provide an easy and efficient way to access it
by querying the database.

3.4 Activity

The Activity feature, depicted in Figure 3.5, represents a major variation point among design
smell management approaches. The design smell management process can be decomposed into
different types of activities that can be supported by a particular approach. We have decomposed
this feature into 5 types of activities that we have found in all approaches we have surveyed.
For each type of activity we describe the techniques used to support it, the automation support
achieved and the type of results that the different approaches produce.

The automation support of an activity reflects the maturity of the studied approach in sup-
porting this activity. We distinguish between the following levels of automation, depicted in
Figure 3.6, which simplify the ones defined by Sheridan [She00|:

Manual: The activity is carried out in a manual way.

Suggest Alternatives: The tool can execute the activity automatically and suggest options or
alternatives to the user. The user still needs to select and apply the suggestion manually.
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Select Alternatives: The tool suggests and selects the alternative tasks to be performed. The
user needs to confirm this selection.

Execute on Approval: The tool presents the user the activity that is going to be executed, but
requests permission. The user can only choose to apply the activity as a whole, or to cancel
it.

Just Inform: The tool decides and executes the activity without asking the user, but informs
the user about the process.

Fully Automated: The tool performs the activity in a fully automatic way, without informing
the user of what is happening.

Any design smell management approach must produce some results when applied to a software
artefact. To compare approaches, we found it necessary to describe the type of result that is
being, or can be, obtained from each activity. Analysing an approach or a tool according to this
dimension is important in order to determine whether it is useful to solve a particular problem,
or whether it can be combined with another approach or tool.

In each of the following subsections, we survey the current state-of-the-art of supporting a
particular design smell management activity, in the level of detail that we have explained above.
3.4.1 Specification

The specification activity is implemented by those approaches that provide the developers the
necessary support to extend or adapt it to their particular needs, by specifying new design
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smells or modifying existing smells. Figure 3.7 summarises the techniques, automation support
and results for the specification activity.

Technique. Most of the surveyed approaches that support the activity of specification include
a description, at least textual, of the design smell for detecting or correcting it. Typically, the
technique used by tools to specify design smells is through the use of (possibly customisable)
rules expressed in some formal language (eg. OCL, SQL, XPATH, logic formulas), programming
language (e.g. JAVA), or domain-specific language ([IMGLM™09]). The design smell specifications
in [FBB99], include a description of general guidelines to correct them. Wake [Wak03] specifies
these correction guidelines in the form of recipes. The antipatterns book [BMMIMO98| provides
a specification in terms of counter-examples.

Automation. Several approaches or tools allow writing user-defined detection or correction rules
such as PMD [PMDO02|, ECLIPSE’s METRICS plugin [Ecl], REFACTORIT [Aqr02|, IPLASMA [iP],
LMO06|, DEcOr [MGDLM10| and CODERAIDER [Dur07|. However, this activity is intrinsically
manual. The ability to define or tune the smell detection rules is common to most approaches
that deal with smells based on metric warnings. SEMMLECODE [Sem07| provides a quite versatile
interface to specify design smells, through its built-in query language that can be used to write
complex queries to detect smells.

Result. The specification activity produces either a purely descriptive and non automatable
design smell specification, or some kind of design smell detection rules that can be automated or
even consists of an executable detection program.

3.4.2 Detection

The vast majority of existing design smell management approaches focus on the activity of design
smell detection. Figure 3.8 summarises the techniques, automation support and results for the
detection activity.

Technique. One of the approaches to detect design smells is through manual code inspection
[TSFB99|. Most detection approaches, though, are based on the use of metrics. The vast majority
of metric-based approaches rely on structural metrics [CK91|, such as [BEGT06, LM06, SLTO06|
but some recent approaches are taking into account semantic metrics as well [DLOV08, ED00].
Structural metrics correspond to metrics derived from syntactic aspects of object-oriented code,
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Figure 3.8: Summary of the current situation for the detection activity.

such as the analysis of relationships among the methods and attributes of a class. The met-
rics defined by Chidamber and Kemerer [CK91| such as Depth of Inheritance Tree (DIT), Lack
of Cohesion of Methods (LCOM), and Coupling Between Objects (CBO) are typical examples
of structural metrics. Semantic metrics are based on the analysis of the semantic information
embedded in the code, such as comments and identifiers [ED00|. Knowledge-based, program
understanding, and natural language processing techniques are used to compute such metrics.
For example, the semantic LORM (Logical Relatedness of Methods) metric [ED0OO| measures
the cohesion of a class, and more precisely the conceptual relatedness of the methods of the
class, as determined by the understanding of the class methods represented by a semantic net-
work of conceptual graphs. Several approaches use rules or heuristic knowledge to detect design
smells [Ciu99, KRW07, LM06, MGDLM10]. Some approaches resort to more advanced techniques
coming from the field of artificial intelligence, such as the use of data mining techniques [XS04];
from the probabilistic field, such as Bayesian belief networks [KVGS09]; or from numerical anal-
ysis, such as B-Splines [OKAG10|. However, these techniques may be insufficient to detect some
code smells such as Shotgun Surgery [FBB199| and Divergent Change [FBBT99|, where the de-
sign change propagation probabilities between artefacts have to be considered when an artefact
changes. Rao et al. [RR08| proposed a quantitative method for detecting these code smells using
a design change propagation probability matrix.

Automation. Some of the proposed approaches are theoretical, aiming to get a scientific under-
standing of the intrinsic difficulties involved in detecting design smells. Other approaches are fully
manual, such as the use of manual code inspection techniques to find design smells [TSFB99|.
Most of the surveyed approaches, however, provide explicit tool support, as is the case for

[Chi02, iP1, MLC05, MGDLM10, Sli05, Tri08, TCCO08, WP05].
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Result. The detection activity produces, in all the the approaches we surveyed (for example
in INCODE-INFUSION [Int08]), lists of entity-smell relationships for each detected smell. Those
results are presented in a variety of textual and graphical ways.

3.4.3 Visualisation

The visualisation activity produces some kind of graphical representation of the target artefact,
allowing quick and easy identification of some of its properties. Many approaches address the
visualisation activity in the context of design smell management, mostly to present detected
smells in a graphical way. A visualisation tool can also provide other kinds of information. It
can help the developer to decide which are the best modifications in order to remove a given
smell. It can be used for evolution or for explaining the causes and impacts of smells. Visually
summarising the properties and characteristics of the system and its parts can ease the realisation
of any other activity. Figure 3.9 summarises the techniques, automation support and results for
the visualisation activity.

Technique. The type of visualisation technique used mainly depends on the type of informa-
tion that needs to be visualised. If this information is essentially a spreadsheet table, one can
visualise it as pie charts, bar charts, line charts and the like. If the information is essentially
a graph, one needs graph-based visualisation techniques and more or less sophisticated graph
layout algorithms. This is the case, for example if one needs to represent (part of the) software
structure, such as the dependency relationships [Con99, Tes08]. Some approaches [LMO6] de-
fine new visualisation techniques, such as the Querview Pyramid. It is a metrics-based means
to both describe and characterise the structure of an object-oriented system by quantifying its
complexity, coupling and use of inheritance.

Automation. The activity of visualisation typically requires human intervention, either during
the construction of the visual representation (e.g. by selecting the areas of interest, or choosing
the most appropriate visual representation or layout algorithm) or during its use. If the visuali-
sation is static, it can only be viewed |[Con99, Tes08|. If it is dynamic, there is typically a direct
and explicit link back to the target artefact under study (eg, INCODE-INFUSION [Int08]). This
facilitates and speeds up detection and correction of design smells.

Result. Many of the surveyed approaches support some kind of visualisation by producing dif-
ferent types of diagrams to offer different types of general artefact visualisation in order to assist
the comprehension of the target artefact. For example, in DECOR, systems are represented as
class diagrams and classes infected by smells are highlighted in red. Other kinds of visualisation
aids in design smell management include entity-property visualisation and design smell visuali-
sation [EMO02| such as Overview Pyramid and Polymetric views [LMO06] or dependency graphs
[Con99].

3.4.4 Correction

Approaches supporting the correction of design smells, provide a way to (suggest how to) modify
the target artefact, in order to remove smells and improve its design. During our survey, we found
considerably less approaches supporting a (partially) automated correction of design smells, so
this activity is clearly less mature than the smell detection or visualisation activity. Figure 3.10
summarises the techniques, automation support and results for the correction activity.
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Technique. During our survey we have encountered mainly four different techniques for cor-
recting design smells. The first technique is to apply rules or refactoring strategies to design
smells that have been previously detected [MGDLM10, TM03, TSGO04]. These approaches have
the advantage to provide a comprehensive process both for the detection and correction of smells.
The second category suggests corrections (called refactoring opportunities) by relying only on
metric values or the presence of certain patterns, without explicitly identifying design smells
[BCT07, DLOV08, GAA01, SGM00, SSLO01, SS07a, TKO04]. The third technique relies on ideas
coming from the machine learning field, where genetic algorithms and other types of auto-
mated learning are exploited [BCT07, BAMNO6]. Formal Concept Analysis (FCA) [GW99)
is a fourth technique that has been intensively investigated for restructuring class hierarchies
[ADN05, SLMM99, ST00| and classes affected by smells [MHVGO8b].

Automation. Various tools support smell correction in a semi-automated way [BEGT06,
TSG04, TCCO8|, although all of them need some additional interaction by the user.

Result. The correction of design smells can produce different types of results depending mostly
on the degree of automation provided by each particular tool. Some tools can provide just
correction suggestions, while others can produce some kind of correction plans, or specifications
of the transformation sequence needed to improve the target artefact’s design. For example,
Trifu et al. [TSGO4] proposed correction strategies mapping design smells to possible solutions.
However, a solution is only an example of how the program should have been implemented to
avoid a smell rather than a list of steps that a software engineer could follow to correct the smell.

Some tools can apply the computed changes to their internal artefact representation, there-
fore, producing a transformed artefact model. The fully-automated tools can operate straight
over the target artefact, generating a transformed artefact.

3.4.5 Impact analysis

The activity of impact analysis refers to the ability of an approach to compute the change impact
of a design smell [EM02, VRDBDRO7| or the actions performed to remove it [FTC07, LWNO7b,
TSGO04]. Figure 3.11 summarises the techniques, automation support and results for the impact
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analysis activity.

Technique. Approaches based on quality models offer this feature [BAMNO06, LM06, RSS™04,
SGMO00, TKO04]. In |[TKO04|, Tahvildari et al. present an approach based on soft-goal models.
With soft-goal models they define the effects of design smells over metrics and system quality
factors in a way that this information can be used automatically by a detection or a correction
tool. Using soft-goal models the impact of design smells can be automatically computed to assist
the detection and correction activities. Marinescu introduces in [Mar02] how quality models can
be used to estimate the impact of a design smell.

Deligiannis et al. [DSAT04] presented a controlled experiment on the impact of design smells,
in which they studied 20 subjects to evaluate the impact of God Classes on the maintainability
and understandability of object-oriented systems. The results of their study show that the
Blob antipattern affects the evolution of design structures and the subjects’ use of inheritance.
Other similar approaches based on controlled experiments studied the impact of design smells on
software quality factors such as comprehensibility [DDV106] and maintenance [OCBZ09]. Some
approaches used statistical models to investigate the relationship of design smells with class error
probability [LS07] or with change-proneness [KPGO09].

Recent works have studied the impact of design smells on software evolution by analyzing
several versions of software systems [OCBZ09, VKMGO09|. These approaches identify mainly
evolution patterns of smells, which are then used to explain the impact of smells on the rest of
the system. For example, Olbrich et al. [OCBZ09| analysed the historical data over several years
of development of two large scale open source systems. They concluded that God Classes and
Shotgun Surgery have a higher change frequency than other classes; and thus, may need more
maintenance than non-infected classes.

Automation. Most of approaches evaluate the impact of design smells manually by conducting
controlled experiments with subjects [DSRS03, DSAT04, DDVT06]. Some approaches integrate
this activity in a fully automated way [TKO04] to assist the detection and correction process.

Result. During our survey, we found that the most common results of impact analysis are the
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Figure 3.11: Summary of the current situation for the impact analysis activity.

list of entities affected by a smell (Entity Impact) and the effect that a smell, or its removal,
has over a metric value (metric impact) [DSRS03| or over a quality factor (quality impact)

[DSA*04, DDV+06].

3.5 Conclusions of the survey

During our survey we have observed that not many of the studied approaches allow to reason
about design smells at the level of design models (as opposed to source code and executable code).
With the ever increasing importance of model-driven software engineering, it is imperative to
have better future support for design smell management at the modeling level.

Related to the above challenge is the fact that almost none of the surveyed approaches is
able to deal with design smells that involve different types of artefacts (e.g. a smell that involves
both code, models and tests). Support for such types of smells will continue to gain importance,
in the presence of multi-view and multi-language development environments.

Only a small fraction of the surveyed approaches took into account the version history. Such
a rich data source is able to provide much more relevant information about why a particular
design smell occurs, and how it may be corrected. As such, this can give rise to better and more
reliable design smell detection and correction tools.

Most of the approaches we surveyed that support the activity of design smell correction were
research prototypes. The next generation of commercial design smell management tools should
therefore strive to integrate and automate correction techniques, rather than only supporting the
detection activity.

Another challenge is to come up with better and more language-agnostic design smell man-
agement approaches. Most of the surveyed approaches focus on a specific programming language.
A few of the tools, though, are applicable on more than one language.

As a final challenge, while the main purpose of current-day design smell management ap-
proaches is to improve the software product quality (by detecting and correcting “smelly” parts
of the software), they could also be used to improve the software process quality. In many situ-
ations, the cause of a design smell may be a suboptimal software process. (For example, if the
software process does not discourage copy-paste reuse, the software is likely to suffer from code
duplication and high coupling between modules. Similarly, if the process does not encourage
modular design, the software is likely to suffer from cyclic dependencies.) Hence, the smell cor-
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rection activity should not only suggest to correct the detected problem itself, but also its cause,
by providing concrete suggestions on how to improve the software process to avoid introducing
design smells before they occur.



Chapter 4

Refactoring Strategies

This chapter reviews the current situation on design smell correction and performs a domain
analysis on the subject. It presents models that describe how this problem is supported and how
this support could be improved by means of the computation of complex refactoring sequences.
Refactoring strategies are thus proposed and defined as a way to tackle the problem of planning
complex refactoring sequences ahead. Finally, the requirements to provide support for refactoring
strategies and the characterisation of this problem are presented.

4.1 Analysis of design smell correction specifications

In this Section we perform a domain analysis on the current state of design smell correction
and we present a model for it as a result. This model has been written after analysing how
different authors have tackled this problem. Authors have addressed the design smell correction
activity by compiling empirical knowledge and expertise into rules. Most of these rules have been
written in natural language and in an informal way, so they should be used by an experienced
developer. In order to analyse how correction procedures are, and should be, supported by a
tool, this Section presents a review of the different correction specifications that can be found
in the literature. It would be possible to transfer these rules to an automatic tool with different
degrees of success, depending on their level of detail.

4.1.1 Current design smell correction specifications

The sources we have analysed are the antipatterns book from Brown et al. [BMMIM9S]|, the
bad smell catalogue in the book from Fowler et al. [BF99a|, the refactoring examples in the
book from Wake [Wak03|, the pattern-related refactorings in the book from Kerievsky [Ker04],
the disharmonies catalogue in the book from Lanza and Marinescu [LMO06|, the reengineering
patterns catalogue in the book from Demeyer et al. [DDNO8| and the correction strategies in the
PhD Thesis dissertation of Trifu [Tri08|. To illustrate the result of this domain analysis, we have
selected the same design smell — Large Class ! — so it is easier to compare the different “styles”
and levels of detail among the different authors. The correction specifications from these authors

!Depending on the author, we can find this smell under different names and with slight variations in its
definition: The Blob, God Class or Schizophrenic Class.

39
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“ As with most of the AntiPatterns in this Section, the solution involves a form of refactoring.
The key is to move behavior away from the Blob. It may be appropriate to reallocate behavior to
some of the encapsulated data objects in a way that makes these objects more capable and the Blob
less complex. The method for refactoring responsibilities is described as follows:

1. Identify or categorize related attributes and operations according to contracts. These contracts
should be cohesive in that they all directly relate to a common focus, behavior, or function within the
overall system. For example, a library system architecture diagram is represented with a potential
Blob class called LIBRARY. In the example shown in Figure 5.3, the LIBRARY class encapsulates
the sum total of all the system’s functionality. Therefore, the first step is to identify cohesive sets of
operations and attributes that represent contracts. In this case, we could gather operations related to
catalog management, like Sort_ Catalog and Search_ Catalog, as shown in Figure 5.4. We could also
tdentify all operations and attributes related to individual items, such as Print_Item, Delete_Item,
and so on.

2. The second step is to look for “natural homes” for these contract-based collections of func-
tionality and then migrate them there. In this example, we gather operations related to catalogs and
migrate them from the LIBRARY class and move them to the CATALOG class, as shown in Figure
5.5. We do the same with operations and attributes related to items, moving them to the ITEM
class. This both simplifies the LIBRARY class and makes the ITEM and CATALOG classes more
than simple encapsulated data tables. The result is a better object-oriented design.

8. The third step is to remove all “far-coupled” or redundant, indirect associations. In the
example, the ITEM class is initially far-coupled to the LIBRARY class in that each item really
belongs to a CATALOG, which in turn belongs to a LIBRARY.

4. Next, where appropriate, we migrate associates to derived classes to a common base class. In
the example, once the far-coupling has been removed between the LIBRARY and ITEM classes, we
need to migrate ITEMs to CATALOGS, as shown in Figure 5.6.

5. Finally, we remove all transient associations, replacing them as appropriate with type specifiers
to attributes and operations arguments. In our example, a Check Out Item or a Search For Item
would be a transient process, and could be moved into a separate transient class with local attributes
that establish the specific location or search criteria for a specific instance of a check-out or search.
This process is shown in Figure 5.7. ”

Specification 1: Description of the strategy to remove a Blob. From [BMMIMY8, page 77].

are reproduced in this section for reference purposes? , alongside their analysis.

Correction specification from Brown et al.

In the correction specification extracted from [BMMIM9S8, page 77| the general process of de-
sign smell correction can be observed (see Specification 1). The authors split the correction
specification into several consecutive steps. Let us take the first two steps of the specification
reproduced in Specification 1 as an example. These are focused on migrating cohesive sets of
fields and methods from the Blob class to another class. Each of these steps involves a single
type of refactoring, or a set of related refactorings, and presents a common procedure. In the
first two steps, the objective is to apply MOVE FIELD and MOVE METHOD. First of all,
the parameters of each transformation step have to be determined. In this case, the computa-
tion of parameters implies identifying which fields and methods constitute the cohesive sets and
therefore, have to be moved away from the Blob class. The other important parameter of these

2The references cited within these specifications correspond to references in the original work. They have been
kept in the excerpts in order to maintain the integrity of the original text. These cites do not correspond to
references in this dissertation.
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transformations is the target class to which the Blob class members are being moved. For each
cohesive set, the specification compels the developer to find out what is the best place to move
them to. The author does not describe how to proceed when an appropriate target class does
not exist within the system, although in this case, we should probably want to create an empty
class. The next part of the procedure is to apply the intended refactorings using the parameters
previously identified. In the current example, MOVE FIELD / METHOD refactorings have to
be applied for each cohesive set and target class, and for each field and method in the cohesive
set.

The other detail worth mentioning from this specification is how the system is queried to
find out the proper parameters for the proposed refactorings. In order to select the cohesive sets
of fields and methods, the specification proposes to “identify or categorize related attributes and
operations according to contracts”. The selection of the target class to which these sets should be
moved would be done by searching for “natural homes for these contract-based collections”. These
recommendations rely on the developer’s experience to manually instantiate the parameters of
the refactoring specification. Nevertheless, the running example used in the specification gives an
implicit hint: to look for similarities in the name of class members and group together those sets
of members with similar names, and to determine the target class these sets should be moved to,
on a basis of name similarity too. To summarise this, we can say that this correction specification
compels the developer to instantiate and apply it by querying the system on a lexical basis and
on the developer’s experience.

Correction specification from Fowler et al.

More lessons can be learned by analysing the correction specification, on how to remove a Large
Class, extracted from [FBB199, page 40| (see Specification 2). The proposed specification is
based on the same principles: splitting the Large Class and redistributing its members to cohe-
sive and single-responsibility classes. Additionally, it includes further details on what refactorings
should be applied and in which circumstances. This specification explicitly suggests the refactor-
ings to use, including EXTRACT CLASS, EXTRACT SUBCLASS, EXTRACT METHOD, etc.
Another difference between this specification and the previous one is that the creation of new
classes is explicitly stated through the EXTRACT CLASS / SUBCLASS refactorings.

The same “compute the refactoring parameters then apply the refactoring’-schema can be
found in this specification, but an organized and ordered sequence of multiple steps is not shown.
The specification describes different approaches or ideas, such as: EXTRACT CLASS / SUB-
cLASS / INTERFACE to split the Large Class and redistribute its responsibilities; EXTRACT
METHOD to reduce the size of the class by removing duplicated code; DUPLICATE OBSERVED
DATA to simplify a GUI class. These specifications can be tried in an unspecified order and can
suit different cases of Large Class.

As for which type of queries this specification proposes, we can find references to lexical queries

(“... common prefizes or suffizes ... "), search for fragments of duplicated code, structural queries
(“... how clients use the class ...”), and identification of the kind of a class (“If your large class
is a GUI class ...”). It can also be guessed that the assistance of the developer may be needed

in most cases, since the tips given to discover the exact usage for each refactoring are rather
subjective.
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“ When a class is trying to do too much, it often shows up as too many instance variables. When
a class has too many instance variables, duplicated code cannot be far behind.

You can Eztract Class to bundle a number of the variables. Choose variables to go together in
the component that makes sense for each. For example, "depositAmount” and "depositCurrency”
are likely to belong together in a component. More generally, common prefizes or suffizes for some
subset of the variables in a class suggest the opportunity for a component. If the component makes
sense as a subclass, you’ll find Extract Subclass often is easier.

Sometimes a class does not use all of its instance variables all of the time. If so, you may be
able to Extract Class or Extract Subclass many times.

As with a class with too many instance variables, a class with too much code is prime breeding
ground for duplicated code, chaos, and death. The simplest solution (have we mentioned that we
like simple solutions?) is to eliminate redundancy in the class itself. If you have five hundred-line
methods with lots of code in common, you may be able to turn them into five ten-line methods with
another ten two-line methods extracted from the original.

As with a class with a huge wad of variables, the usual solution for a class with too much code is
either to Extract Class or Extract Subclass. A useful trick is to determine how clients use the class
and to use Extract Interface for each of these uses. That may give you ideas on how you can further
break up the class.

If your large class is a GUI class, you may need to move data and behavior to a separate domain
object. This may require keeping some duplicate data in both places and keeping the data in sync.
Duplicate Observed Data suggests how to do this. In this case, especially if you are using older
Abstract Windows Toolkit (AWT) components, you might follow this by removing the GUI class and
replacing it with Swing components. ”

Specification 2: Description of the Large Class smell and how to remove it. From [FBBY 99, page 40].

Correction specification from Wake

The specification to correct a Large Class from [Wak03, page 26| (See Specification 3) is very
similar to that of [FBB199, page 40|. Indeed, it is mainly a better structured version of it.
However, it adds a tip on how to search for Long Method and tackle this smell first. Therefore,
it implies the idea of composing correction procedures similar to those we have already found
in other authors. The composition of correction specifications should be present in a framework
aimed at supporting design smell correction in a comprehensive way.

Correction specification from Demeyer et al.

The correction specification for God Class from [DDNO8, page 263] follows the same pattern (See
4), which is common to most of the analysed authors. It describes a multiple step process, where
each step focuses on what refactorings to apply and which parameters to use. In this specifica-
tion the authors reference, implicitly or explicitly: EXTRACT CLASS, MOVE METHOD (with
delegation), REMOVE MIDDLE MAN, REMOVE CLASS. It does not reveal explicitly how to
find out the refactoring parameters or how to decide on the exact refactorings to use. However,
we can spot the need for structural queries, metrics and, if none of these help, the developer’s
intuition. Relationships with other design problems can also be recognized. In addition to God
Class, this specification involves splitting this class into what are likely to be Data Classes. A
restructuring pattern named MOVE BEHAVIOR CLOSE TO DATA is recommended in order to
move the corresponding methods left behind. Therefore, this suggests addressing the reorgani-
sation of these methods as if they would be affected of Feature Envy, and indeed, they probably
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“ In general, you’re trying to break up the class. If the class has Long Methods, address that
smell first. To break up the class, three approaches are most common:

e Faxtract Class, if you can identify a new class that has part of this class’s responsibilities

e Fxtract Subclass, if you can divide responsibilities between the class and a new subclass

e FExtract Interface, if you can identify subsets of features that clients use

Sometimes, the class is big because it’s a GUI class, and it represents not only the display

component, but the model as well. In this case, you can use Duplicate Observed Data to help extract
a domain class. ”

Specification 3: Description of the strategy to remove a Large Class. From [Wak03, page 26].

will, once the previous redistribution of attributes is performed.

Correction specification from Lanza and Marinescu

The correction specification for God Class in [LMO06, page 83| is less detailed than the previous
ones in terms of which refactorings to apply and how to find the parameters for them (see Spec-
ification 5). The basic correction idea is vaguely mentioned in this specification: to redistribute
the cohesive members from the God Class to other classes. They do not describe how to rem-
edy this smell in detail, but instead they refer to other authors’ specifications. Nevertheless, it
explicitly mentions a very important consideration. This smell (or “disharmony”, according to
them) may have been formed from a confluence of others. Indeed, this concept of composition
and relationship between smells is studied in detail in [LMO06]|. As for developing an automated
approach for design smell correction, this is a very relevant notion. This implies that correction
methods can be composed from others, therefore allowing for reuse and incremental evolution
and improvement of correction specifications.

Correction specification from Kerievsky

In [Ker04], Kerievsky compiles a catalogue of design-pattern-related refactorings that are matched
against design smells, and can therefore be used to correct them. The correction specifications
from [Ker04, page 44| are described by means of particular structures that the system has to
be migrated to. Before trying to apply a correction procedure, the developer has to identify
which particular incarnation of Large Class the system presents. To remove a Large Class, three
different correction specifications are proposed (see Specification 6). Depending on the kind of
problem, the system will have to be migrated to a different structure, and the developer should
use the particular correction specification that fits.

These design-pattern-related refactorings, describing how to migrate the code to the desired
structure, are detailed in [Ker04|, and are defined in the style of the refactorings specifications
defined in [FBB199]. Reviewing them (see |[Ker04, page 166, page 192, page 269]), reveals that
each one is defined like a “big refactoring”[BF99b, chapter 12|, and therefore, they are composed
from other refactorings and smell correction specifications.

The relevant idea that can be observed in this specification is that the approach to correct a
design smell can be selected from several different methods. This implies that the knowledge for
correcting a design smell can grow over time, and be compiled in catalogues, as we are able to
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“ Incrementally redistribute the responsibilities of the god class either to its collaborating classes
or to new classes that are pulled out the god class. When there is nothing left of the god class but
a facade, remove or deprecate the facade. ... The solution relies on incrementally moving behavior
away from the god class. During this process, data containers will become more object-like by acquir-
ing the functionality that the god class was performing on their data. Some new classes will also be
extracted from the god class.

The following steps describe how this process ideally works. Note, however, that god classes can
vary greatly in terms of their internal structure, so different techniques may be used to implement
the transformation steps. Furthermore, it should be clear that a god class cannot be cured in one
shot, so a safe way to proceed is to first transform a god class into a lightweight god class, then into
a Facade [p.319] that delegates behavior to its acquaintances. Finally, clients are redirected to the
refactored data containers and the other new objects, and the Facade can be removed. The process
is tllustrated in Figure 39.

The following steps are applied iteratively. Be sure to apply Regression Test After Every Change
[p. 201]:

1. Identify cohesive subsets of instance variables of the god class, and convert them to external
data containers. Change the initialization methods of the god class to refer to instances of the
new data containers.

2. Identify all classes used as data containers by the god class (including those created in step 1)
and apply Move Behavior Close to Data to promote the data containers into service providers.
The original methods of the god class will simply delegate behavior to the moved methods.

8. After iteratively applying steps 1 and 2, there will be nothing left of the god class except a facade
with a big initialization method. Shift the responsibility for initialization to a separate class,
so only a pure facade is left. Iteratively redirect clients to the objects for which the former god
class is now a facade, and either deprecate the facade (see Deprecate Obsolete Interfaces [p.
215]), or simply remove it.

Specification 4: Description of the strategy to remove (split up) a God Class. From [DDNOS, page 263].

identify more precisely the specific manifestations of a smell and their corresponding correction
procedures. It is also worth noticing that this defines an obvious but important opportunity for
automation. We can group these different methods and let an automated tool select the proper
one for each case if we can provide a way to identify each particular manifestation of the problem.
Queries over the system structure, metrics, and developer assistance can be employed to make
this decision.

Correction specification from Trifu

The most detailed specifications can be found in [Tri08, page 32,39]. Trifu compiles very detailed
algorithmic descriptions that use if-then-else, foreach constructs, etc. They resemble the
specifications of Kerievsky in the sense that we need to identify the specific incarnation of the
smell first. What Trifu calls the “reference structure” is the structure that realizes the original
design intent. The detailed description leads to the transformation of the smelly part of the
system into this desired structure. This work is very relevant because it reveals it is possible to
write detailed specifications, that can be easily automated, when the precise manifestation of a
design smell has been identified.

The proposed algorithm includes, either implicitly or explicitly, applying refactorings from
[Opd92]: CREATE EMPTY CLASS; from [FBB99| such as: ENCAPSULATE FIELD, MOVE
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“ Refactoring a God Class is a complex task, as this disharmony is often a cumulative effect of
other disharmonies that occur at the method level. Therefore, performing such a refactoring requires
additional and more fine-grained information about the methods of the class, and sometimes even
about its inheritance context. A first approach is to identify clusters of methods and attributes that
are tied together and to extract these islands into separate classes. Split Up God Class [DDNO2]
proposes to incrementally redistribute the responsibilities of the God Class either to its collaborating
classes or to mew classes that are pulled out of the God Class. Feathers [Fea05] presents some
techniques such as Sprout Method, Sprout Class, Wrap Method to be able to test legacy system that
can be used to support the refactoring of God Classes. ”

Specification 5: Description of the strategy to remove a God Class. From [LMO06, page 83).

“ Fowler and Beck [F| note the presence of too many instance variables usualy indicates that a
class is trying to do too much. In general, large classes typically contain too many responsibilities.
Extract Class [F] and Extract Subclass [F[, which are some of the main refactorings used to address
this smell, help move responsibilities to other classes. The pattern-directed refactorings in this book
make use of these refactorings to reduce the size of classes.

Replace Conditional Dispatcher with Command (191) extracts behaviour into Command [DP]
classes, which can greatly reduce the size of a class that performs a variety of behaviours in response
to different requests.

Replace State-tering conditionals with State (166) can reduce a large class filled with state tran-
sition code into a small class that delegates to a family of State [DP] classes.

Replace Implicit Language with Interpreter (269) can reduce a large class into a small one by
transforming copious code for emulating a language into a small interpreter. ”

Specification 6: General Description of three strategies to remove a Large Class. From [Ker04, page

44].

FieLD, MoOVE METHOD, EXTRACT METHOD, PUSH DOwWN FIELD, PUsH DOwN METHOD,
EXTRACT SUBCLASS; and from [Ker04]: IMPLEMENT “FACADE”.

To find out how to refactor, the specification instructs the developer on how to examine
the situation at each step. In some cases, deciding on the refactoring parameters only seems
only possible with the developer’s deduction (“Decide between keeping the structured type ... or
increasing the association’s multiplicity . ..”), but other directions can definitely be translated
to structural queries (“if m; is specialized in one of O’s subclasses then”), and metrics (“Identify
all the abstractions A; that need to be separateda. ..”).

It should be noted that different authors can propose different correction procedures. For
example, Specification 2 is similar to Specification 1, but it includes the use of extract subclass,
extract interface, extract method, duplicate observed data, replace algorithm, etc. The specifica-
tions from [Tri08, page 32,39] can coexist with those from [Ker04| because they apply to different
manifestations of the same problem. It would be difficult to integrate all the correction proposals
into a single correction specification. Some specifications can complement or refine others, while
others cannot. Different specifications can be applied to suit the different types of manifestations
of the smell. This has been quite rightfully identified by Trifu in [Tri08]|. A correction approach
has to take into account these considerations.
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“1: Let O be the schizophrenic class

2: Check that we have an identity
based decomposition of data in O, based
on the iden- tities of the encapsulated ab-
stractions. // An action oriented topol-
ogy in the case of the encapsulated abstrac-
tions would require a complete redesign of
the fragment, which is outside the scope of
design flaws in general (see 6.1.1)

8: Encapsulate all attributes in O with
public accessors // The public visibility is
only temporary, in order to make moving
functionality around easier

4: Identify all the abstractions Ai ,
that need to be separated and establish
their future interfaces

5: Create empty classes that corre-
spond to each of Ai

6: if O has subtypes // we assume that
they contain valid specializations for one
or more of the abstractions contained in
O then

7: Establish those abstractions from Ai
that are affected by each specialization of
0

8: Create appropriate subtypes for the
classes that correspond to these abstrac-
tions

9: end if

10: for all attributes ai in O do

11: Find the natural place for ai in
one of the newly created classes, including
helpers, based on the Ai determined before
and apply “move field” [Fow99]

12: if ai is an array or collection then

13: Decide between keeping the struc-
tured type and having an association mul-
tiplicity of 1 to the host class, or increas-
ing the association’s multiplicity and re-
placing the collection or array with only
one of its elements. In the latter case, the
class interface and the implementation of
the facade need to be adapted accordingly

14: end if

15: end for

16: for all methods mi in O do

17: if mi can be unambiguously as-
signed to one of the new classes then

18: Apply “move method” [Fow99] to
move mi’s body to the respective class

19: if mi is specialized in one of O’s
subclasses then

20: Apply “move method” [Fow99]
to move the overriding method into the
appro- priate specialization

21: end if

22: else

23: Apply “extract method” and “move
method” [Fow99] to break up the origi-
nal method, based on the attribute clusters
that determine the encapsulated abstrac-
tions, and reunite functionality with its
associated data

24: if mi was previously specialized in
one of O’s subclasses then

25: Apply “extract method” and “move
method” [Fow99] to break up the original
overriding method, based on the attribute
clusters that determine specializa- tions of
the encapsulated abstractions, and reunite
functionality with its asso- ciated data

26: end if

27: end if

28: if mi had public visibility then

29:  Implement “facade” [GHJV96]
method in O, delegating to the appropri-
ate abstraction(s).

30: end if

31: end for

32: Create initialization methods in
the facade O, or adapt its constructors to
instantiate and wire together all newly de-
fined classes and their specializations

33: Reduce data and accessor visibil-
ity as much as possible in all of the newly
created classes ”

Specification 7: Description of the strategy to remove a Schizophrenic Class. From [Tri08, page 32,39].
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Other related works

There are other works related to removing design smells that do not consist of catalogues of
correction specifications, but describe techniques that support the restructuring process in some
way. All the correction specifications analysed describe the same need when dealing with a Large
Class: to identify the optimal cohesive sets of fields and methods to be move and how to find
their best new locations.

Some authors propose techniques based on metrics to reorganise a system’s design and to
migrate it to structures which can be optimal for a given measure. These approaches usually
produce refactoring suggestions, but do not offer or allow for an automatic way to apply them.
Bodhuin et al. introduced SORMASA in [BCTO07]. They presented a tool that can suggest the
refactorings needed to achieve a desired system structure. Their tool uses genetic algorithms to
propose alternative structures and to select the one that optimizes a given fitness function.

In her PhD Thesis dissertation [Moh08|, Moha proposes a method, based on Relational
Concept Analysis (RCA), to obtain refactoring suggestions. Some design problems, such as
“The Blob” [BMMIM98|, can be reduced by reorganising and redistributing classes and their
features with refactorings. RCA helps to discover how to redistribute responsibilities between
classes so coupling and cohesion metrics are improved. The computed redistribution leads to the
refactorings that should be used to remove the design smell.

Some authors have developed more systematic approaches that make it easier to automate
the correction of design smells.

In [TSGO04|, although they do not explicitly present correction specifications, Trifu et al.
presented a technique to detect and remove design smells. Correction is based on the use of
what they call “correction strategies”. These strategies are specifications for design smell cor-
rection procedures that are written in terms of elaborated algorithms. They are composed
of code transformation rules —refactorings and non-behaviour preserving transformations—, and
conditional and iterative constructs. These strategies are written in INSPECT/J [GKBO7| and
represent alternative branches of simple transformations. A particular path is walked depending
on how it favours or disfavours certain quality factors. If a path cannot be followed because of the
precondition of a transformation does not hold, another path, or user intervention, is considered.
Simple transformations may include refactorings and non-behaviour preserving transformations,
but a correction strategy, as a whole, does preserve behaviour.

In [TK04|, Tahvildari et al. present an approach that uses quality models. The impact of a
set of refactorings over metrics and quality factors is described with soft-goal models [CNYM99].
These models are then used to automatically select the best refactorings for a given goal, such
as improving maintainability. They compute the potential refactorings which are appropriate
to remedy the desired problem. Using refactoring preconditions, they filter the non-applicable
transformations out of the set of candidate refactorings. Nevertheless, they do not specify in
detail how to obtain the precise sequence of refactorings that should be applied. We find this to
be a limitation. Refactorings which are not straightforwardly applicable are discarded, so their
approach may perhaps produce sub-optimal solutions. Their approach can possibly be improved
by allowing it to select the optimal refactorings, regardless of their immediate applicability.

4.1.2 A model for current design smell correction specifications

We have reviewed a set of works related to design smell correction with refactorings. From this
analysis we have extracted a common general model, which is shown in Figure 4.1, that can
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Figure 4.1: A general model for current design smell correction strategies.



4.1. ANALYSIS OF DESIGN SMELL CORRECTION SPECIFICATIONS 49

represent all those different approaches.

This model represents the different kinds of design-smell-removal specifications as correction
strategies. This is meant to be a unifier concept, and its name has been taken from [TSG04].
A design smell can affect a number of system entities. This relationship denotes only those
entities which are strictly “affected by” the smell. For example, a method accessing too many
member variables from another class is affected by Feature Envy and is represented by this rela-
tionship, but not the envied entities, despite being involved in the smell. Correction strategies
constitute the different “possible strategies” that can be employed to remove a design smell. These
strategies are defined to alter only the structure of a system, not its behaviour, therefore, they
are a particular kind of behaviour-preserving transformation.

Correction strategies are composed of sequential, ordered steps. They can thus be per-
formed manually in an easier way. Each step instructs the developer to apply some transforma-
tions following a certain algorithm. Prior to performing the corresponding transformations, their
parameters have to be computed using queries that gather different types of information from
the system. The algorithm comprising each correction step can be formulated by the composition
of different control constructs. This is represented by specialising each construct, either into a
composite control construct or into a simple precept, to apply a transformation. Composite
constructs can be alternatives or loops, both of which include the evaluation of a condition.

In short, the basic set of pseudo-code constructs which have been found in the existing
correction specifications are:

e Applying a transformation: which is the basic operational construct. This will include
applying any type of transformation, such as refactoring, introducing or removing a design
pattern [Ker04, Tri08|, or even performing non-behaviour-preserving transformations, as
parts of a behaviour-preserving one.

o Alternatives: to specify different transformation paths that will be selected upon the
evaluation of a condition.

e Loops: to specify iterative transformations that have to be applied on the evaluation of a
condition. We have found that the majority of loops are “foreach” loops, used to apply a
transformation iteratively over a set of system entities.

e Conditions: that can be evaluated over system queries.

We have found that the transformations that can be recommended to apply in the cor-
rection process can be either non-behaviour preserving or behaviour preserving. Both
transformations should define a certain algorithm which implements the associated changes, but
the latter can be seen as a conditional transformation [Kni0O6], which is also composed of a “pre-
condition”. This precondition is evaluated upon the execution of certain system queries. The
fulfillment of this precondition is a requirement for the application of a behaviour-preserving
transformation, because it denotes the condition under which the application of the transforma-
tion does not alter the observable behaviour of the system. Both types of transformations, which
can be included in a correction specification, can be represented as reusable, parameterised trans-
formations which take system entities as arguments —including classes, methods, etc.— which
are affected by a particular smell or those which are involved in the correction process.

The availability of system queries is crucial in correction strategies. They can be used to
gather additional information during the correction process. System queries can be formulated
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so that they use system entities as input parameters or as output results. The different types
of system queries that we have been identified are:

e Structural: finding those system entities which present a particular structural pattern,
which can range from simple AST relationships to complex structures, such as the “patho-
logical structures” used in [Tri08].

e Numerical: extracting numerical data, such as metrics, from system entities [LMOG].

e Lexical: certain name patterns, prefixes and suffixes, such as: “System”, “Process”; etc.
can reveal entities that should be involved in the correction process [MohO8].

e Duplicated code: Some transformations would require the ability to identify duplicated
code. For example, the refactoring EXTRACT METHOD, that is used to unify duplicated
code fragments from different methods into a single method, could be better automated
with the help of a query that detects and finds duplicated code.

e FEntity-kind: The kind of an entity —i.e. a class can be a GUI class, a library class, etc. —
can determine which is the most suitable strategy to correct a smell, or even whether the
entity is affected by a smell or not (Specifications 2, 3).

e User: The user of a correction strategy — the system developer — can use his or her
expertise in the correction process or take decisions which are hard to automate. We have
represented this as a user query to highlight the idea that human interaction can be
employed in an automated approach. This can be implemented as a consult the system
would make to the developer requesting additional information.

We have found that some approaches describe correction specifications that can also include
decision points and alternative paths which rely on quality-based conditions. This kind of
conditions are used to describe the effect of a transformation over a metric or a quality fac-
tor |TKO04, TSG04]. These can be used to choose between the different candidate strategies
that may possibly be used to correct a smell or to choose between different transformation paths
within a correction strategy.

4.1.3 Current specifications of refactorings

In order to integrate design smell correction specifications with refactoring specifications, a model
for the latter is also presented here. The information for this model has been extracted by
analysing how different authors have defined refactorings in the literature |Opd92, FBB99,
Tic01, MCO03, Ker04, Kni06|. Figure 4.2 shows this simplified model for refactoring operations.

A refactoring definition includes a list of parameters, a precondition and an algorithmic
description of the refactoring mechanics. The parameters of a refactoring will be suited by
different types of program elements. The actual parameters of a refactoring will determine
the precise program elements over which the refactoring will be applied, or those elements that
will be involved in the transformation process. The precondition of a refactoring will be defined
with a boolean condition, which can be evaluated into “true” or “false” at application time.
As it is already well known, the fulfillment of the precondition ensures, with a high degree of
certainty, that the application of the refactoring will not alter the observable behaviour of a
program. A refactoring will only be applied when the precondition evaluates to “true”. The
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mechanics of the refactoring describes the necessary steps or program changes to apply the
desired transformation. These are described with different levels of detail and usually, in a
heuristic way.

A boolean condition is built from composite or stmple conditions. The former are
composed by joining boolean conditions with boolean operators, while simple conditions are
formulated as expressions over program queries. The program to be transformed can be seen as
a collection of program elements which build up a program model. Refactoring specifications,
which are manually-oriented, refer to source code entities, while automated refactoring tools
can rely on different types of program models, such as Abstract Syntax Tree (AST) elements,
JAVA bytecode, logic formulas, etc. In order to abstract these options, program elements are
represented within the refactoring model in Figure 4.2, in a generic way, by specialising them into
entities and relationships between entities. All the computations, explorations, etc. needed to
obtain additional information about the program have been represented as program queries,
which can either be structural or lexical. These queries have program elements as their
input parameters and output results.

The mechanics of a refactoring are defined, in most cases, as a sequence of program changes,
which can be specialised into a simple change, a request to apply a refactoring or into a
composite change. A composite change can be represented in a simplified way by alterna-
tives and loops, while a stmple change is a basic request to either add, remove or replace
a program element.

4.1.4 The activities of applying a design smell correction strategy

To fully understand the problem of performing complex refactoring processes, we summarise
here the general process of applying a design smell correction strategy. In order to remove a
design smell, a correction strategy has to be selected. Moreover, we also need to plan ahead
how to instantiate that correction pattern for each specific situation. This involves, for each step
in the correction strategy, computing the precise parameters and finding out how to apply the
transformations included in the step. This can be seen as a three-stage process:

1. Select the most adequate strategy to correct a smell.

e We should determine which sequence of refactorings can be used to remove a smell:
eg. if a certain method suffers from “Feature Envy” [FBB199, page 80|, in order to
remove this smell, the method should be moved close to the data it accesses, from
its source class to the class containing most of the accessed data. This stage involves
deciding which strategies are suitable to be applied. In some cases, this can be guided
by additional information. For example, identifying which particular incarnation of a
design smell we are facing may help.

2. Instantiate the selected strategy.

e We should have to find the precise strategy. For each step in the correction strategy,
the intended transformation sequence has to be paramaterised with the entities of the
system over which it will be applied. Following the previous example, the strategy
would be instantiated for a method that suffers from “Feature envy”, its source class
and a target-candidate class.
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3. Apply the strategy instance.

e We should have to find the exact transformation sequence, including refactorings and
non-behaviour-preserving transformations, needed to enable the application of the
desired instance of the correction strategy. In the example, if the method cannot be
moved due to a name conflict, an additional or alternative sequence of refactorings
should be proposed. For example, prior to moving the method, a renaming of one of
the conflicting methods could also be applied.

4.2 Open problems in automating correction strategies

The models in Section 4.1, together with the survey in Chapter 3, describe the current state
of the art in design smell correction automation as far as our knowledge allows. Through our
analysis, we have detected some problems and issues that have not been studied with enough
attention.

4.2.1 Applicability of refactorings

One of the problems that have not been addressed in detail is the applicability of the transfor-
mations involved in the correction process. As mentioned in Section 2.3, checking a refactoring
precondition must precede its actual execution. If these conditions, that guarantee the preser-
vation of the system’s behaviour, do not hold, then it is not safe to apply the refactoring, and
therefore, a refactoring tool will not execute the transformation. For example, to allow a method
to be moved from one class to another, one should probably, first, have to move the attributes
accessed from it. In these cases, the desired refactoring can not be immediately applied and
the situation must be analysed in order to find how to apply the desired change. Either an
alternative refactoring sequence is selected, or some preparatory refactorings are executed first.

To make this problem worse, the dependencies and conflicts between refactorings have to be
taken into account. Two refactorings are in conflict if one of them can disable the precondition
of the other. On the contrary, they are dependent when one can enable the precondition of the
other. This problem, regarding conflicts and dependencies between refactorings, can appear in
different development contexts, and has been studied by some authors. Graph transformation
has been used as the formal-basis to analyse the dependencies and conflicts between refactorings
by some authors, such as [MTRO7, PRT08|. Logic programming has also been tested as a suitable
formalism to deal with this problem [MKRO6].

Team development is one of the most common scenarios where this problem exists. If two
developers are working on the same system at the same time, performing refactorings and edits
in parallel will produce conflicts when merging the different system versions, even if the merge is
performed with the aid of a software configuration management system. This particular scenario
is addressed in [DMJNO§|. In this work, Dig et al. describe how the dependencies between
refactorings have to be analysed and the composite sequence of changes has to be reorganised
in order to produce a correct merging. Preconditions are used to determine the valid refactoring
commutations.

These precondition-related problems do not only apply to simple or low-level refactorings,
but to all behaviour-preserving transformations which are “protected” with a precondition. These
include the kind of transformations we are addressing in this dissertation: big refactorings such
as introducing or removing a design pattern, removing a design smell, etc. Therefore, in order
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to support more automated correction strategies, we need an infrastructure “smart” enough to
compute alternative transformation paths and to find a proper composite sequence of refactorings
that does not contain “failing” preconditions, and thus, can be immediately executed over the
current system.

4.2.2 Non-formal description of correction strategies

Another source of concern arises from how the strategies are specified. Most strategies we have
found can be formulated in an algorithmic way. Obviously, any algorithmic language will be
expressive enough to describe them. Many specifications can be directly translated to pseudo-
code. However, they are often written in natural language and are also given in a heuristic
way. This makes it more difficult to translate the strategy specifications to an algorithmic
language, or at least, to a deterministic one. In order to write down these specifications, some
non-deterministic language constructs are needed.

In addition to the regular control constructs we have identified in correction strategies (see
Figure 4.1), it will also be desirable to extend them with non-deterministic features:

e steps: Executing a sequence of operations requires all steps in the sequence to be applied in
order and successfully for the sequence to succeed. Due to the heuristic nature of correction
strategies, it is desirable to have the chance to specify operations in a less restricted way.
It would be useful to allow for non-deterministic steps that may be carried out optionally.
This refers to steps which are worth trying but are not needed for the whole strategy to
suceed. It would also be useful to allow scheduling steps in an unordered way, so that all
steps should be executed but no order is explicitly specified.

e alternatives: When specifying alternatives, these are given a predefined order: an alter-
native will be tried only if another one fails. Instead of “hard-coding” this, for a heuristic
correction strategy it would often be preferable to give the same priority to a set of alter-
natives and let a tool select and execute the proper one. Additionally, regular alternative
constructs are usually controlled by some kind of condition, as in an “if-then-else” construct.
An approach for writing and supporting automation of correction strategies should allow
to omit the condition of an alternative branch. This will allow the developer to specify an
alternative step or strategy even if the condition to take that path is not fully known or
cannot be described for some resaon.

e foreach loops: When iterating over a set of entities to perform a certain transformation,
the success of the transformation as a whole may depend on the order in which each element
in the set is selected to execute the loop body over this selection. An example of this could
be removing, in individual steps, a set of methods which are only referenced from methods
belonging to that set (see DELETE MEEMBER FUNCTIONS in [Opd92, page 59]). As long
as there are no cycle dependencies between them, of course, the first methods to be removed
would be those which are completely unreferenced. Other orderings shall fail. As is the
case with unordered alternatives, it is convenient to to leave the ordering unspecified in
the correction strategy, while an automated tool, which is able to compute the successful
ordering, is then needed.

Additionally, we can identify some instructions within correction strategies that should be
supported by an automated tool but currently are not.



4.3. DEFINITION OF REFACTORING STRATEGIES 55

e apply a strategy / substrategy: Instead of a direct invocation of a refactoring, which
could fail due to its associated precondition, it would be desirable to support the invocation
of another correction strategy or substrategy. This will allow parts of strategies to be split
and reused.

e calls for user interaction: this is highly desirable since it will allow the application of
a correction strategy to be guided by the user when the strategy is not “smart enough” to
be applied in a fully automated way.

Once we have modelled the current state of the art in design smell correction automation, and
given that we have also identified its open problems, we propose a framework that we consider
can lead to an improvement in this field.

4.3 Definition of refactoring strategies

In order to tackle the problems mentioned in Section 4.2 we propose to generalise the design
smell correction approaches into a wider approach. Refactoring Strategies unify the analysed
approaches and present a framework in which all tasks involved in the design smell correction
process are given the same degree of attention.

4.3.1 Overview of refactoring strategies

We present refactoring strategies as specifications, that can be easily automated, of the steps
to perform complex behaviour preserving transformations. A refactoring strategy compiles the
empirical knowledge on how to achieve a particular goal that needs to be reached by application
of complex behaviour-preserving transformations, such as removing a design smell, introducing
or removing a design pattern, applying a particular instance of a complex refactoring operation,
etc. When intended for removing a design smell, a refactoring strategy represents a correction
strategy, which is the problem that motivates and drives this PhD Thesis dissertation. Since
refactoring strategies represent a unifying and homogeneous concept, they can be used in an
uniform way to describe heuristics for any of those goals. They can also be automated in an
uniform way in order to compute the sequences that achieve them. Refactoring strategies can be
seen as a revised version of the correction strategies defined by Trifu [TSGO04]. The added values
of refactoring strategies are introduced below.

Refactoring strategies are instantiated into Refactoring Plans, which are refactoring se-
quences that can be executed over the current system’s source code. Refactoring strategies and
refactoring plans separate the specification of a correction strategy from a particular executable
instance of that strategy, which is applicable over a system in a certain state. They allow a
complex behaviour-preserving transformation to be planned ahead, so the sequence of instanti-
ated refactorings included in the refactoring plan can be executed safely. The computation of
refactoring plans from refactoring strategies forces the preconditions of all the refactorings in the
resulting sequence to be fulfilled at the time of their application.

Refactoring strategies compile the empirically-obtained and experience-based knowledge on
how to perform a complex refactoring process. When a certain process can be formulated in a
precise way, the suitable strategy will be more detailed and the matching refactoring plan will be
obtained in a more straightforward way by a tool. If not enough knowledge has been collected
to address a refactoring process, a more vague specification can be written. Nevertheless, the
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Figure 4.3: Refactoring strategies and their relationship with refactorings and non-behaviour-preserving
transformations.

structured nature of refactoring strategies makes it easier for a tool to still be able to perform
the necessary computations to find out the suitable refactoring plans.
The following definitions are proposed:

Definition 2. A Refactoring Strategy is a heuristic-based, automation-suitable specification
of a complex behaviour-preserving software transformation which is aimed at a certain goal. It
can be instantiated, for each particular case, into a Refactoring Plan.

Definition 3. A Refactoring Plan is a sequence of instantiated transformations, aimed at
achieving a certain goal, that can be effectively applied over a software system in its current
state, while preserving its observable behaviour. It can be an instance of a refactoring strategy.

The following sections define and describe the model we propose for refactoring strategies. To
start presenting this proposal we introduce here an overview at the highest abstraction level. In
our model, we propose to use three different types of software transformations, Non-behaviour-
preserving transformations, refactorings, and refactoring strategies. A general model
depicting the relationships between these transformations is shown in Figure 4.3 and detailed
below:

e Transformation: A general kind of software system transformation, which can be spe-
cialised into non-behaviour-preserving and behaviour-preserving transformations.

e Non-behaviour-preserving transformation: Specifications of software transformations
that may change the observable behaviour of the system. We propose that, in the case
of being composed by other transformations, these can only be non-behaviour-preserving
transformations. We thus enforce this kind of transformations to be simple and to serve as
building blocks for refactorings and refactoring strategies.

e Behaviour-preserving transformation: Specifications of software transformations that
do not change the observable behaviour of the system. In our proposal, they can be either
refactorings or refactoring strategies.

e Refactorings: In our proposal, they are meant to refer only to low-level and simple
refactorings. That is, refactorings that are defined by simple non-behaviour-preserving
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transformations and never by other refactorings. Those refactorings that are composed
of other ones, such as high-level and big refactorings, constitute complex refactorings and
therefore should be specified with refactoring strategies

e Refactoring strategies: Specifications of complex refactoring processes, that are com-
posed by transformations of any kind. They represent the concept described in Definition 2.

The next sections provide an in-depth description of our proposal for refactoring strategies.
In order to do this, we present the proposal as two models, and we describe their elements and
relationships.

4.3.2 A model for refactorings and non-behaviour-preserving transforma-
tions

In our proposal, the basic building blocks for refactoring strategies are low-level refactorings and
non-behaviour preserving transformations. The main difference between refactoring strategies on
the one side and refactorings and non-behaviour-preserving transformations on the other, is that,
in our proposal, definitions for refactorings and non-behaviour-preserving transformations, are
not based on heuristics, and therefore their execution is deterministic. The precise transformation
sequence to be performed over the software system is determined by the refactoring or the non-
behaviour-preserving transformation and their parameters. Once the transformation has been
selected and the parameters have been established, the precise transformation sequence is already
known. These transformations are defined by the model shown in Figure 4.4 and their elements
are described below.

e Non-behaviour-preserving transformation: Specifications of deterministic algorithms
to modify a software system. These transformations can be initiated within a refactoring
or within another non-behaviour-preserving transformation. They take system en-
tities as parameters and are composed of several transformation steps which constitute
the “transformation algorithm”.

e Transformation step: Each transformation step of a refactoring or a non-behaviour-
preserving transformation. It is specialised into three different kinds of steps: ap-
ply transformation, system change or composite change. Transformation steps
should not be confused with those steps identified in current correction strategies (see
Section 4.1.2). Transformation steps are atomic operations, while the latter are more
coarse-grained and were used to reference sub-parts of a correction strategy.

o Apply transformation: A request to execute a non-behaviour-preserving transfor-
mation.

e System change: This represents a simple change that can be performed over the software
system. It can be specialised into three different types of modifications: add, remowve or
replace a system element.

e Composite change: A modification to the system which is composed of other changes,
each being any type of transformation step. The execution of the component changes
can be structured by specialising a composite change into a loop or into alternatives.
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e Loop: A kind of composite change to specify that a set of transformations should be
executed iteratively under the evaluation of a boolean condition. Different types of loops
may be used being “while” loops the most basic ones. Special types of loops, used very
often, are “foreach loops” for which the iterations are carried out over each element of a
set of elements. In regards of this kind of loops, it should be useful to allow to iterate
over a given or explicit collection of elements, or even to allow this collection to be created
dynamically. This is to iterate over the elements which fulfill a given condition.

e Alternatives: A kind of composite change, that contain different sequences of trans-
formations, guarded by boolean conditions. The different types of alternatives include
simple alternatives — if-then and if-then-else alternatives — or multiple choice alternatives
— switch-case-case-. . . alternatives .

e System Element: The lowest-level elements of the system that can be accessed, to ma-
nipulate them or to gather information about them. They can represent either entities or
relationships between elements. The precise kinds of entities and relationships that an
approach can deal with depends on the model of the system that the approach uses.

e Boolean condition: An expression that can be evaluated to True or False. It can take the
form of simple conditions or composite conditions, which are built by joining together
other boolean conditions with boolean operators. A simple condition is formulated as
an assertion over a current property of the system, which is computed with a basic query.

e Basic query: A function that evaluates, searches or explores the model of the system to
deduce certain information from it. These functions use system elements as their input
parameters and as their output results. The different types of basic queries available are:
structural queries, which are used to gather system elements that hold a particular
structural property, and lexical queries which operate over the “names” or identifiers of
the System Elements.

e Refactoring: A behaviour-preserving system transformation. It is composed of a boolean
condition precondition, a set of parameters and a sequence of transformations steps.

4.3.3 A model for refactoring strategies

The analysis of the state of the art in design smell management presented in Chapter 3 and
the domain analysis performed in this chapter, lead us finally to the definition of refactoring
strategies, which we present as one of the major contributions of this dissertation. The specifica-
tion of refactoring strategies, introduced previously in Definition 2, is completed with the model
represented in Figure 4.5. The elements comprising the model are also described below.

e Refactoring strategy: A specification to apply complex refactoring processes, which
can be addressed to achieve a certain goal such as: remove a design smell, apply a high-
level refactoring, etc. A refactoring strategy is composed of the set of parameters, which
define the interface of the transformation, a precondition and a sequence of strategy steps.

e Goal: The objective to which the refactoring strategy is addressed.
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e Strategy query: A function that evaluates, searches or explores the model of the system
to deduce certain information from it. These functions use system elements as their
input parameters and as their output results. Strategy queries are specialised into basic
queries and advanced queries. basic queries have already been defined because they
are the type of queries used in refactorings and non-behaviour-preserving transfor-
mations.

e Advanced query: A type of system query that is exclusively used for complex refactoring
processes and therefore can be included in refactoring strategies:

— Duplicated code query: This represents those queries addressed to identifying code
duplication. Queries of this kind could be employed for example: to find out sets
of code fragments which have been copied from a given one; to check whether two
excerpts of code implement the same functionality, etc. The ability to obtain this
information from a software system will allow us to automatically apply strategies
that include refactorings such as EXTRACT METHOD or PULL UpP METHOD.

— Numerical query: This query represents all functions that can generate quantitative
information from a software system, the most obvious example being metrics. These
types of queries have been classified as advanced queries to represent the fact that
they are only meant to be used in refactoring strategies, not in refactorings or
non-behaviour-preserving transformations.

— User query: Any type of information that can not be extracted automatically, but
can be obtained from the developer, is still suitable to be used within a refactoring
strategy. A user query is a special kind of query that an automated tool will launch
during the instantiation of a refactoring strategy and has to be answered by the
developer. It can include a request to make a decision about the execution path to
follow when facing several options, an inquiry about a property of a system element,
etc.

— Entity-kind query: As found in some correction specifications, in some situations,
it can be helpful to know the kind of system elements involved. For example, the
most appropriate strategy to correct a design smell may depend on whether a class is
a GUI class or not (see correction specification 2).

e Strategy condition: A more general type of condition than boolean conditions. We
have specialised it into basic boolean conditions or into quality-based conditions to
highlight the different nature of each condition type.

e Quality-based condition: These conditions have been found in some correction specifi-
cations. They represent conditions formulated over software quality factors and soft-
ware metrics. The former are evaluated to determine whether a certain quality factor is
favoured or disfavoured, while the latter will be evaluated to how a certain metric changes.
These conditions could be used to guide the computation of refactoring plans, or to inform
the user about the outcome of a plan, regarding quality, so the user can make additional
quality-guided decisions.

e Strategy step: A refactoring strategy is organised into smaller steps. These strat-
egy steps are similar to those that can be used in refactorings and non-behaviour-
preserving transformations, but these include the possibility of using non-deterministic
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algorithms that allow us to define heuristic-based refactoring processes. Each step is com-
posed by a sequence of strategy control constructs. Two types of steps can be used
depending on whether their component control constructs are arranged into “ordered” or
“unordered” sequences. Ordered sequences of control constructs define an ordered step,
while unordered sequences will define an unordered step within a refactoring strat-
egy. Strategy steps should not be confused with those steps identified in current correction
strategies (see Section 4.1.2). Strategy steps are atomic operations. Therefore, in our pro-
posal, in order to organise strategies in different sub-parts, decomposition and invocation
of strategies (try or apply) should rather be used.

Strategy control: This defines the type of control structures that can be used in refac-
toring strategies. They can be either deterministic or non-deterministic control
constructs.

Deterministic control: This family of control constructs define the same ones that can
be used in refactorings and non-behaviour-preserving transformations. Neverthe-
less, when used within refactoring strategies, these control constructs can make use of
advanced queries, quality-based conditions, strategy steps and invocations for any
type of transformation.

Non-deterministic control: A family of control constructs that can be included within
refactoring strategies. They allow us to define non-deterministic algorithms and there-
fore heuristic-based strategies. We define the following non-deterministic control structures:

— Try: Non-deterministic invocation of a transformation of any kind. It represents
an optional step in the strategy. Its instantiation should be tried when computing the
refactoring plan. A successfull instantiation would lead the invoked transformation to
be part of the plan, if not, it will not be included, but still the enclosing strategy can
be instantiated into a sucessfull plan.

— ND Alternatives: Non-deterministic selection of different execution paths. This
structure represents a set of alternative steps. Each step is optionally guarded by
a condition. For the strategy to succeed, at least one of the alternatives has to be
successfully applied. In this construct, the order in which the different alternatives
are tried is not specified. This allows us to write a refactoring strategy even when the
ordering or the conditions are unknown or cannot be described.

— ND Loop: Non-deterministic loops. When a transformation has to be iteratively
applied over a set of system elements, the success of the process may depend on
the ordering of these iterations. An nd loop allows us to leave this ordering unspec-
ified, so the tool can compute the appropriate ordering that succeeds. This construct
represents any type of loop that may be used, such as “while”, “foreach” loops, etc.

As a summary, it is worth discussing the differences between refactoring strategies and the

current design smell correction specifications that we analysed in Section 4.1. These consider-
ations we have taken, when defining refactoring strategies, address the problems identified in
Section 4.2: applicability of refactorings and non-formal description of correction strategies.

The proposal we have introduced establishes a clear separation between the specification of

complex refactoring processes, defined as refactoring strategies, and the exact refactoring se-
quence to apply to a system, defined as refactoring plans. This allows us to specify complex
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refactoring processes, such as the correction of design smells, in a heuristic, but structured, way.
At the same time, the application of the necessary refactorings is deferred to the moment when a
refactoring plan is instantiated from a refactoring strategy. The identification and separation of
these two concepts does not appear in the analysed current design smell correction specifications.
The definition of a model for refactoring strategies allows more formal and structured specifica-
tions to be written that can be more easily reused and automated. The information included
in refactoring strategies allows us to compute, in instantiation-time, the precise transformation
sequences that apply the intended strategy.

We have also defined the different types of transformations involved in a complex refactoring
process and we have made a clear distinction between them. All complex refactorings, including
the correction of smells and high-level refactorings, are identified as refactoring strategies. This
allows us to define heuristic strategies for all of them in a homogeneous way. On the contrary,
we have identified non-behaviour preserving transformations and low-level refactorings as more
simple transformations, which are not meant to be described in a heuristic way. We have clearly
separated low-level refactorings from high-level refactorings. This allows us to state that the
former cannot be composed of other refactorings. The latter, which can be composed of other
refactorings, have to be treated as refactoring strategies, defined with heuristic specifications,
and therefore should go through a strategy-instantiation process, prior to their execution. As a
consequence of all this, it is easier to specify the simpler transformations and to refine and to
reuse them as lower-level blocks to build up the more complex refactoring strategies.

To allow for heuristic specifications of refactoring strategies, we have detected the need to
include non-deterministic control constructs, which we have identified, along with regular con-
trol constructs. These non-deterministic constructs are not present in the current design smell
correction strategies that we have analysed. All types of transformations — refactoring strate-
gies, refactorings and non-behaviour transformations — can include regular control constructs.
Refactoring strategies, due to their heuristic nature, may also include non-deterministic control
constructs. In addition to this, we have also distinguished between the basic and the advanced
queries — duplicated code, numerical, user, and entity-kind queries — needed in a complex refactor-
ing process. We have considered that the basic ones may be used in all types of transformations,
but the advanced ones are only needed in refactoring strategies.

4.4 A small language to specify refactoring strategies

As an example of how our proposal can be employed, a small domain specific language (DSL) is
proposed in this section. This will help us demonstrating how developers could be able to write
more formal specifications for design smell correction and complex refactorings. This language
also allows us to separate the refactoring strategies concept from the underlying technique that
would be used to compute them. As a result, although a particular technique is proposed in this
dissertation, different techniques may be used to support refactoring strategies. Moreover, with
this kind of language, refactoring strategies are offered to the developers in a convenient and
familiar way. They can write, improve and reuse the specifications of strategies using a simple
language. They do not have to learn about the complexity and the internal details of the tool
that computes plans from strategies.

Among the different types of transformations modelled in our approach —refactoring strate-
gies, simple refactorings and non-behaviour-preserving transformations— this language is meant
to be primarily used just for specifying stratategies. Simple refactorings and non-behaviour-



64 CHAPTER 4. REFACTORING STRATEGIES

ffffffffffffffffffffffffffffffffffffffffffffffffffffffff

i Istrategy (smell) | ||strategy (refact.)” [ refactoring l
| remove-large-ciass all-sts | | !
= - i w—s -
I remove-large-class trivial I I remove-large-class extract-membeﬂ
|
\
} | remove-large-class existing-class | | remove-large-class new-class | | remove-large-class existing-subclass | | remove-large-class new-subclass |
\ ! |
\ LN SVERN NN \
‘ N / \ ~
\ AN P s / N \ ~
! \ N N / \ \ > [ extractsubclass all-sts ||
‘ \ N / \ \ NT= T
\ — 7N -
\ \ 7N / \ _ -7 _x \
| \ 7 b N / A\ - - - N
v — - NV
[ remove-class all-sts_|| [ move-method all-sts || | move-field all-sts || [ create-empty-class all-sts || || push-down-method all-sts || [ push-down-field all-sts ||
| | | | | |
\ \ \ \ \ \
\ \ \ \ \ \
v v y v y y
remove-class ] [ move-method ] [ move-field ] [ create-empty-class ] [ push-down-method ] [ push-down-field

Figure 4.6: Overview of the relations between the strategies, refactorings and transformations compiled
in listings 4.1 and 4.3.

preserving transformations can be invoked from strategies. Nevertheless, the details for their
specification or implementation have been left out of the language. In order to further separate
the language from the implementation of the approach, system elements are not meant to be ac-
cessed directly from the specifications. The information about the current state of the system is
rather obtained through the invocation of queries. The definition or implementation of queries is
not included in the language either, so to also enforce the isolation between refactoring strategies
specifications and their underlying implementation.

In order to demonstrate how we consider this language should be, we use the running example
that have already been analysed in this chapter: the strategies for removing a Large Class smell.
A sketch of these strategies is presented in Listings 4.1 and 4.3. An overview of the relationships
between the strategies and refactorings involved is portrayed in Figure 4.6. Finally, the grammar
that defines the DSL is shown in Listing 4.4.

The main strategies for removing a Large Class are presented in Listing 4.1. The first strategy
— remove-large-class all-sts — will serve as the main entry point to invoke all the available
strategies. In order to do that, its body consists of just an alt construct, where each alternative
branch contains an invocation of a different strategy. In this particular case, two strategies have
been written. As more heuristics are compiled by developers, new strategies can be written and
more branches would be added.

In this example, the first strategy — remove-large-class trivial — represents the triv-
ial solution that attempts to simply remove the smelly class. It is guarded by the condition
is—unreferenced-class (package, class), SO the remove-class refactoring may Only ap-
pear in the plan if there is no reference to the class in the current system. The condition of this
branch could have also been moved to the precondition of the trivial strategy. As shown in
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strategy remove-large-class all-sts (package, class)
precondition

body
alt
branch is-unreferenced-class (package, class)
apply remove-large-class trivial (package, class)
branch
apply remove-large-class extract-members (package, class)
end
end

strategy remove-large-class trivial (package, class)
precondition

body
apply remove-class all-sts (package, class)
end

strategy remove-large-class extract-members (src-package, src-class)
precondition

body
user—query ("Which members to extract?", members)
user—query ("Which target class?", tgt-package, tgt-class)
alt
branch

apply remove-large-class existing-class (src-package, src-class, members

, tgt-package, tgt-class)
branch
apply remove-large-class new-class (src-package, src-class, members,
-package, tgt-class)
branch
apply remove-large-class existing-subclass (src-package, src-class,
members, tgt-package, tgt-class)
branch

apply remove-large-class new-subclass (src-package, src-class, members,

tgt-package, tgt-class)
end
end

Listing 4.1: Draft of the top strategies that may be defined to remove a large class.
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strategy remove-large-class all-sts (package, class)
precondition

body
alt
branch
apply remove-large-class trivial (package, class)
branch
apply remove-large-class extract-members (package, class)
end
end

Listing 4.2: An alternative version of the main strategy for removing a Large Class.

the alternative strategy of Listing 4.2, the condition can even be removed completely and the
remove-class refactoring can be invoked directly. The semantic of the alt construct implies
that we let the tool to find out the suitable alternative. The query is-unreferenced-class
is surely included within the precondition of the remove-class refactoring, so the tool should
find by itself that the trivial strategy cannot be applied.

The second strategy — remove-large-class extract-members — comprise all the strate-
gies that undertake removing the smell by extracting some members from the Large Class to
another class. We haven’t found an appropriate condition for this branch, therefore no condition
has been given to it. As a consequence, the tool should tackle the computation of this branch
using the knowledge compiled in its corresponding substrategies, or in the refactorings used by
them.

The different substrategies that try to extract members away from the smelly class are in-
voked from the remove-large-class extract-members strategy. Four alternative substrate-
gies are going to be checked depending on where the extracted members shall be moved to:
remove—large-class existing-class, remove-large-class new-class, remove-large-
class existing-subclass and remove-large-class new-subclass. All these strategies
require some additional information: which are the members to extract and which class should
they be moved to. We are only demonstrating how refactoring strategies can be used by a
developer, thus we have simply included two user queries for gathering this information before
invoking the substrategies. A user query takes a message, that will be shown to the developer,
as an input argument and the variables, that will hold the information provided back, as output
arguments. Procedures such as the RCA approach for computing cohesive sets [Moh08|, which
has been previously mentioned in Section 4.1 “Other related works”, can be used in the form
of queries in order to support a more automated way to select the members to be moved and
therefore a more comprehensive strategy to remove the Large Class smell.

It should be noted how the invocation of strategies can be distinguished from simple refactor-
ings or transformations. Strategies are defined and invoked by a name and a goal. For example,
remove—class all-sts refers to a strategy whose goal is to apply a REMOVE CLASS refactor-
ing, and whose name — all-sts — suggests that it is the top strategy for that goal. On the other
hand, invoking just remove-class, would be interpreted as the REMOVE CLASS refactoring
itself.
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A strategy is identified by its goal, name and number of arguments, while refactoring and non-
behaviour-preserving transformations are identified by a name and their number of arguments.
It is allowed to define different strategies using the same name, number of arguments and goal, as
to use different refactorings and transformations with the same name and number of arguments.
The invocation of this multiple-defined transformations, should have an effect similar to that
of the alt construct: when computing a refactoring plan, the tool should non-deterministically
select one of them at a time, and try to instantiate it to be part of the resulting plan, until one
of them succeeds or until all of them fail.

There is another aspect of invocations which is worth mentioning. In our proposal for refac-
toring strategies (see Section 4.3) we consider two different types of invocations: a deterministic
and a non-deterministic one: apply and try. Obviously, the language allows both of them to be
used. Although the listings presented as illustrative examples only show the apply invocation,
the try invocation can be used too. The apply invocation forces the tool to compute a successful
instantiation for that invocation, which will be included in the resulting plan, or else to fail. The
try invocation represents an optional part of the plan and its instantiation is non-deterministic.
The tool should try to perform it, but regardless of a successfull instantiation being obtained or
not, the computation of the refactoring plan should continue.

The Listing 4.1 can also be used to discuss other aspects of the language. The evaluation
of queries is meant to be similar to those of PROLOG. Variables already associated to a value
take the role of input parameters, while those variables without an assigned value will work as
output parameters. Queries are always interpreted as boolean expressions, so the result of an
evaluation of a query is a boolean value. When the resulting value is true, all the parameter
variables will have values associated to them. If a suitable result for the unassigned variables
cannot be found the query cannot be evaluated to true. Thus, the step could not be performed
and the tool should backtrack to the last decision point in order to choose another path.

In Listing 4.1 we can also identify the basic tokens of the language, which are: symbols, literals
and reserved words. Symbols are used for variables and for naming and invoking strategies,
refactorings, transformations and queries. Literals can be either numeric literals, belonging to
reals, or string literals enclosed in double quotes. The reserved words of the language, highlighted
in bold font in Listings 4.1 and 4.3, are: strategy, precondition, body, apply, try, alt,
branch, if, elseif, else, while, foreach, in, satisfying, end, unordered, not, imply,
or, and and forall.

The strategies proposed for extracting members from the Large Class are shown in Listing 4.3.
The purpose of these strategies is to specify which refactorings must be applied for each case and
how. These strategies invoke other strategies, whose objectives are to apply different refactorings
successfully. The relationships between all these transformations and the type and purpose of
them are graphically depicted in Figure 4.6. It is worth noticing that EXTRACT SUBCLASS is a
complex refactoring and therefore, there is not a simple refactoring defining or implementing it.
Instead, it should be specified as a refactoring strategy and thus it has been represented as such
in Figure 4.6. It will probably be composed from other simpler refactorings, such as CREATE
EmMpPTY CLASS, PusH DowN METHOD and PusH DOWN FIELD, so this is also depicted
in Figure 4.6.

The strategies of Listing 4.3 can illustrate how the control structures included in our proposal
can be used within the specificaion of a strategy. In the first strategy — remove-large-class
existing-class — a foreach loop is used to iterate over all the members to be extracted from
the Large Class. The name of these members, a collection of literals, should have been passed
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strategy remove-large-class existing-class (src-package, src-class, members,
tgt-package, tgt-class)
precondition
exists-class (tgt-package, tgt-class)
body
foreach member in members
unordered loop
if (is-field(package, class, member))
apply move-field all-sts (package, class, member)
elseif (is-method(package, class, member))
apply move-method all-sts (package, class, member)
end
end
end

strategy remove-large-class new-class (src-package, src-class, members, tgt-
package, tgt-class)
precondition

body
apply extract-class all-sts (src-package, src-class, members, tgt-package,
tgt-class)
end

strategy remove-large-class existing-subclass (src-package, src-class, members
, tgt-package, tgt-class)
precondition
inherits (tgt-package, tgt-class, src-package, src-class)
body
foreach member in members
unordered loop
if is-field(package, class, member)
apply push-down-field all-sts (src-package, src-class, member, tgt-
package, tgt-class)
elseif is-method(package, class, member)
apply push-down-method all-sts (src-package, src-class, member, tgt-
package, tgt-class)
end
end
end

strategy remove-large-class new-subclass (src—-package, src—-class, members, tgt-
package, tgt-class)
precondition
not (inherits (tgt-package, tgt-class, src-package, src-class))
body
apply extract-subclass all-sts (src-package, src-class, members, tgt-—
package, tgt-class)
end

Listing 4.3: Draft of some strategies that may be defined to remove a Large Class.



4.5. CHARACTERISTICS OF THE PROBLEM 69

to the strategy as the parameter members. Each iteration, the variable member is assigned a
different value from the variable members and the body of the loop construct is computed with
it. The loop has been labelled as unordered. This means that, for all the possible orderings of
the iteration over the elements of members, the tool should attempt to instantiate the body of
the loop into a part of a refactoring plan until one of the orderings succeds or until all of them
fail. For regular loops, not labelled as unordered, only the first ordering will be checked.

We have also considered it necessary to include in the language other types of loops. They
do not appear in the illustrative listings so they are described here. A more complex kind of
“foreach” loops —foreach (vars) satisfying (cond)— will be used to iterate over tuples of
values that make cond evaluate to true when each tuple of values is assigned to the variables
appearing in the variable list vars. The loop header is defined wih a list of variables —vars—
and a condition cond. The tool should find all the combinations of values, for the variables in
vars, that would satisfy the condition cond. An iteration should be run for each distinct tuple
of values. Each iteration, the variables in the list vars would be assigned a different tuple of
values. This more complex “foreach” is similar to the regular one. For the regular “foreach”; a
collection has to be computed first, and the loop iterates over a single variable which takes the
value of each element in the collection in each iteration. This more complex “foreach” works in a
similar way but in this case, the collection is built dinamically and each element can be a tuple
rather than a single variable. The collection is built by gathering all tuples satisfying the given
condition. Finally, a more simple “while” loop —while (cond)— can be used to repeat the body
of the loop while the condition cond evaluates to true.

The if ... elseif ... else construct is a deterministic multiple-alternatives structure.
The first branch must be introduced with if, the optional middle branches with elseif, and
an optional default branch, not shown in the example, with else. A branch should only be
computed if the condition of the previous branch fails. If the condition of a branch can be
evaluated to true, its body will be computed to instantiate a part of the plan, and the other
branches will be discarded regardless of that instantiation being successful or not. As opposite to
the alt construct, the branches should be evaluated in the specified order and their associated
conditions are not optional but mandatory. The default branch, introduced with the else
reserved keyword, is not guarded by a condition. In short, this structure works as a regular
“if-then-else” conditional structure. In the case of the example shown in Listing 4.3, at this point
of the strategy we have complete confidence that a member should be either a field or a method
so a non-deterministic alternative structure is not needed. We can save computation time, and
avoid trying multiple or non-deterministic options if we have confident and complete knowledge
about a specific situation and therefore we are able to include it in the strategy.

The full specification of the DSL proposed for writing refactoring strategies is finally presented
in Listing 4.4 in Extended Backus-Naur Formalism (EBNF).

4.5 Characteristics of the problem

This section revisits the problem of planning complex refactoring sequences and analyses its
main characteristics. Once we have proposed a model and a language for writing refactoring
strategies, this brief analysis prepare the way for developing an approach that could automate
the computation of refactoring plans from refactoring strategies. Our approach to tackle this
problem, relies on these two requirements that have to be addressed:
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strategy strategy goal name ‘(’args?‘)’ prec? body end
goal = symbol
name = symbol
args = arg (‘) arg)x*
arg = atom | ‘(Cargs‘)’
prec = precondition cond
body body stepx
step query | invocation | compound-step
query = name ‘("args‘)’
invocation = (try | apply) goal? name ‘(’args?‘)’
compound-step = loop | alt | unordered-block
loop = loop-header (unordered)? loop warsx stepx end

loop-header

var
vars
alt

cond

unordered-block

atom
literal

symbol
letter
digit

while cond

foreach wvar in var

foreach wvars satisfying cond
symbol

var (‘, var)*

alt (branch cond? stepx)+ end
if cond then stepx ((elseif cond then stepx)x else stepx)? end
‘("cond*)’

not cond

cond or cond

cond and cond

cond cond

query

unordered step*x end

symbol | literal
“s” s € string

n; n € double

letter (digit | letter | ¢ 7| - )
ja—] | [A—7]
[0-9]

Listing 4.4: Grammar for the refactoring strateqgy DSL.
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1. A proposal to write automation-suitable specifications of complex refactoring processes.
2. An automated support to plan ahead the computation of complex refactoring sequences.

The first requirement has been addressed by defining refactoring strategies. This concept
unifies the existing ways of writing design smell correction specifications and allows us to write
heuristic-based specifications that can be automated. In order to automate the computation of
complex refactoring sequences, we must now analyse the problem of instantiating refactoring
strategies into refactoring plans.

Computation. To apply a refactoring strategy, the automated tool should take into account
the dependencies and conflicts between the refactorings, refactoring strategies and non-behaviour
preserving transformations that compose that strategy. These computations, to find out which
transformations enable or disable others, can be performed by examining and operating the
preconditions and postconditions of the transformations available. Since specifications of trans-
formations do not usually include postconditions, but only preconditions and the mechanics of
the transformations themselves, it is difficult to put this approach into practice. This would
require writing postconditions or deducing them automatically. Another approach to perform
this computation would use preconditions and transformation descriptions and will have to be
performed by applying the transformation or by simulating it to find out its effects. Therefore, a
model of the system is needed, as well as an automated support that has to be able to compute
preconditions and to simulate transformations over this model.

Software model. As already proposed in the definition of refactoring strategies, a model of the
system can comprise, in a general way, system elements and relationships. Moreover, we have
to determine which is the most adequate level of detail needed to represent a software system
for the purposes of this dissertation. The execution of refactorings have to be underpinned by
changes to this model. Most refactorings, both their precondition and their mechanics definition,
work at below-method level. Therefore, to support as many refactorings as possible, the system
model has to present a level of detail similar to that of the source code. The system has to be
represented at statement and expression level. An AST-based model, for example, will do.

Deterministic and non-deterministic control constructs. If the approach to compute
refactoring plans has to find out how to schedule refactorings, transformations and refactoring
strategies, by applying it over a model, it is crucial that this approach supports the control
constructs that have been identified in the definition of refactoring strategies. Transformations
are algorithmic procedures that include regular control constructs, such as alternatives, loops
and invocations of other transformations. We have also identified the need to support non-
deterministic control. Consequently, the approach should allow for simulating the execution of
transformations that include both types of control constructs.

Incomplete specifications. Also related to non-determinism, the approach should support
the computation of refactoring plans when developers have managed to specify all the necessary
knowledge on how to perform a refactoring strategy. If this knowledge is available, the tool should
take advantage of it. Nevertheless, it should be noticed that this knowledge is heuristic-based,
and that the specifications of refactoring strategies are designed to be incrementally improved
over time. They become more detailed and formalised by compilation of additional, more detailed
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and more precise empirical knowledge. As already reviewed, specifications of complex refactor-
ings and correction strategies present different degrees of detail and formality. Therefore, the
tool should still be able to compute the possible refactoring plans when the available knowledge,
on how to perform a complex refactoring process, is incomplete or not detailed enough. Indeed,
this is the most common case.

Elements of refactoring strategies. As a summary, the approach to instantiate refactoring
plans from refactoring strategies should support all the elements defined in refactoring strate-
gies, such as: invocation of refactorings, non-behaviour-preserving transformations and refactor-
ing strategies, complex system queries, complex preconditions, regular control constructs, non-
deterministic control, and instantiation of refactoring plans in the case of incomplete knowledge
about the complex refactoring process. This approach is presented in the next chapter.



Chapter 5

Refactoring Planning

This chapter focuses on the technique we propose for supporting refactoring strategies and refac-
toring planning. We claim that the problem of refactoring planning for the correction of design
smells can be modelled and addressed as an automated planning problem. More precisely, we
tackle the problem using Hierarchical Task Network (HTN) planning. Within this ap-
proach, most of the issues in the refactoring planning domain are typical issues already addressed
within the automated-planning community.

In order to take into consideration issues not covered by automated planning techniques,
those will be abstracted as domain knowledge which will have to be added to the refactoring
planner. As a consequence, all the considerations in the refactoring planning problem are ex-
pected to be incrementally implemented and refined. This means that, after prototyping a basic
refactoring planner, most of the work will be aimed at developing and implementing heuristics
to progressively improve the planner.

This chapter compiles a brief introduction on automated planning, an argumentation on
the particular automated planning approach that has been selected and a formalization of the
refactoring planning problem.

5.1 Lessons learned from previous works

We explored other techniques, such as graph transformation, before developing the automated
planning approach presented in this Thesis. A summary of this previous approach is included
here because of the lessons learned from it.

We first searched for an adequate formalism for supporting the refactoring planning problem.
The Intrinsic characteristics of refactorings include the modification of the system structure
and the execution of behaviour preserving transformations. Hence, we hypothesized that the
formalism should be suitable for the description and manipulation of structural information. It
should also allow precondition checking to be represented for the transformations modelled with
it. Graph transformation [Roz97, EEKR99, EKMR99| was the general formalism selected for the
first stages of this research. Previous works from other authors demonstrated the validity of the
graph transformation approach for refactoring formalization [EJ05, MVDJO05]. In these works,
programs and refactorings are represented with graphs in a language independent way, using a
kind of abstract syntax trees with the appropiate expressiveness level required for the problem.
This type of representation, called Program Graphs, was used as the basis for developing a specific
graph representation for this research.

73
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Start Graph: Original System

Stop Graph: Desirable Design

Production Rules: Refactorings

Language: Set of software systems equivalent to the original system

Production Path: Refactoring plan

Table 5.1: Interpretation of the refactoring planning problem as a graph grammar problem.

The problem of refactoring plan generation was introduced in [Pér05| and presented with
more detail in [Pér06]. We assumed the existence of a reference structure or design, to which
we want to migrate the original system. We applied searching algorithms to find refactoring
sequences between the original system and a fictional redesigned target, matching that reference
structure.

Formal language problem

A preliminary approach to the refactoring plan generation problem was based on graph grammar
parsing and was presented in [Pér05]. Our first intention was to model the problem as a formal
language problem. The problem of refactoring planning was interpreted as depicted in Table 5.1.
The redesign problem is seen as a graph rewriting system whose language is the set of those
software systems behaviourally equivalent to the original one, which are reachable from this
original system by using the available refactorings as graph production rules. The problem of
checking whether the target desirable system could be derived or not from the source system using
the available set of defined refactorings, was interpreted as the membership problem of formal
language theory. The problem of computing the refactoring plan was addressed as obtaining a
rule sequence that would produce the stop graph from the start graph.

This approach was addressed by taking advantage of the graph parsing capabilities offered
by some graph grammar systems. More specifically, AGG [ERT99, Tae03, agg|] was the graph
transformation tool used in our experiments. A graph grammar parsing tool can compute whether
a certain graph belongs to a graph language and, consequently, it may also be able to compute the
sequence of rules which can be used to derive that graph. The graph language is defined by the
start graph and the production rules. Graph language parsing is manageable for restricted graph
grammars [RS97, BTS00|, such as layered graph grammars. AGG supports these grammars,
therefore, we tried to formulate refactorings in such a way that they could fit as a layered-graph-
grammar [Pér05]. Unfortunately, these initial explorations were of no practical use. Graph
grammar parsing deals well with visual language parsing [BMST99]. In these problems, the
derivation paths are well defined. Unfortunately, for the refactoring discover problem, the number
of different instances of different refactorings which can be applied over a software system for
each derivation step is huge and almost unpredictable. We could not find a way to formulate
refactorings so they could constitute a layered graph grammar with a well known, precise and
non-ambiguous derivation tree. Therefore, we abandoned this approach.

The experience of trying to write refactorings as graph transformation rules helped us un-
derstand the refactoring planning problem better. The graph transformation rules needed to
specify refactorings are rather complex, specially if we want to represent and manipulate the
software system at the level of detail of the methods’ bodies. Graph grammars do not suffice to
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Start State: Original System

Goal State: Desirable Design

State transitions: Refactorings

State Space: Set of software systems equivalent to the original system

Search Problem Solution: Refactoring plan

Table 5.2: Interpretation of the refactoring planning problem as a state-space search problem.

define refactorings at this level of detail. Some kind of programmed control would be needed.
We also noticed that the language independent Program Graphs representation formalism had to
be extended with language specific elements for it to be usable for representing real refactorings.
We also found out that a huge number of transformations can be applied at each derivation step.
This makes the problem a search problem with an infinite state space. Therefore, it should be
addressed with some degree of guidance. On the basis of these conclusions, we explored another
direction, based on graph transformation as well.

State-space search guided with postconditions

We then tried to tackle the refactoring planning problem as a state-space search problem [PC07a].
In order to allow running experiments for real systems, we developed an extension to Program
Graphs called Java Program Graphs. It included JAVA concepts such as visibility, interfaces and
packages to support the representation of real software systems and refactorings. Within this
approach, we interpreted the refactoring problem as summarised in Table 5.2. We addressed
obtaining a refactoring plan as a computation of the solution for a state-space search problem,
where the start state would be the original system, the goal state would represent the desirable
redesigned system and the state transitions would match refactoring specifications. We identified
the problem of whether a refactoring plan exists as a reachability problem. The refactoring plan
would be extracted from the search problem solution as the path from the start state to the goal
state.

We explored basic search algorithms to look for refactoring sequences. In order to allow some
kind of guided search, we based our solution on the use of refactoring preconditions and post-
conditions. Therefore, the approach required refactoring definitions, including preconditions and
postconditions, in their specification. The main idea of our algorithm was to iteratively modify
the start state by applying refactorings written as graph transformation rules. At each iteration,
the set of selectable refactorings was composed of those refactorings whose preconditions held in
the current state and whose postconditions held in the goal state. When no more refactorings
were selectable, the algorithm backtracked to the last transformation applied. The algorithm
would succeed when the current state graph was isomorphic to the goal state graph. The refac-
toring sequence then matched the path found to the goal state. The algorithm would fail when
no more refactorings could be executed, and the current and goal states were not isomorphic.

We developed an initial prototype as an Eclipse plugin [MA06, PCO7b|, in which we used
the AGG graph transformation tool as the back-end. We selected AGG mainly because it
supports graph parsing, and is easy to use, thus allowing rapid prototyping. Graph parsing can
be used to perform depth-first search with backtracking, and our algorithm could be partially
implemented in that way. The AGG support for layered rules was also useful for implementing
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some programmed control. Our tool implemented breadth-first search, depth-first search and
breadth-first search with iterative deepening.

We were able to run some toy-experiments with this tool as a proof of concept. Nevertheless,
we were not able to get successful results with real software systems. The approach did not scale
to problems with systems larger than 20 classes. We noticed that we could not find a way to take
advantage of the graph transformation formalism. We were able to employ graph transformation
tools merely as inefficient transformation execution engines that do not scale to our problem.
We also found the dependency on a reference design to be a major problem. The tool can only
determine that the goal state has been reached by checking the isomorphism between the current
graph and the stop graph. This implies the stop graph has to be a full representation of the
desired redesigned system and, therefore, there is no point in searching for a refactoring plan
when the redesigned system is already available.

Lessons learned

Along with our previous works, we elaborated a case study to determine the feasibility of graph
transformation for representing and implementing real refactoring specifications and thus, to
decide whether it can be the basis for the refactoring planning problem [PCHM10|. The case
study was addressed by us and other authors with different approaches based on graph and
model transformation tools [ALO8, Gei08, MDBJ08, PRT08, Wei08, MJ10, JBK10, MSF*10,
GZ10]. Although graph transformation is theoretically suitable as an underlying formalism for
the specification and implementation of refactorings, we have concluded that it currently lacks
the necessary tool support for refactoring planning. More precisely, we could not find a tool
with all the required features: enough expressiveness to allow for any refactoring specification,
support for computing or representing, the dependencies and relations between refactorings, and
more importantly, an efficient and scalable transformation approach and environment to execute
refactoring specifications while performing a state-space search process.

One of the biggest drawbacks of our graph-transformation-based approaches was the assump-
tion of the existence of a reference design or a desirable restructured version of the system. We
finally concluded that the availability of this target system cannot be relied upon. On the con-
trary, the empirical knowledge on how to redesign a software system by performing complex
refactoring processes is usually gathered empirically and given in terms of refactoring “recipes”.
The most detailed refactoring “recipes” are Trifu’s reorganization strategies. Unfortunately, they
can only be found in his PhD Thesis dissertation [Tri08|, and are available for a small amount of
very specific problems. More general refactoring “recipes” can be found more extensively in the
literature. We concluded that a more practical approach for refactoring planning should rather
be based on this kind of knowledge than on our former reliance on the existence of a restructured
version of the software system.

According to a study by Mens et al. [MKRO06|, graph transformation and logic programming
offer similar capabilities for representing software transformations and for performing transfor-
mation dependency analysis. Nevertheless, the computation mechanism of PROLOG, unification,
is sufficient for this problem and is more lightweight than graph tranformation tools. Logic pro-
gramming approaches seem to offer better expressiveness than graph transformation techniques
and a huge performance improvement —over 3 orders of magnitude in the referenced study. We
also concluded that the characteristics of the refactoring planning problem make it appropriate
for being addressed as a state-space search problem. Due to the huge size of the state-space, our
efforts had to be directed to applying an efficient search-based technique and to transferring the
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World’s state: list of terms
Operators: definition: name + arguments
precondition

effect list (add): terms to add to the state
effect list (delete): terms to remove from the state

Problem: initial state
goal: list of terms
General planning approach: chain op. by matching effects and preconditions

Table 5.3: Classical Planning Operators (STRIPS)

available knowledge about how to remove bad smells to proper heuristics to guide the search.
Further exploration of these subjects —logics and state-space search— led us to an approach based
on automated planning [Pér08, PC09|, which is the one described in this Thesis.

5.2 A brief introduction to automated planning

Automated planning [GNTO04] is an artificial intelligence technique aimed at computing the
sequences of actions that will achieve a certain goal when they are performed.

In automated planning, the problem domain is known as “the world” and each current situa-
tion of the problem is known as “the state of the world”. This state is made up of “facts”, which
include problem entities and instances of the relations between them. For a classical automated
planner (see Figure 5.3), these facts are usually specified with first order logic predicates which
describe the affirmations that are true or false at a particular state of the world. The actions
that change the world are modelled with “operators”. During the planning process, the set of
logic terms which build up the state of the world is changed through the application of these
operators. The plan we want to obtain is a specific sequence of operators that can be applied in
order to achieve the goal state. The planner has to reach a state in which the goal facts hold. A
simple planning problem is composed of an initial, or start, state, a goal and the set of available
operators.

The basics of automated planning can be illustrated by using an introductory example: how
to go shopping for apples and a book. The problem can be modelled by representing the state
of the world with two different predicates: at (X), have (X). The entities in the problem: home,
grocery, bookstore, apples, book, can be used to substitute the variables in those predicates
to describe a particular state of the world. For example, we could describe the initial state of
the world as: at (home). The goal can be represented as: at (home) AND have (apples) AND
have (book) and operators would be represented with terms such as: buy (X) ; moveTo (X) which
would be eventually instantiated to predicates such as buy (apples); moveTo (bookstore).

In order to compute the valid plans, an automated planner has to be fed with the knowledge
of when the operators can be applied and how they change the world’s facts. The classical way
to represent these operators in a planning problem is in the form of STRIPS operators (see
Table 5.3), named after their development for the STRIPS automated planner [FNT71].

Operators, have to be specified in terms of an operator definition (its name and parameters),
a set of conditions which build up the operator precondition and a set of actions which add or
delete relationships (terms) in the world’s state.
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Operators:
definition: moveTo (X)
precondition: at (Y), not (at (X))
effects:
add: at (X)

delete: at (Y)

definition: buy (X)
precondition: not (have (X)), at(Y), sells(Y, X)
effects:

add: have (X)

delete:

Initial state: at (home), sells(grocery, apples), sells(bookstore, book)
Goal state: at (home), have (apples), have (book)

Table 5.4: Specification of the apples and book problem.

The precondition of an operator specifies the conditions under which it can be applied. The
two separate sets of actions specify how the operator modifies the state of the world. To do so,
these sets enumerate the terms the operator will add to the current state and the terms it will
delete from it.

A goal is a list of terms representing a certain state of the world that we want to achieve.
A planner computes a plan as a sequence of instantiated operators that change the world in a
way that the desired goal holds in the final state. A planning problem is composed of three sets
of terms representing the set of operators, a world’s state and a set of goals to achieve. Once a
planning problem has been fed to a planner, we can ask the planner for a sequence of operators
that lead the world from some initial state to another goal state. This goal state, does not need
to be a full description of the world, but a set of conditions/goals that we want the goal state to
hold.

By matching effects and preconditions between the available operators, a planner can decide
which steps have to be included in a plan and which should be their order. If an operator has
been selected to be part of the plan and its precondition does not hold, it must be preceded by
another operator whose effects make that precondition true.

To fully specify the apples and book problem, according to this classical approach, the com-
plete definition of its operators is shown in Table 5.4. A planner will search the state space of this
problem, looking for a state in which the goal is true. The resulting plan will be any sequence
of instantiated operators that transforms the initial state to a state in which the goal holds.

The complete planning state graph for the apples and book problem is shown in Figure 5.1.
Any path that reaches the goal state — at (home) AND have (apples) AND have (book) — from
the initial state at (home) will produce a valid plan. For example, one of the two shortest pos-
sible paths will be: moveTo (grocery); buy (apples); moveTo (bookstore); buy (book) ;
moveTo (home). This path is highlighted in Figure 5.1 with bold arrows.



5.2. A BRIEF INTRODUCTION TO AUTOMATED PLANNING 79

sells(grocery, apples)
sells (bookstore, book)

‘\\\\\\\

moveTo (home)

moveTo (home)

‘ predicates common to all states ‘

moveTo (bookstore)

moveTo (grocery)

moveTo (bookstore)

~——

at(grocery) at (bookstore)
moveTo (grocery)

buy (apples) buy (book)

moveTo (bookstore)

at (bookstore) — at (home)
have (book) ___—»|have(book)

moveTo (home)

moveTo (grocery)

at (home) at (grocery)
have (apples) |« have(apples)

moveTo (home)

moveTo (bookstore) moveTo (grocery)
moveTo (bookstore) moveTo(grocery)

moveTo (home) moveTo (bookstore)

moveTo (grocery) moveTo (home)

at (grocery)
have (book)

at (bookstore)
have (apples)

buy (book) buy (apples)

moveTo (bookstore)
at(grocery)

have (apples) have (apples)
have (book) 7 have (book)
moveTo (grocery)

moveTo (home) moveTo (home)
initial state

action —» have (apples)
have (book)

at (bookstore)
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Figure 5.1: Complete planning state graph for the apples and book problem. The sells () predicates
are common to all states and thus, are omitted from the state rectangles for the sake of simplicity.

5.2.1 Formal basics of automated planning

To define the basics of automated planning, a general conceptual model can be used!. Since
planning is about how to change the state of a system through actions, a state transition system
serves as a general model. A state transition system is an abstract machine whose dynamics can
be represented with a set of discrete states and a set of transitions between these states.

Definition 1. A state-transition system is a 4-tuple ¥ = (S, A, E, ), where:
e S ={s1,59,...} is a finite or recursively enumerable set of states.

o A={ay,as,...} is a finite or recursively enumerable set of actions.

We have extracted all the formal descriptions and definitions of the basics of planning and HTN planning
from [GNTO04]
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description of 2 AST + transformations
— initial state — current AST .
L planner refactoring planner
— objectives — remove smell |
[
T plans refactoring plans

execution status

| controller | | software developer |
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actions source code transformations
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|
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(a) The conceptual model for dynamic planning®. The (b) The conceptual model for the refactoring planning

simpler model, for a static planner, will not include the problem. The system does not receive nor react to

“execution status” feedback from the controller. events and the planner does not get execution status
from the controller either.

Figure 5.2: Conceptual models for dynamic planning and the refactoring planning problem.

o F={ej,eq,...} is a finite or recursively enumerable set of events, and
e v:SxAxE — 2° is a state-transition function.

Actions are controlled and triggered by the plan executor, while events belong to the internal
dynamics of the system. The planner has no control over events, although they may have to
be considered for the planning process to succeed. Both actions and events contribute to the
system transitions. If we represent the system as a transition graph, the edge that represents
the transition from s, to s’, where s,s € S, will be labelled as u, u being a pair (a,€), where
a€ Aande€ E, and s’ € y(s,u). A neutral event € and a neutral action A\ are introduced so
the transition «y(s, a, €), due to actions only, can be written simply as v(s, a), and the transition
(s, A, e), due to events only, can be written simply as (s, e).

The basic model for a planning system is depicted in Figure 5.2(a). This model is composed
of: the state-transition system X, that reacts to events and actions and evolves as defined by
the transition function +; a controller, that observes the current state s of the system and sends
actions to the system according to a plan; a planner, that uses a description of the system X, a
representation of the initial state, the specification of an objective and produces a plan for the
controller to achieve that objective. In the case of dynamic planning, the planner receives the
execution status from the controller, otherwise, the only information the planner gets about the
current situation of the system is its initial state.

The controller usually does not have the complete knowledge of the system. The observation
of the controller is a function 7 : S — O, that maps S into a set O = {01, 02,...}. The function

3The conceptual model and its graphical representation have been extracted from [GNT04, Page 8].
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1 models the partial knowledge that the controller has of the system . Given a current state s,
the controller receives as input the observation o = n(s).

Given a state transition system 3, the purpose of planning is to decide which actions to apply
to the system in order to achieve a certain objective, starting from a particular initial state. This
objective can be formulated in different ways:

e with a set of goal states: Given a goal state or a set of goal states, the objective is to
select a sequence of actions that will make the system transit from an initial state to one
of the goal states.

e with a condition over the sequences of states: The objective is to find a sequence
that holds some condition over the states transitioned, such as avoid, reach or stay in
particular states.

e with a utility function: The sequence of states traversed produces a value for a utility
function and the objective of the problem includes the optimization of this function.

e with a set of tasks: Define the objetive as tasks that the system has to perform. These
tasks can be recursively decomposed into actions and other tasks.

5.2.2 The restricted model of classical planning

With these basic definitions, the eight assumptions used in classical planning to restrict and
characterise planning problems can be presented. The simplest case for a planning problem
combines the eight assumptions, and is called the restricted model.

Assumption AO (finite X): The system o has a finite set of states.

Assumption A1l (fully observable X): The system o is fully observable. The function 7 is
the identity function. We have complete knowledge of the current state of the system 3.

Assumption A2 (deterministic X): The system is deterministic. For every state, each action
applicable to that state produces a transition to another single state.

Assumption A3 (static ¥): The system receives no events. The system has no internal dy-
namics and remains static until an action is applied.

Assumption A4 (restricted goals): The planner only handles restricted goals, that are ex-
pressed explicitly as a goal state s, or a set of goal states S;. Goals that include forbidden
paths or states are excluded.

Assumption A5 (sequential plans): A solution plan to a planning problem is an ordered
finite sequence of actions.

Assumption A6 (implicit time): Time is not handled. Transitions are meant to be instan-
taneous.

Assumption A7 (offline planning): The planner is not concerned with any change that may
occur to the system during the planning process. The planner only takes into account the
initial and the goal states and disregards systems dynamics if they exist.
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Different planning approaches have to be used depending on which assumptions the planning
problem holds. Classical planning approaches can only tackle restricted problems that meet all
the eight assumptions. On the contrary, modern planning approaches deal with problem domains
for which some of the eight assumptions are not fulfilled. For example, problems for which non-
deterministic actions are allowed —assumption A2 is not met— are addressed by Planning with
uncertainty. Problems for which time is relevant —assumption A6 is not held— are addressed
by Planning with time approaches. An overview on different planning approaches has been
compiled in Section 5.2.4. A system that meets those restrictions, can be defined more simply as
¥ = (S, A,~) instead of ¥ = (S, A, E,~), since there are no events changing the system’s state.
For such a system, the planning problem can be simply defined.

Definition 2. Given the restricted model of classical planning, the problem of planning can
be expressed as: given a system ¥ = (S, A,~), an initial state sy and a set of goal states
Sy, find a sequence of actions (a1,as, ..., ax), corresponding to a sequence of state transitions
(s1,82,...,5k), such that s; € y(s0,a1),s2 € Y(s1,a2),...,8, € Y(Sk—1,0ak), and s € S.

Definition 3. A planning problem P for a restricted state-transition system ¥ = (S, A4,~) is
defined as a triple P = (3, sg, g), where g € 5.

Definition 4. A solution to a planning problem P is a sequence of actions (ai,as,...,a),
corresponding to a sequences of state transitions (si, so,..., sk), such that s; € y(sp,a1),s2 €
v(s1,a2), ..., 5% € ¥(Sk—1,ax), and s, € S,.

5.2.3 Characterisation of the refactoring planning problem

In order to select an appropriate planner for the refactoring planning problem it should be
characterised as a planning domain. This characterisation also takes into account the restriction
we have imposed on the refactoring planning problem in this PhD Thesis Dissertation. According
to the basic model defined for automated planning, the refactoring planning system can be
represented as depicted in Figure 5.2(b). In the refactoring planning problem:

The system X is a software system, more precisely its source code, which can be evolved
through source code transformations. The system receives no events, just actions. It re-
mains static and only gets changed through the execution of the transformations performed
by the controller.

The controller is a developer operating a source code transformation tool, such as a text editor
or an IDE with more advanced source code transformation capabilites.

The planner is a refactoring planner. Since the system > is static, the planner works offline
—it does not receive nor need information about the current state of the system but only
manages the states the system traverses during the plan execution. It can also be an
external tool to the system and the controller.

The description of the system is a representation of the software system’s source code, eg.
AST, together with logic queries that produce additional knowledge about the system, and
the specificacions of the source code transformations available to the controller, represented
in terms of AST transformations.
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initial state of the system is the AST of the current “snapshot” of the software system’s
source code.

objective is to remove a bad smell from the software system or, in more general terms,
to apply a complex refactoring sequence. This goal has to be achieved in such a way that
the final state reached represents a system whose observable behaviour is equivalent to the
initial state’s system.

plan is a sequence of refactorings and maybe other non-behaviour preserving source code
transformations. This sequence of source code changes can be successful applied over the
original system with no precondition-violation errors. The transformation sequence, as a
whole, produces a new version of the system that preserves the observable behaviour of the
original system.

actions are refactorings and other source code transformations of different complexity
degrees that the developer has to apply to the system with the aid of a programming tool.

observation is the source code of the software system. This source code can include refer-
ences to entities for which only their binary code is available. Nevertheless, the observation
also contains the basic information about these references to binary entities, such as symbol
declarations, signatures, etc.

Determining which restricted model assumptions a planning problem meets is even more
important for characterising the problem and choosing a proper planner for it. Those planners
which do not support the required extensions can be discarded. As for the refactoring planning
problem:

Assumption AO (finite X): Does not hold.

The system can change through an infinite set of states. Adding new entities to the system’s
AST, such as adding an unreferenced new class, produces a new state. Adding an infinite
number of new entities will produce an infinite number of states. Since the number of
distinct entities that can be added is finite, the number of states that can be produced is
countable.

The size of the state space can be finite if we restrict the number of actions allowed in a plan.
Nevertheless, due to the heuristic nature of refactoring strategies, it is hard to estimate the
upper bounds for the plan length. Even with this restriction, the number of refactorings and
other transformations applicable to each state is very big, and the combinatorial explosion
produces huge state spaces. This implies that, in any case, a planner that can deal with very
big search spaces will be needed. As a consequence, we have decided to avoid estimating
the upper bound for the plan length and we have considered instead the state space to be
infinite, as it actually is.

Assumption A1l (fully observable ¥): Holds.

The system X is fully observable. The function 7 is the identity function. Vs € S;n(s) = s
We have complete knowledge of the current state of the system X.

It can be argued that, in some cases, we do not have access to the full system’s source code
involved in the refactoring process. In the observed system, there might be references to
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entities whose source code cannot be accessed because they are available in an executable
format only or are not available at all. However, accessing the source code of these elements
is not relevant. Since binary code is not available for being manipulated either, we do not
consider these binary elements to be part of the system. The planner has complete access
to the system 3: the source code that can be seen and manipulated by the controller.

Assumption A2 (deterministic ¥): Holds.

Every change applied to a software system’s source code by the developer produces one
and only one system state. The same transformation performed over the same system’s
source code always produces the same new version of the system.

Assumption A3 (static ¥): Holds.

The system can only be changed by the actions performed by the developer. It receives no
events, therefore this assumption holds.

Assumption A4 (restricted goals): Does not hold.

The goal cannot be simply specified as a set of conditions over a system’s state, such us:
a state where the targeted bad smell is not present. Not every transformation sequence
leading to the bad smell removal is a valid plan, but only those which preserve the observable
behaviour of the system. Moreover, we want to formulate goals in terms of requests for
executing a certain transformation. Therefore, this assumption does not hold.

Assumption A5 (sequential plans): Holds.

Although the problem can be formulated to deal with the concurrent evolution of a software
system, in this Thesis we are not addressing that scenario. Assuming there is only one
developer changing the software system at a time, all the modifications are meant to be
applied in sequential order, therefore this assumption holds.

Assumption A6 (implicit time): Holds.

Although the process of applying a transformation to the source code of a software system
will take some time, this is meaningless for the purpose of planning. Time is not relevant to
the refactoring problem. Executing actions can be simplified as an instantaneous process.
This assumption holds.

Assumption A7 (offline planning): Holds.

In the typical usage model we expect for our technique, the developer requests a plan and
waits for the planner to produce it. The system is not meant to be changed during the
planning process and nor do external events exist. The system is static, therefore this
assumption holds.

The refactoring planning problem adheres to assumptions, Al, A2, A3, A5, A6 and A7. This
has to be taken into account when selecting a proper planning approach for this problem. Any
automated planner suitable to be used in the refactoring planning problem should support an
extended planning model, with relaxed assumptions for A0 and A4. In addition to this charac-
terisation, the issues previously discussed in Section 4.5, regarding the necessary computation
capabilities, representation detail, the ability to use non-deterministic control structures, etc.,
also have to be taken into account.
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As supplemmentary remarks, we consider the following features to be specially relevant for
selecting an appropriate planner:

e Besides the state space being infinite, the size of the state representation of a software
system’s AST is huge, even for small systems.

e The actions in this planning problem are rather complex. Refactorings are complex trans-
formations that cannot be described with simple lists of positive and negative effects.

e The knowledge about how to remove a bad smell or how to apply a certain complex
refactoring process is always being revised, improved and is constantly growing.

Therefore, a planner suitable for the refactoring planning problem should be efficient for
big-sized problems, it should also present enough expressiveness to allow complex actions to be
specified and it should support the incremental addition of refactoring heuristics.

5.2.4 A variety of planners

There are several planning algorithms and strategies which have been developed during the
history of Al planning. Different planning approaches suit different types of problems. Therefore,
addressing a particular problem with an automated-planning approach implies identifying the
nature of the problem and using a suitable planner. Selecting the most appropriate planner for
a problem is central to achieving a successful solution. One useful source to look for planners
is the International AI Planning Competition [icab]. This conference is a good reference to find
the best planners and planning approaches and select the proper one for a particular problem.
This section compiles a brief description of the different families of planning approaches.

Classical planning

Planning for restricted state transition systems is known as classical planning. This family
encompasses the most traditional planning approaches and it is only suitable for restricted prob-
lems —those fulfilling the eight assumptions previously mentioned in Section 5.2.2. This family
of approaches does not deal well with complex and large problems with big state spaces or high
combinatorial explosion. Heuristics or search-guiding techniques can be used to improve the
efficiency of classical planners but, in general, it is not practical to use them for real problems.
Classical planning is also known as STRIPS planning, after the early planner STRIPS [FNT71].

Depending on the nature of the search space, classical planning approaches can be classified
into state-space and plan-space planning. In State-Space Planning, the planning problem is
represented so that the nodes in the search space are the states of the state transition system,
the edges are the state transitions, and the plan is a path across the search space.

Regarding the search direction, state-space planning can be addressed as forward search or
backward search. In Forward Search, the initial state for the planner is the current state of the
system and the goal state represents the objective to achieve. Planning is performed by applying
operators to the initial state until the goal state is reached. On the contrary, in Backward
Search, the initial state represents the objective to achieve and the goal state is the current
state of the system. Searching is performed by selecting operators whose postcondition belongs
to the goal state and by reducing them backwards until the current state of the system is reached.

Plan-Space Planning is a completely different approach. The search space is not composed
of system states but of partial plans. Each node in the search space is comprised of a set of
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operators, and a set of constraints that build up a partially instantiated plan. The edges are
plan refinement operations leading to plan completion. These refinements append additional
constraints that should be satisfied by the full instantiated plan. The general idea behind this
family of planners is to avoid taking decisions that may have to be undone when they are found
not to be useful for a valid plan. To do so, they follow the least-commitment principle: constraints
are only added when strictly needed. Addition of constraints is delayed as long as possible during
the plan refinement process, so less backtracking is needed.

The plans produced by a plan-space planner are composed of a selection of operators, ordering
constraints and binding constraints. They may not refer to explicit sequences of actions. A partial
plan is comprised of partially instantiated operators, operator ordering constraints, causal links
—precedence constraints between preconditions and the actions enabling them—, and binding
constraints —constraints restricting the set of valid variable substitutions.

Depending on how the ordering of the operators is given in the resulting plan, planners are
also classified as partial-order and total-order planners. Most plan-space planners are Partial-
Order Planners: planners that produce plans that are partially ordered sequences of operators
and are based on least-commitment planning. On the contrary, Total-Order Planners are more
commonly used for state-space planning. The plans they produce are totally ordered sequences
of operators.

The ability of plan-space partial-order planners to generate a plan in an incremental way
is an interesting feature for the refactoring planning problem. This enables the generation of
incomplete plans which, despite not being executable, can still be useful for the developer. An
incomplete plan can represent an overall overview on how the complete plan, or a part of it, would
look like and therefore it can still guide the developer. Nevertheless, they cannot be straightfor-
wardly executed and thus, generating incomplete plans is not interesting to our objectives. The
computational model of plan-space planning is also a relevant feature for refactoring planning.
It allows combinatorial explosion to be handled better than other classical planning approaches.
For these reasons, we think plan-space planners are more appropriate for the refactoring planning
problem than any other classical planning approach. Unfortunately, the system’s state X is not
transformed during the planning process. All computations are performed over preconditions
and postconditions. Therefore, the state of the system at a certain point during the execution
of a partial plan is unknown. The unavailability of the current state of the system ¥ during the
planning process is a major drawback that discourages using plan-space partial-order planners
for the refactoring planning problem, as the planner cannot reason about a precise world state
and they suffer from lack of expressiveness. The first order logic subset allowed for precondi-
tions and effects is quite restrictive. Therefore, complex predicates to compute metrics, perform
structural analysis, represent variable structures, etc. cannot be written due to the lack of the
system’s current state.

As a summary, among the different classical planning approaches, plan-space partial-order
planning seems to be the most adequate for the refactoring planning problem. Unfortunately,
like all the classical planning approaches, there are some serious disadvantages, such as their
limited expressiveness and their bad efficiency in big search spaces. We have concluded that
classical planning approaches are not suitable for the refactoring planning problem, given the
characteristics of this domain.
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Neoclassical planning

Additional planning techniques were developed on the basis of classical planning. Although
these approaches could manage bigger size problems, they are still only applicable to restricted
state-transition systems.

Planning-Graph Techniques represented an improvement over classical planning tech-
niques |[BF97|. In these approaches, the planning process takes place in two stages and the
planner uses a distinctive data structure: the planning graph. In the first stage of the planning
process, the planner builds the planning graph and then, in the second stage, it searches for a
valid plan as a path across this graph. The planning graph is a layered graph that constitutes a
search space different from state spaces and plan spaces. It represents, at the n* level, the pred-
icates that can be reached at the application of the n'? action. Layers represent, alternatively,
actions and predicates. The graph represents, at each predicate layer, the grounded predicates
of the initial state and the ones that can be produced, either by positive or negative effects, by a
certain number of actions from the initial state. At each action layer, it represents the applicable
actions. It links actions with the precedent predicates that make their preconditions true, and
with the successor predicates produced by their effects. For classical restricted problems —those
problems holding the eight assumptions of classical planning—, the planning graph can be gener-
ated in a very efficient way, and the search of the plan is also performed very efficiently through
this reachability graph.

The planning-graph structure represents explicitly all the grounded predicates and all the
instantiated actions of a problem. These approaches can be efficient for restricted classical
problems, and even for complex ones. Nevertheless, they are not appropriate for the refactoring
planning domain. The resulting planning graph for the refactoring planning problem will be
unmanageable, given the huge number of predicates needed to represent each system state.
Moreover, the refactoring planning system has an infinite number of states. Assumption AQ does
not hold due to new terms and symbols that can be introduced in the system. A planning-graph
approach cannot fulfill this requirement because representing all the grounded predicates in the
graph implies that terms, predicates or symbols cannot be added to the system.

Propositional-Satisfiability Techniques and Constraint-Satisfaction Techniques ad-
dress a planning problem by translating it to other types of problems. This approach works by
encoding a planning problem as a propositional formula and evaluating whether this formula is
satisfiable or not. A planner uses existing satisfiability decision procedures to find the assignment
model that may make the problem formula true. The plan is then obtained from these assign-
ments. We have discarded this family of approaches because we think encoding refactorings and
transformations into the needed formalism is not feasible.

The latter approach, constraint-satisfaction techniques, translates a planning problem into a
constraint-satisfiability problem (CSP). The problem has to be encoded as a set of variables, a
domain and a set of constraints. The plan is searched by computing which values have to be
assigned to the variables within the domain so the constraints are met. In order to use a CSP
planning approach the problem has to be translated and encoded as a CSP problem too, and
therefore, we also think this approach is not feasible for addressing the refactoring problem. CSP
is particularly well suited to supporting planning-graph approaches, plan-space techniques and
planning with time and resources.



88 CHAPTER 5. REFACTORING PLANNING

Planning with uncertainty, time and resources

More advanced families of planners allow some of the eight restrictions of classical planning to
be relaxed. If the system is only partially observable, and the actions can be non-deterministic,
then the system does not fulfill restrictions A1 and A2. Planning for such domains is known as
Planning with Uncertainty. For some problems, time can be relevant and therefore, has to
be represented. For example, actions can have a duration, or goals can contain time constraints.
In the real world, a track moving from place A to place B does not immediately occupy B
after leaving A. If time has to be considered in the planning problem, assumption A6 has to
be removed and the approaches to be used are known as Planning with Time. Additionally,
representation of resources may be needed. Resources are entities that are created and consumed
and whose availability is relevant to the planning problem. Planning with Resources deals
with the problem of planning with a limited number of resources in a given time. Planning with
resources is also called Scheduling.

None of these features are needed for the refactoring planning problem. Therefore, we have
not considered any of these approaches.

Planning with heuristics and control rules

One of the biggest issues in planning has been combinatorial complexity, even for restricted
problems. Most planning approaches are very inefficient or cannot deal with big size problems.
This is the case for the refactoring planning problem. As we have already mentioned, state
representations are not only huge, they do not meet assumption AO either. The refactoring
planning system can have an infinite set of states.

According to [AKNO09], the best results for this kind of problems have been obtained by
using heuristics and rules to guide the planning process and to overcome the difficulty of big
search spaces. Heuristics and control rules can be formulated over how to obtain the new nodes
to explore (branching), how to select the next nodes to visit (refining) and how to prune the
search-space by removing or avoiding useless nodes (pruning). Regarding the relation between
the heuristics used and the problem domain, planners can benefit from domain-independent or
domain-specific heuristics. The former relate to improving efficiency with the aid of tweaks that
are domain-agnostic but specific for a particular planning algorithm or a part of it. The latter
compile the problem’s domain knowledge into rules that can be used by a planner. Domain-
independent heuristics have been useful to greatly improve the efficiency of classical planning
approaches. Nevertheless, most modern planning approaches address big size problems by taking
advantage of domain-specific heuristics.

How the domain knowledge of a problem is embedded into a planner can also serve to clas-
sify and evaluate a planning approach. Regarding the degree of domain-tailoring, planners
can be classified as domain-independent, domain-configurable and domain-specific. Domain-
Independent planners use only the domain knowledge embedded in operator definitions. They
do not need additional knowledge to be specified, so they are easier for a non-planner-savy
user to use. Generally, they are less efficient than domain-configurable or domain-specific plan-
ners. Domain-Configurable planners use a considerable amount of domain knowledge as
input, which serves as control rules for the planning process. Their efficiency relies heavily
on the domain-knowledge specifications given by the user, but with a small amount of knowl-
edge they can easily outperform domain-independent planners. Nevertheless, their major draw-
back is that these specifications are difficult to write and to debug, so they are harder to use
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Figure 5.3: Elements of a hierarchical task network used in HTN planning.

than domain-independent planners. Domain-configurable planners suit problems for which the
domain-knowledge is given in the form of ‘“recipes”. Domain-Specific planners are custom-
developed from scratch for a particular problem domain, although they can be based on the
existing planning approaches. They are useful for problems whose domain knowledge is well-
known and constitutes a closed set. The most successful and efficient planners belong to this
category. However, they are harder to develop.

5.3 JSHOP2: a hierarchical task network planner

Of all the planning approaches we have analysed, Hierarchical Task Network (HTN) plan-
ning [GNT04, Chapter 11| provides the best balance between search-based and procedural-based
planning approaches for the refactoring planning problem. We have explored other approaches,
such as partial-order backwards planning [GNTO04, Chapter 5|, only to discover that combina-
torial explosion and lack of expressivity disallow their application in the refactoring planning
domain. For the refactoring planning problem we are using JSHOP2, an HTN forward planner.

5.3.1 HTN planning

HTN planning belongs to the family of modern planning approaches, which use control rules
and heuristics extensively in order to support large and complex problem domains. More pre-
cisely, HT'N planning belongs to domain-configurable planning, and uses mainly domain-specific
heuristics, which are focused on branching. These heuristics improve the efficiency of the plan-
ning process by guiding how the new nodes to explore are to be obtained. With respect to the
search space, HT'N planning techniques are similar to state-space planning. The system is repre-
sented by sets of terms which constitute states, and the actions of the planner that are specified
as state transitions. Regarding the search direction, we can find forward and backward HTN
planners. Moreover, HTN planners add an additional search-direction option, they can go up
—from operators to goals— or down —from goals to operators. As for the degree of commitment
during the plan search, we can also find total-order and partial order planners.
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HTN planning introduces the concept of “task”. Tasks are specifications that describe how a
problem is solved by decomposing it into smaller problems. They model actions by the compo-
sition of simple operators or other tasks. Simple tasks are the typical planning operators, with
a precondition and effect lists for added and deleted terms. Composed tasks can be decomposed
by different strategies, known as methods, which model the domain by defining which subtasks
should be performed to accomplish another one. A method has a precondition and a list of
tasks describing a task decomposition. The whole set of tasks defining the domain knowledge
of a particular problem comprises a Task Network. The goal of a plan for an HTN planner is
not to achieve a state but to execute a task. The actual search for a plan takes place in the
non-deterministic selection and instantiation of methods and operators, which is guided by the
task network. The basic elements of a hierarchical task network are illustrated in Figure 5.3.

One of the most interesting features of hierarchical task network planning is that the heuris-
tics that guide the planning process are written as “recipes” about how to perform each particular
task. Tasks networks comprise “recipes” on how to achieve certain objectives. They allow domain
knowledge and heuristics to be included by describing which subtasks should be performed to
accomplish another one. This way to specify the domain knowledge is quite similar to how a hu-
man thinks about solving a planning problem. Furthermore, HI'N planning suits the coexistence
of different strategies. Many specifications can be implemented and the planner will search for
the ones that apply to each particular case.

HTN planning and forward search allow very expressive domain definitions which can lead
to very detailed domains with a lot of domain knowledge. According to [EHN94] HTN planning
surpasses classical planning approaches in expressiveness. This implies that HTN can be used
in a more complex and broader set of complex planning problems and planning domains than
classical planning. Other authors have lowered the augmented expressiveness of HT'N planners
over classical planners [LNO7|, and have stated that they are equivalent in terms of which set
of problems they can address. Nevertheless, they recognise the relevance of HI'N planners in
practice. Theoreticallly, an HTN planner can be translated to an equivalent classical planner, but
they conclude that this is not practical. The use of task networks to specify domain knowledge
is user-friendly and enables the HTN planning to be used in many more practical cases than
classical planning.

HTN forward planning allows for complex computations that are not available for classical
planners. In HTN forward planning, tasks are reduced in the same order as the operators
will be applied, therefore the current system state is always known. This allows numerical
computations to be included that intreract with external information sources and deal with
imperfect-information systems. For our problem, the ability to perform numerical computations
over the current state of the system is crucial to allow for metrics computation. And the chance
to interact with external systems permits external functions and procedures to be attached, such
as, for example, to support user queries.

HTN planners have also proved to be very efficient and suitable for large size problems. The
task networks compiling the problem’s domain knowledge can guide the planning process in a
very efficient way because they are used to extensively prune the state space. An HTN planner
does not check all the operators applicable to a certain state, but only those explicitly defined
in the methods that apply to the task being performed.

In order to apply HT'N planning for the refactoring planning problem, we represent the ele-
ments of our problem domain as displayed in Table 5.5. We use a logical representation of the
current AST of the system as the current state in the planner. Operators are used to represent
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World’s state: AST represented by first-order logic predicates
Operators: atomic changes to the AST (mainly add, delete and replace)
Tasks: transformation parts

refactoring parts
non-behaviour preserving transformations
refactorings
refactoring strategies

Goal: Executing a smell correction strategy
Executing a refactoring application strategy

Planning problem: Execute a particular refactoring strategy over a particular ver-
sion of a system

Table 5.5: Interpretation of the refactoring planning problem as an HTN planning problem.

atomic transformations —add, delete and replace— over the basic elements of the AST. Refactor-
ing strategies, simpler refactorings and non-behaviour-preserving transformations (NBPT) are
implemented as tasks, which can be further decomposed into other tasks. This decomposition
construct will allow us to split strategies into simpler ones and to attach preconditions to them.
Therefore, this allows dependencies to be specified, and to avoid conflicts between behaviour-
preserving transformations or parts of them. Invocation of transformations, refactorings and
refactoring strategies will be described as task decompositions. Complex system queries and
preconditions are formulated over the logical terms representing the system’s AST. This is pos-
sible due to the rich expressiveness of the HT'N forward planner we use. Depending on the goal
defined by a refactoring strategy, the task which implements it can be addressed to the applica-
tion of a refactoring, the removal of a bad smell, or any subpart of these activities. The domain
definition compiled in the task network represents the heuristic empirical knowledge, or “recipes”,
of the developer on how to apply these transformations.

The preliminary ideas on using an HTN planning approach to tackle the problem of design
smell correction with refactoring plans were presented in [Pér08|.

5.3.2 Features of JSHOP2

JSHOP2 is an HTN partial-order forward planner developed by the University of Maryland [IN03,
I1g06, JSHa|. It is a JAvA implementation of the SHOP2 (Simple Hierarchical Ordered Planner)
planning algorithm [NAI*03|, which obtained one of the top prizes in the 2002 International
Planning Competition [icaa]. Being a forward planner, the search for a plan is performed in the
same order as the plan should be executed. This implies that the current state of the system
is available during the planning process, and therefore, this guarantees support for arbitrar-
ily complex queries that can be written in PROLOG style as Horn-clause-like axioms. Being a
partial-order planner, the order constraints are delayed as much as possible during the planning
process. This allows methods to be decomposed into a partially ordered set of subtasks, and
it allows the creation of plans that interleave subtasks from different tasks. According to the
authors, JSHOP2 scales well for problems of very large size.

The JSHOP2 planner includes a problem solver that computes system queries in an efficient
way. Special queries, named “call terms”, allow JAVA functions, which are external to the planner
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Figure 5.4: A simplified model of JSHOP2’s HTNs

tool, to be called during the planning process. In order to write problem specifications for the
planner, the domain knowledge —the heuristic rules— has to be written as HTNs in a language
with Lisp-like syntax. The representation of the system’s states has to be given to the planner
as a set of logical terms in the same Lisp-like language. A distinctive feature of JSHOP?2 is
its precompilation stage. When fed a planning problem, the tool precompiles the problem and
produces a JAVA program. This JAVA program contains an optimized version of the problem
definition —the rules and the system’s initial state— and the planner itself. In order to solve the
planning problem, this JAVA code has to be compiled and executed. The 1.0.3 version of the
tool [JSHD] is used here.

As previously mentioned, JSHOP2 computes the operators of the plan in the same order as
they would be applied. The planner starts from the current state of the world and searches for
operators to apply to it in order to reach a set of desired goals. At each search step, it is possible
to apply the operator to obtain the new state. Therefore, the complete system’s state is available
for the planning algorithm at each planning step. This allows more informed heuristics to be
used that are more relevant to efficiency than anything else. The most important consequence
of this feature is that almost every useful computation can be performed. During the planning
process we can use: numerical computations, integration of external tools, calls to external tools,
Horn-clause inferencing and very expressive domain representations.

5.3.3 Elements of a JSHOP2 planning problem

We compile here, for reference purposes, the description of the elements of a JSHOP2 planning
problem, hence we can later discuss how refactoring strategies are written and computed using
this tool.
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A simplified version of the HTN elements used in JSHOP2 is depicted as a class diagram
in Figure 5.4. Tasks can be decomposed into other tasks or task lists by different alternative
decompositions. Selecting a particular decomposition can depend on the fulfillment of a precon-
dition. Two task types can be used: compound tasks and primitive tasks, depending on whether
a task has to be decomposed them into simpler ones in order to be achieved or not. Compound
tasks are achieved by decomposing it in simpler tasks which are specified with methods. These
include a precondition, which indicates the conditions under which this decomposition can be
attempted, and a task list, which specifies the simpler tasks that should be carried out in order to
achieve the compound task. Primitive tasks are achieved by applying operators, which describe
the actual transformations of the world’s state. The transformation is specified by indicating
which terms the operator will add to and delete from the current world’s state. The application
of an operator can also be restricted with a precondition. First order logical predicates are used
to query the system’s current state and to call external procedures. Logical expressions and
logical atoms allows additional knowledge to be queried and derived from the world’s state.
Call terms allow functions, external to the tool, to be called during the planning process.

The planning process starts with a task network, which is structured with operators and
methods, a set of ground predicates that form the system’s initial state, and a goal, represented
by a grounded task list. The planner searches for methods and operators to achieve the goal
tasks and the pending tasks that result from the consequent decompositions. If a task can be
solved with an operator, the planner applies the operator, if the task is solved with a method,
it is substituted by the task list defined in the method’s decomposition. Some considerations
are worth noting. Task lists, or task invocations can only appear within a method’s task list
decomposition, while queries and variable bounding only take place within the method’s and
operators’ precondition. The changes to be performed to the system’s state are only specified as
operators’ effects lists, therefore the system state can only be modified by applying an operator.

A detailed review of the different elements of a JSHOP2 planning problem follows. This
review uses and complements the models depicted in Figures 5.4 and 5.5. Using these models,
it will be easier to document in this chapter how refactoring strategies are implemented and
supported with JSHOP2. This will be done by matching these JSHOP2 models with the refac-
toring strategy models presented in Chapter 4 (See Figures 4.4 and 4.5). For reference purposes,
the description of the subset of the JSHOP2 language used here, including syntax examples, is
compiled in Appendix A. This reference has been extracted from its original source [I1g06], and
only includes the subset of the language we have actually used. For the complete language, the
original source should be consulted [I1g06].

Terms

Terms are the most basic entities in the language. JSHOP2 defines simple terms such as:
numerical constants, and variable and constant symbols; and more complex terms such as: list
terms, which are ordered sets of terms, and call terms, which represent external procedure calls.
When a call term is evaluated, an external JAVA procedure is executed. After being evaluated,
the call term is substituted by the resulting term produced by the external procedure. An ordered
set of terms can be passed to call terms as their arguments. JSHOP2 includes some built-in call
procedures such as comparison functions. The planner supports user-defined procedures, which
have to be implemented in JAVA.
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A term t is:

e a numerical constant, variable, constant;
e a list of terms: ¢ : , where £ = (¢ to ... t,) and each t; is a term of the list;

e a call term: ¢ : ct(f}, where ct represents the external procedure and ¢ represent its argu-
ments, which are also terms.

Logical atoms and logical expressions

Logical atoms and logical expressions are affirmations about the state of the world that can
be evaluated during the planning process. A logical expression is any expression that can be
evaluated to a boolean value. Logical atoms are first-order-logic predicates that will be evalu-
ated to true if they exist in the current state of the world or can be derived from it and to
false otherwise. Call terms can also be used as logical expressions. Depending on their usage
context —i.e. when they appear within a precondition—, call term results can be interpreted as
boolean values. Empty results are interpreted as false and non-empty results as true. Logical
expressions can be composed in JSHOP2 with several boolean operators: and, or, not, implies
and forall. Assignments are also available as special kinds of expressions that force a term to be
bound to a variable. A logical atom is said to be grounded when it contains no variables or, at
least, no unbound variables.

A logical atom a is an expression:

a = p({)
where the constant p designates the predicate symbol and ¢ represents the predicate’s terms.

A logical expression e is either:
e a logical atom a;
e a call term ct;

e or an expression e = op(€), where the function op designates a logical operator and &
represents a list of logical expressions.

Logical preconditions

Logical preconditions are logical expressions used to control whether a particular method or
operator can be included in a plan or not. During the planning process the method’s and the
operator’s preconditions are evaluated. The planner searches for those methods or operators
whose precondition holds in order to add them to the plan.

Preconditions are not only meant for selecting methods and operators. The evaluation of
a precondition is also used to perform certain computations. They are useful for querying the
system with axioms or system-state predicates in order to assign values to unbound variables. In
the case of methods, preconditions allow any necessary information lacking to be found before
invoking tasks, so this information queried can be used as tasks’ arguments. In the case of
operators, it allows any unbound variables to be bound, and therefore grounded system-predicates
to be produced to apply the operators’ add and delete lists of effects to the system’s state.
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Regular preconditions are composed of any kind of logical expression. Additionally, JSHOP2
offers two special precondition types that can be used for optimizing and control the planning
process: the first satisfier precondition, and the sorted precondition. First satisfier preconditions
are useful to optimize the computation of plans. This type of precondition will be evaluated
until a valid substitution is found or until none can be found. No other valid substitution will
be tried, even if the first one does not lead to a valid plan. They can be used to prune the state
space extensively and to avoid searching along useless paths.

Sorted preconditions can be used to specify the order in which the possible variable substi-
tutions will be attempted when computing the precondition. They include the evaluation of a
comparison function. When searching for satisfiers for the precondition, the planner will order the
valid substitution sets according to the result of the comparison function. Sorted preconditions
may serve to define priorities for the available search paths.

A logical precondition P is either:
e a logical expression e: P = e;
e a first satisfier precondition: P = first(P’);

e or a sorted precondition: P = sorted(P’,v,comp), where P’ is a precondition, v is the vari-
able upon which the binding attempts for P’ should be ordered and comp is the comparison
function used for ordering.

Axioms

Axioms are Horn-clause-like expressions that can be used to derive additional knowledge from
the system’s state. An axiom definition is composed of a head and an ordered set of branches.
The axiom’s head represents an affirmation on the current state of the system that does not
appear in the set of predicates which define the state. Branches represent different ways to
compute the axiom’s head or to search for its validity. The branches of an axiom are ordered,
therefore a branch will be evaluated and a unification attempt will be carried out only if all the
preceding branches have failed. Axiom heads are logic atoms and thus logic expressions. They
can be used as if they were regular system state predicates. An axiom is “computed” by using
its head predicate, for instance, within a precondition.

An axiom A is a definition:

A= {h,B}
where:

h is a logic atom p(t) that defines the axiom as the axiom’s head and

B is a list of axiom branches (B; Bs ... B,), each B; being a logical precondition P;,
thus:

A= {p(®), P}

Tasks, task lists and task invocations

Tasks are the fundamental abstract constructs used in HTN planning to define and organise the
planning problem’s domain knowledge and the actions available to the controller. As previously
mentioned, a task is a structured specification of how to achieve a certain goal. This specification
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is based on the decomposition of tasks into more simple ones. The organisation of a planning
problem’s domain knowledge into sets of these task decompositions builds up hierarchical task
networks.

A task is identified by its name and its number of arguments, which, in the case of JSHOP2,
are given as an ordered sequence of terms. Tasks sharing the same name and number of arguments
represent different procedures to achieve the same task. A task name and arguments constitute
a task symbol that can be used as a task head in order to define a task, or as a task invocation
in order to reference the task. Selecting and applying, among the available versions of the same
task, those which lead to a valid plan is one of the decisions taken by a planner during the
planning process. Depending on the task complexity, their specifications can either be written
as operators —primitive tasks— or as methods —compound tasks. Primitive tasks can simply be
performed by applying an operator, while compound tasks have to be described with methods
that specify how the more complex task can be achieved by decomposing it into simpler ones.

To better describe how tasks are used in JSHOP2, in our model, we have distinguished
between task definitions, or simply tasks, and task symbols. Task invocations are those references
to task symbols that appear within a method’s task decomposition task list. In JSHOP2,
planning is performed in the same order as the operators are applied to the system’s state;
therefore, the sequence of simpler tasks needed to perform a more complex one has to be given
as ordered sequences. These ordered sets of task invocations are referred as task lists. They are
used within methods to describe how a more complex task should be decomposed or within a
planning problem definition to specify a planning goal.

A task symbol T is an expression:
T = h(t)

where:
h is a constant symbol that represents the task and
¢ is a list of terms that represent the task arguments.

Depending on the type of task, T' can be a primitive task symbol or a non-primitive (or com-
pound) task symbol.

A task list T is an ordered list:

—

T=TT ... T

where each T; is a task symbol.

Operators

Operators, or primitive tasks, are atomic specifications of how to achieve a task. They are applied
to a system in order to change its state. Operators are composed of a precondition, a list of
negative effects, a list of positive effects and the optional cost of applying the operator. The
precondition specifies the conditions under which the operator can be applied. As mentioned
before, the precondition can also be used to complete the information needed to apply the
operator effects over the current system’s state. This can be used, for example, to bind any
remaining unbound variables prior to the application of the operator effects. The operator effects
are expressed as two sets of logical atoms. More precisely, these logical atoms are restricted to
being grounded system-state predicates. They can be defined with variables but, at least at their
application time, they have to be instantiated into grounded predicates. The operator lists of
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effects define how the operator changes the system’s state. If the planner selects and instantiates
an operator for including it in a plan, it applies the operator to the system’s current state by
removing and adding the logical terms included in the negative and positive effects lists.

More formally, we can describe an operator O as a set:
O={T,P,D,A}

where:
T is a primitive task symbol h(f), a primitive task h with an ordered list of parameters ¢:
P represents the operator’s precondition;
D is a set of logic atoms {d; da ... d,} that represents the operator’s negative effects and
A is a set of logic atoms {a; as ... a;,} that represents the operator’s positive effects list.

In JSHOP2 HTNSs, effects can also be specified with a special construct that allows a col-
lection of effects to be added or removed with a single operator. More precisely, “forall” effects
allow all predicates holding a certain condition to be added or removed.

A “forall” effect list A or D is specified as a special effect list:
F={V,C,E}

where:
V is a set of variables;
C is a logical expression that represents the “forall” condition and
FE is a set of logic atoms that represent the system state predicates meant as operator effects.

When this effect list is applied during the planning process, all the possible effects in F that
are produced by substituting the variables V' with the different values that should make C' true
are either removed or added (depending on the effect list, D or A, where the “forall” effect is
used).

Methods

Methods, or compound tasks, are specifications of how to achieve a task by decomposing it into
simpler tasks. If the method’s precondition is held in the current state of the system, the task
can be achieved by performing the list of tasks defined in the method. Methods are comprised
of an ordered set of decompositions, which are used to represent alternative ways to perform
the method that have to be attempted in a given order. A method decomposition is defined
with a precondition and a task list. The precondition describes the conditions under which
the decomposition can be attempted. The task list specifies the sequence of simpler tasks that
should be performed in order to apply the method’s associated compound task. These alternative
decompositions within a method definition are visited by the planner in sequential order and
their preconditions are considered in the given order. A decomposition is only attempted if the
precondition of all the preceding decompositions are not met. If a decomposition’s precondition
holds, the next decomposition is not attempted, even if the former decomposition’s task list does
not lead to a valid plan.

More formally, we can describe a method M as a set:

M = {h@),(P,Ty P,Ty ... P,T,)}
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Figure 5.5: A model for HT'N planning problems

where:
h(t) represents a compound task with an ordered list of parameters # and
each P;T; represents an alternative decomposition, with P; being the precondition and T; the
task list of decomposition i.

Planning domains, planning problems and plans

A planning domain is used to compile and specify all the domain knowledge available for a
given problem. In JSHOP2, a planning domain is comprised of a task network, which includes
operators, methods, axioms, which additional knowledge to be derived from the system’s state,
and external procedures (see Figure 5.5). A planning problem is defined by a planning domain,
the initial state of the system and the goal to achieve. The system state is represented with a set
of ground logical atoms. In HTN planning, the goal is given as a grounded task list. Finally, a
plan produced by the planner for a given planning problem is a sequence of grounded operators.
For each planning problem, if the planner suceeds, it could be able to produce more than one
valid plan. In JSHOP2, it is possible to formulate and run several planning problems over a
shared domain definition with a single construct and file.

A planning domain is a set:
Domain = {0, M, A, P}

where:
O is a set of operators;
M is a set of methods;
A is a set of axioms and
P is a set of external procedures.
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A planning problem is a set:
Problem = {Domain, S, G}

where:
Domain is a planning domain;
S is a set of ground system state predicates {a1, a2, ..., ap} and
G is a list of ground task symbols T.

5.3.4 Managing variables and variable scopes

Before describing how refactoring strategies are written as HTNs in JSHOP2, some additional
considerations regarding variables and variable scopes should be addressed. We have introduced
in the planner the concept of “persistent variables” to manage “variables” in certain situations.
Some auxiliary queries and operators have been included in the refactoring planning domain as
well, for dealing with persistent variables. These auxiliary elements, or others similar to them,
should probably be required in any other complex planning domain.

In JSHOP2 HTNs, the scope of variables is restricted to the method or operator where they
appear. Moreover, the scope of variable bindings is also restricted to the method or operator in
which the binding is performed. Any logical expression may produce variable bindings, but any
variable binding taking place within an operator or a method precondition is not propagated
outside the compound task. A variable passed as an argument to a method or operator, and
bound within this task scope, does not propagate the binding outside this scope. We can say
that variables are passed to methods and operators by value.

Methods and operators can be mistaken for functions or procedures that can have return
values or output arguments. In the HTN planning approach we are using, only logical atoms
that invoke axioms, or that evaluate against system state predicates, can have variables serving as
“output arguments”. Thus, contrary to what can be intuitively thought, methods and operators
do not “work” as functions or procedures and do not have return values or output arguments.

Nevertheless, in some cases, it will be needed to access a variable value within a different
scope to that where the value was bound to the variable. In order to make variable bindings
persist outside of the method’s and operator’s scope we have to “commit” these bindings to a
more “permanent storage”. We use the current system’s state as this “permanent storage”. We
will refer to these “permanent” variables as persistent variables.

Persistent variables

A persistent variable V), is a bound variable whose value has been committed to the system’s
current state. It is represented with a logical atom of the form:

pv(vp V)
where:
pv represents a persistent variable predicate;

vp is a symbol used to identify the variable and
V' is a constant, a bound variable whose value we want to preserve or a ground-bound term.
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Querying persistent variables

In order to access a persistent variabe v, from an outer scope, we will use a query @ of the form:

Q= pU(Up V)
where:

vp is a symbol used to identify the variable and
V' is an unbound variable.

After the evaluation of the persistent variable predicate pv, the value of the variable v, whose
binding scope was restricted to a method or operator T', will be bound to the variable V| whose
scope is independent of T'.

Committing persistent variables

In order to commit the value of a persistent variable, we use an auxiliary operator that takes the
variable’s name and bound value as its arguments. The operator’s precondition is trivially true,
and its effects lists are meant for adding the corresponding persistent variable predicate to the
system’s current state.

More formally, an auxiliary task to commit the value of a persistent variable is an operator
O of the form:

O = {epv(v), P, D, A}

where:
cpv represents the “commit persistent variable” operator;
U contains two arguments V), and V,, for the variable name and the variable value respectively;
P is trivially true;
D is the empty list and
A contains, as a single logic atom, the persistent variable predicate pv(V, V),

thus:
0= {va(vp Vv)a true, ()7 (p’U(V}, ‘/U))}

Removing persistent variables

Adding persistent values also raises the necessity to “clean them up”, when they are no longer
needed. We define similar operators that remove these variables from the system’s state, in order
to avoid increasing the size of the current system’s state unnecessarily, or to avoid conflicts due
to committing persistent variables with the same name but different values.

More formally, an auxiliary task to remove the value of a persistent variable is an operator
O of the form:

O = {dpv(v), P, D, A}

where:
dpv represents the “delete persistent variable” operator;
U contains two arguments V), and V,, for the variable name and the variable value respectively;
P is trivially true;
D contains, as a single logic atom, the persistent variable predicate pv(V, V) and
A is the empty list,
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thus:
O = {dpv(V,, Vy), true, (pv(Vp, Vb)), ()}

Notice that, even if the persistent variable does not exist in the current system’s state the
attempt to apply the operator during the planning process will not fail due to the precondition
being trivially true.

Removing unique persistent variables

In the case, there is only one variable-value pair in the system, we do not need to specify the
persistent variable value, so another operator can be used.
An auxiliary task to remove the value of a persistent variable is an operator O of the form:

O = {dpv(v), P, D, A}

where:
h represents the “delete persistent variable” operator;
U contains a single argument V), for the variable name:
P contains a logical query pv(V), V,);
D contains, as a single logic atom, the persistent variable predicate pv(V, V,,) and
A is the empty list,

thus:
O = {dpv(Vp), (pv(Vp V2)), (pv(Vp Va)), O}

Notice that if the persistent variable predicate is not present in the system’s current state,
the operator’s precondition will fail, the operator could not be applied and the planning process
may fail.

Removing all persistent variables

In the case where there are multiple persistent variable predicates in the system’s state, with the
same name but different values, a different task can be used to remove all of them with a single
operator invocation.

An auxiliary task to remove all persistent variables sharing the same name is an operator O
of the form:

O = {dapv(v), P, D, A},

where:
dapv represents the “delete all persistent variables” operator;
U contains a single argument V), for the variables shared name;
P is trivially true;
D contains, as a single logic atom, a forall effect F' = {(V,), pv(V, Vy,), (pv(V, Vy))} and
A is the empty list,

thus:
O = {dapv(Vp), true, {(Vv), pv(Vp Vo), (pv(Vp Vo))}, O}
The attempt to apply the operator during the planning process will not fail due to the

precondition being trivially true. This “multi-remove” operator can be used in the following two
cases: when we believe there is only one persistent variable with the given name, when we do
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not want the operator to fail, even if the corresponding persistent variable predicate cannot be
found in the system’s state.

Querying persistent variables safely

In order to check and query a persistent variable we can simply use, as previously mentioned,
the persistent variable predicate: pv(V), v) within a precondition. Nevertheless, the precondition,
and therefore the planning process, may undesirably fail if the persistent variable does not exist
in the system’s state when queried.

For querying the persistent variable V}, so that the query never fails, even if the variable is
not present in the system’s state, we use an axiom A of the form:

A = {qpv(v), (B1B2)}

where:
gpv represents an axiom that queries for a persistent variable;
U contains two arguments V}, and V;, for the variable name and the variable value respectively;
By contains, as a single logic atom the persistent variable predicate pv(V, V,,) and
By is trivially true,

thus:
A= {qpo(Vp Vo), (((pv(Vp Vo)) true ) )}

Querying this axiom will always succeed. If the persistent variable exists, it will return V,,
and V,, bound, and otherwise, any unbound variables will remain that way:.

5.4 Refactoring strategies as HTNs

This section presents how refactoring strategies can be specified as JSHOP2 task networks and
how the refactoring planning problem can be addressed as a JSHOP2 planning problem.

Let us present some general ideas first. Refactoring strategies are implemented as tasks,
which can be further decomposed into other tasks. This decomposition construct will allow us to
split strategies into simpler ones and to attach preconditions to them. Therefore, this allows the
specification of dependencies and conflicts between behaviour-preserving transformations or parts
of them. Depending on the goal defined by a refactoring strategy, the task which implements it
can be addressed to the application of a refactoring, the introduction of a design pattern, the
removal of a bad smell, or any subpart of these activities.

Operators are used to implement simple and composed transformations, and can also be
guarded by a precondition. The add and delete lists, which describe the changes that are per-
formed through the application of an operator, are used to represent transformations over the
basic elements of the AST. These system elements are specified as first-order-logic predicates
by means of logical atoms. Some code queries are implemented with axioms and logical ex-
pressions. Complex queries, or those which can be hard to derive by logic inference, can be
computed by means of external calls, using call terms.

The detailed description of our approach about how refactoring planning problems can be
implemented with JSHOP2 follows.
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5.4.1 System elements

Primitive system elements —AST entitites and relations— are represented as first-order-logic pred-
icates, with JSHOP2’s logical atoms.

A system element FE' is specified as a logical atom of the form:

E =p(tity.. . tn)

where p is a predicate symbol matching the element type —i.e. class, method, call, etc.— and each
t; represents the element properties. Among these element properties, the predicate may include
the element’s name, a unique identifier, references to other system elements, such as their parent
or children within the AST, and any additional element property needed to represent it.

5.4.2 System queries

A system query @ is a logical atom that has to be validated or computed over the current
system’s state, the available set of axioms and the defined external procedures. A system query
is invoked as a first-order logic predicate of the form:

Q=q(t)
where:

q represents the query and
t'is a list of terms that represents the query arguments.

Query arguments that are constants, grounded terms, or variables which have already been
bound to ground terms, are input arguments. This means that they may be used to compute the
query, but they are kept unchanged after that. Those arguments which are unbound variables
can be used as output arguments. They can be bound after the query has been computed.

The most basic system query, is a query of the form:

Q=pt)=FE
where:

p represents a system element predicate and
{ represents the system element properties.

If all the terms in ¢ are grounded terms, or variables bound to grounded terms, the query
invocation results in the planner searching for the system element E in the current system’s
state.

If any term in ¢ is an unbound variable, the query invocation results in the planner searching
for a valid binding for all the unbound variables, so E matches some system element in the
current system’s state.

Structural queries

A structural system query () is specified with an axiom of the form:

Q= {q(),(B1 By ... By)}

where:
q is a predicate that represents the query;
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t'is a list of variables that represent the query arguments and
each B; represents a query branch.

Query branches represent alternative ways of computing the query, and are evaluated in an
if-then-elseif-else style. The branch i will only be evaluated if all the preceding branches have
failed.

Lexical queries

In order to perform lexical queries, we have to analyse the symbol’s substrings. This cannot be
done by logic inference, but can be performed using external procedures.

A lexical query @ is specified with a call term of the form:
Q=ct):T

where:
c represents the call term;

T represents the term’s evaluation result, as returned by the external procedure and
¢ represents the procedure arguments, which should be grounded.

Boolean condition

A boolean condition C' is either a query predicate @), or a composed condition of the form:

C = op(q)

where:
op is a boolean operator and
7 is a set of boolean conditions.

5.4.3 Non-behaviour-preserving transformation steps

A transformation step is either a composed system change, a basic system change or the appli-
cation of a non-behaviour-preserving transformation. Each of these will be described separately.

System changes

The definition of the basic system changes, which will allow basic system elements to be added,
deleted or replaced, is carried out with three basic operators. An invocation of these basic
transformations is performed within a task list, in a method’s decomposition, as a task invocation
of the form:

h(t)
where:
h represents the proper basic change, which is a primitive task and

{ is either a single term —F— in the case of the add and delete transformations, or two terms
—F1, Eo— in the case of the replace operator. These should be ground terms.
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Adding a basic system element

The definition of a basic transformation, used for adding a basic system element E, is written
as an operator:

O = {add(t), P, D, A}

where:
add represents a primitive task;
¢ contains a single variable V;
P is trivially true;
D is an empty list and
A contains solely the variable V',

thus:
O ={add(V), true, (), (V)}

where the variable V represents the system element to be added to the system’s current state.

The element to be added should be passed to the operator when invoking it. At planning
time V should be bound to a valid grounded predicate representing a system element.

Removing a basic system element

The definition of a basic transformation, used to remove a basic system element F, is written as
an operator:

O = {del(t), P, D, A}
where:
del represents a primitive task;
t contains a single variable V;
P is trivially true;
D contains solely the variable V' and
A is an empty list,
thus:
O = {del(V), true, (V), ()}

where the variable V' represents the system element to be removed from the system’s current
state.

The element to be removed should be passed to the operator when invoking it. At planning
time V should be bound to a valid grounded predicate representing a system element.

Replacing a basic system element

The definition of a basic transformation, used to replace a basic system element F; for another
basic system element Fs, is written as an operator:

O = {rep(t), P, D, A}

where:
rep represents a primitive task named “replace”;
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{ contains two variables Vi and Vs,
P is trivially true;

D contains solely the variable V; and
A contains solely the variable V5,

thus:
O = {rep(ViV2), true, (V1), (V2)}

where:
V1 represents the system element to be removed from the system’s current state and
V5 represents the system element to be added to the system’s current state.

The element to be added ad removed should be passed to the operator when invoking it.
At planning time, V7 and V5 should be bound to valid grounded predicates representing system
elements.

Alternatives

An alternative is specified as a method M. In all cases, the method M representing the alternative
can be invoked within a task list as a task invocation with the form:

alt ()
where:

alt represents the alternative’s method and
t is a list of variables representing all the parameters needed by the alternative.

if~-then alternative

For an alternative of the form:
if C then S end,

where:
C represents a boolean condition and
S represents a sequence of non-behaviour-preserving transformation steps,

the method M has the following form:
M = {alt(f}, (P1T1 P2T2>}

where:
alt is a compound task that represents the alternative;
t is a list of arguments;
P represents the condition C}
T1 represents the sequence of steps S;
Ps is trivially true and
T5 is the empty list,

thus:
M = {alt(f), (C S true ()}
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if~-then-else alternative

For an alternative of the form:
if C then S else Sy end,

where:
C represents a boolean condition and
S1 and S5 represent sequences of non-behaviour-preserving transformation steps,

the method M has the following form:
M = {alt(t), (P\Ty PyT5)}

where:
alt is a compound task that represents the alternative;
t is a list of arguments;
P represents the condition C}
T7 represents the sequence of steps Sq;
P, is trivially true and
Ts represents the sequence of steps So,

thus:
M = {alt(t), (C Sy true S)}

if~then-elseif alternative

For an alternative of the form:
if C1 then S elseif Co then Sy elseif Cg then S3 ... else S, end

with n conditional branches, where:
C; represents boolean conditions and
S; represent sequences of non-behaviour-preserving transformation steps,

the method M has the following form:
M = {alt(t), (P\Ty PoT, ... P,T,)}

where:
alt is a compound task that represents the alternative;
¢ is a list of arguments;
P; represents the condition Cj;
T; represents the sequence of steps Sj;;
P, is trivially true and
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T, represents the last sequence of steps .S, or the empty list if the else part is not present,

thus:
M = {alt(t), (Cy S1 Cy So...Cp_1 Sy_1 true Sp)}

Loops

Using JSHOP2 HTN elements, loops can be specified with a method whose task decomposition
list contains, as its last task, a recursive invocation of the method itself. During the planning



108 CHAPTER 5. REFACTORING PLANNING

process, the planner will keep invoking the method while the condition holds. This will result in
a loop iteration being performed at each recursive method invocation.

The loop condition is specified as the method’s precondition. Each different substitution for
the variables in the precondition will produce a different iteration. In the case of deterministic
loops, those used in refactorings and NBPTs, the method’s precondition should be a first satisfier
precondition, so the planner will not attempt to “reorder” the loop iterations. Each iteration must
succeed independently of their ordering. The planner will only attempt a valid substitution for
each iteration. If a valid substitution, which makes the loop’s precondition true, leads to a
task decomposition that fails, the planner will not try an alternative substitution and the loop
planning will fail. This implies that alternative iteration orderings will not be tried because all
orderings are supposed to succeed in deterministic loops.

A method decomposition only suceeds if a valid plan can be found for the task list of this
decomposition. However, the loop should exit, after its last iteration, when the precondition of
one of these recursive method invocations fails. In order to exit the loop while allowing the last
iteration’s method invocation to succeed, an alternative decomposition is added to the loop’s
method. This decomposition is attempted only after the last iteration precondition fails and it is
composed of a trivially true precondition and an empty task list. This decomposition represents
a kind of “exit” branch for the loop method.

A loop is specified with a method M. We shall now describe more formally how different
loop types can be represented with JSHOP2 HTNs.

while loops

For a loop of the form:
while C loop S

where:
C represents a condition that has to be true in order to enter the current loop iteration and

S represents a sequence of non-behaviour-preserving transformation steps,
the loop is represented with a method M of the form:
M = {(8), (PTy PoT)}

where:
[ is a compound task that represents the loop;
t represents a list of arguments passed to the loop method;
Py is a first satisfier precondition that represents the condition C
Ti represents the sequence of steps S and contains a task invocation [ (f) as its last task;
P, is trivially true and
T5 is the empty list,

thus:
M = {I(#), (first(C)(S L)) true ()}

With this loop specification, P} T} represents the loop’s iteration and P, T5 represents the
exit branch.
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while loops with persistent variables

It should be noticed that only the bound values of those variables in ¢ are passed from outside the
loop, and from one iteration to another. When defining the loop, this list of arguments should be
restricted to those variables whose binding is, or should be, performed before invoking the loop,
and whose value needs to be used in the loop. If the value of a variable is bound within a loop
and has to be kept between loop iterations, the variable should be committed to the system’s
current state as a persistent variable.

When using persistent variables, they should be committed with the first task invocations
within 7T7. Their value should be gathered within the first queries to be evaluated within P,
therefore:

Py = first((gpo(Vp1Ver)) (qpo(VieVaz)) .. (@po(VpnVin)) C©)

where:
gpv are persistent variable queries;
Vpi are the committed variable names and
Vi will be bound to the variable values if they have already been committed, or otherwise,
remain unbound until the binding is performed in C,

thus:
Ty = (epv(Vp1Ver) epv(VpaViz) .. cpv(VpnVan) S 1(E))

In order to access the persistent variables within C' and S, V,; should be used.

Any variable whose value has been bound within the loop, and should not be needed outside
the loop, should be removed when exiting the loop. Therefore, the task list T5 should contain
task invocations for the proper auxiliary operators that will remove these variables:

Ty = (dpv(Vp1 Vi) dpuv(ViaVia) ... dpv(VpnVin))
or

Ty = (dapv(Vp1) dap(Vpz) ... dapv(Vpn))

do-while loops

In order to represent “do-while” loops, their representation is split into two methods. To define
the conditions under which an operator or a method can be applied, preconditions, which are
evaluated before operator’s effects or method’s task list decomposition, have to be used. For “do-
while” loops, the condition is evaluated after the first iteration, which is always executed, and
it is evaluated to control entering the next loop’s iteration. The loop’s body has to be executed
at least once, and then the next iterations can be tackled as in a “while” loop. Therefore, we
will use a method for representing the first iteration and for invoking a second method where we
place the loop’s condition and, again, the iteration body.

More formally, for a loop of the form:
loop S while C

where:
S represents the sequence of transformation steps comprising the loop’s iteration body and
C represents a condition that has to be true in order to enter the next loop iteration,
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the loop is represented with two methods M and M’ of the form:

M ={i(f), (P T)}
M ={l'(t), (PTy P,T»)}

where:
[ is a compound task that represents the loop and that should be used for invoking the loop;
# represents the list of parameters passed to the loop method;
P is a first satisfier precondition containing all the queries ) needed by the loop’s first
iteration, but it should be evaluated to true independently from the loop’s exit condition C
T represents the sequence of steps S and contains a task invocation [’ (f} as its last task;
I’ is a compound task that represents the loop’s condition and next iteration and that should
be invoked just from [;
P is a first satisfier precondition that represents the condition C
T} represents the sequence of steps S and contains a task invocation [’ (f) as its last task;
P is trivially true and
T5 is the empty list,

thus:
M = {i(t), (first(Q) (S U'($))}
M= (1), (First(@C) (5 1) truc ()

With this loop specification, P T represents the loop’s first iteration, P; T} represents the
loop’s next iterations and P» T5 represents the exit branch.

for-each loops with explicit collections

As mentioned in Section 4.1.2, iterative procedures are frequently due to the need to apply a
transformation of executing a task for each item holding a certain property. In these cases, “for-
each” loops are useful. In imperative programming languages, this type of loops are typically
specified with a collection of items, and a variable to hold an item at each iteration. In order
to represent “for-each” loops with JSHOP2 HTNs, we use a single method, similar to those
already described for other types of loops, and some queries, which are required to iterate over
the collection.

More formally, for a loop of the form:
foreach I in C loop S

where:
I is the auxiliary variable used in the loop’s iteration as the loop’s variant and for storing
each item of C;
C is a collection the loop iterates over and
S represents a sequence of non-behaviour-preserving transformation steps,

the loop is represented with a method M of the form:
M ={l(t L), (P\Ty P,T»)}

where:
[ is a compound task that represents the loop;
t represents the arguments passed to the loop method;
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L is a list representing the collection C

Py is a first satisfier precondition that contains as their first two queries head(V L) and
rest(L' L), which are used to compute the first item of L and bind it to V, and to compute
the remaining items of L and to bind it to L’;

T1 represents the sequence of steps S, where any use of I should be made with V', and which
contains a task invocation I(f L') as its last task;

P, is trivially true and

T5 is the empty list,

thus:
M = {I(t L), (first(head(V L) rest(L' L)) (S I(t L)) true ())}

for-each loops with implicit collections

Instead of using an explicit collection in a foreach loop, the logical inference support in the
JSHOP2 HTN planner also allows us to use an implicit collection. We can build a “for-each”
loop that iterates over a set of terms satisfying a certain condition, without explicitly collecting
these terms in a list. In order to represent these loops in JSHOP2 HTNs, we use a method
whose precondition comprises the loop’s condition. Persistent variables are used to keep track of
the valid substitutions for the condition that has been already visited.

More formally, for a loop of the form:
foreach 1% satisfying C loop S

where:
V is a list of variables from C , serving to forall-quantify these variables;
C is a condition in which the variables of V' appear;
S represents a sequence of non-behaviour-preserving transformation steps,

the loop is represented with a method M of the form:
M = {i(t), (PTy PoT»)}

where:
l is a compound task that represents the loop;
{ represents the arguments passed to the loop method;
P is a first satisfier precondition that represents the condition C'
P contains, as its last query, an expression not(pv(v . 17)),
Ty represents the sequence of steps S and contains, as its last task, a task invocation sequence
(epvloge V) 1))
Py is tr1v1ally true and
T contains task invocations for the proper auxiliary operators that will remove the vy,
persistent variables: dav(vy.),

thus:
M = {I(t), (first(C not(pv(vy. ‘7))) (S cpv vfc 1(1)) true ( (dav(Vye)))}

where:
V. Tepresents a unique persistent variable that references this and only this loop;
vy serves as a “foreach” control;
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po(vge ‘7) is a persistent variable predicate used to “store” the visited V values as a list of
values, once they have been bound;

cpv(vge 17) is a method for committing the visited set of values V to the persistent variable
Ve and

dav(vy.) is a method for removing all the stored V sets for the “for-each” control persistent
variable v..

Notice that, as in the previous types of loops, the decomposition branch P>T5 is intended for
exiting the loop.

Apply a non-behaviour-preserving transformation

A transformation step that intends to apply a non-behaviour-preserving transformation is a task
invocation nbpt within a task list, and has the form:

nbpt({)

where:
nbpt represents the invocation of the transformation step, which can be either a method or
an operator and
t represents the transformation arguments.

As defined in Section 4.3.2, the “apply transformation” invocation that can be used in NBPTs
is restricted to invoking other NBPTs.

5.4.4 Non-behaviour-preserving transformations

A non-behaviour-preserving transformation (NBPT) is a complex transformation that can be
composed of many steps, including simple steps such as atomic system changes and the invocation
of other NBPTs, or compound steps such as loops and alternatives.

In order to represent NBPTs with JSHOP2 HTNs, operators do not suffice. The effect
lists of an operator cannot be used to represent transformation algorithms. On the contrary,
methods can be further decomposed into other methods or operators. Moreover, their task list
decompositions can hold ordered sequences of task invocations. Operators cannot be further
decomposed and the order of the predicates in their effect lists is not relevant. As a consequence,
any complex transformation should be represented with methods rather than operators.

An NBPT will be represented with a method whose task list decomposition compiles the
sequence of steps of the transformation’s algorithm. As defined in Section 4.3.2, an NBPT is not
guarded by a precondition and its application may be attempted without any previous checking of
the system’s state. Therefore, no condition can be imposed on the corresponding HTN method,
so the method’s precondition should be trivially true.

More formally, a non-behaviour-preserving transformation, performed with a sequence of
steps 5, is a method M of the form:

M = {nbpt(D), (P T)}

where:
nbpt is a compound task that represents the transformation;
¢ represents the transformation’s list of parameters;
P is trivially true, since the transformation has no precondition and
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T is a task list representing the sequence of transformation steps S, so it can contain nbpt,
del, add, rep, | or alt task invocations.

thus:
M = {nbpt(t), (true S)}

5.4.5 Refactorings

Refactorings, in the terms described in the previous chapter (see Section 4.3.2), are composed
of a precondition, a sequence of transformation steps and can have a parameter list. Given our
refactoring’s definition, it is quite straightforward to represent refactorings with JSHOP2 HTNs.
The representation of refactorings is quite similar to that of NBPTs. The only difference between
them is the precondition used in a refactoring to guarantee behaviour preservation.

A refactoring that is performed with a sequence of transformation steps S is specified in
JSHOP2 HTNs as a method M of the form:

M = {r(t), (P T)}

where:
r is a compound task that represents the refactoring;
t is a list of variables that represent the refactoring’s list of parameters;
P is used to specify the refactoring’s precondition and
T is a task list representing the sequence of transformation steps S, which comprise the
refactoring’s algorithm.

It should be noticed that, in our model (see Section 4.3.2), a refactoring algorithm can
only include NBPT transformation steps, such as applying NBPT transformations —nbpt—, basic
system changes —del, add, rep— or composed changes —I, alt.

5.4.6 Invocations and queries of refactoring strategies

Once we have described how the elements of refactorings and non-behaviour-preserving transfor-
mations can be written in JSHOP2 HTNs, the next sections are focused on the elements related
to refactoring strategies, such as non-deterministic control constructs, etc.

Apply a transformation

Applying a transformation means to invoke a task within a task decomposition list. This con-
struct is similar to “apply an NBPT”. It can be represented in exactly the same way as the former,
but in this case, any transformation —refactoring strategies, refactorings and NBPTs— can be in-
voked, as defined in 4.3.3. Formally, a strategy step that intends to apply a transformation is a
task invocation h within a task list, and has the form:

h(t)

where:
h represents the invocation of the transformation and
t represents the transformation parameters.
h can be any transformation kind we have defined: nbpt, r or rs (rs is defined in Section 5.4.9
in page 118).
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Try a transformation

Trying a transformation means that an attempt should be made to plan a task, but if this does
not succeed, a valid plan, which does not include this task, could still be found.

For each transformation h(f) in the domain, which should be allowed to be invoked with
“try”, we have to define two methods M; and Ms:

My = {try(@), (P\'T1)}
My = {try(¥), (PT»)}

where:
try represents the method to try the task h;
¢ is the same list of arguments ¢, but contains the task symbol of the original transformation
—h— as its first parameter;
P is trivially true;
T contains as its single task h(t);
P; is trivially true and
T5 is the empty list,

thus:
M, = {try(h §), (true (h(E)))} and My = {try(h &), (true ())}

In order to invoke the transformation h(t) through “try”, it should be done as:

try(h ©)

User queries

User queries are implemented as external procedures. A user query is specified with a call term
of the form:

Q=c((m 7)) :T,
where:
c represents the call term;
m represents a list of string literals that will be displayed to the user as a question or request;
¥ represents a list of input arguments that will be shown to the user to complement the

request, and which should be bound when invoking the user query and
T, as the result of the term evaluation, represents the response fetched from the user.

Duplicated code and entity-kind queries

These are complex queries that are not being supported in this dissertation. They are sufficiently
complex for us to consider that they cannot be written solely with HTN axioms, but with a
combination of axioms and external procedures.

5.4.7 Non-deterministic alternatives

Non-deterministic alternatives offer multiple selection branches, one of which the planner has to
select and apply. The conditions that guard the alternative branches are optional; therefore, if
the planner selects a branch with an empty precondition, the success of the branch depends on
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the success of the transformation steps in it. The planner will select and attempt to apply all
branches non-deterministically until one of them succeeds or else all of them fail.

In order to represent non-deterministic alternatives with JSHOP2 HTNs, we use one method
per branch. Each alternative branch is represented as a method whose precondition matches the
branch’s condition or will be trivially true if the branch does not have a condition. All these
branch methods share the same identity —same identifier and same number of parameters—, which
will be used to invoke the alternative. Since there is one single task to invoke all the branches,
the planner can select one of them non-deterministically when the alternative is invoked.

More formally, a non-deterministic alternative of the form:
alt 0151 0151 e CnSn

where:
each C; is a branch condition and
S; is a sequence of transformation steps that can be attempted to instantiate when C; holds,

is represented with a set of methods M7, Ms, ..., M, of the form:
M; = {ndalt(t), (P; T;)}

where:
each M; represents the ¢ branch of the non-deterministic alternative;
ndalt represents the alternative;
t is a list of arguments comprising the union of all the parameters that have to be passed to
all branches;
the method’s header ndalt(t) is the same for all branch methods, so the alternative is invoked
through it;
FP; is a precondition that represents the condition Cj if it is non-empty, or a trivially-true
precondition otherwise, and
T; is a task invocation list that represents the transformation steps from S;.

5.4.8 Non-deterministic loops

We have defined non-deterministic loops as loops whose success may depend on how their itera-
tions are scheduled. In order to support this, we should let the planner find and select the valid
iteration orderings. In JSHOP2 HTNs, this can be easily done. Non-deterministic loops are
specified exactly as regular loops, except they do not use the special “first precondition”. This
implies that if an iteration ordering does not succeed, the planner will try another valid substi-
tution for the iteration. This will result in the planner attempting different iteration orderings
until one succeeds or until all of them fail. As a caveat, it should be noticed that planning for
non-deterministic loops might be very inefficient. Exploring every possible iteration ordering for
n iterations has an n! branch factor, and thus can greatly widen the search space.

while loops

For a non-deterministic loop of the form

while C nd_loop S
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the loop is represented with a method M of the form:
M = {ndi(t), (P\Ty PT»)}

where:
ndl is a compound task that represents the loop;
¢ represents the argument list passed to the loop method;
P, is a precondition that represents the condition C'
T1 represents the sequence of steps S and contains a task invocation ndl(f) as its last task;
P, is trivially true and
T5 is the empty list,

thus:
M = {ndi(t), (C (S ndi(t)) true ()}

With this loop specification, P; T; represents the loop’s iteration and P, T5 represents the
exit branch.

do-while loops

For a non-deterministic loop of the form:
nd_loop S while C

the loop is represented with two methods M and M’ of the form:
M = {ndi(d), (P T)}
M = {ndl’(f}, (P1T1 PQTQ)}

where:
ndl is a compound task that represents the loop and that should be used for invoking the
loop;
¢ represents the list of parameters passed to the loop method;
P is a precondition that contains all the queries @ needed by the loop’s first iteration, and
that should be evaluated to true and be independent from the loop’s exit condition C
T represents the sequence of steps S and contains a task invocation ndl’ (f) as its last task;
ndl’ is a compound task that represents the loop’s condition and next iteration, and that
should be invoked just from ndl;
P, is a precondition that represents the condition C;
T} represents the sequence of steps S and contains a task invocation ndl’ (f) as its last task;
P, is trivially true and
T5 is the empty list,

thus:

M = {ndi(D), (Q (S ndl'(i}))}
M = {ndl'(D), (QC (S ndl'({)) true ())}

for-each loops with explicit collections

For a non-deterministic loop of the form:

foreach I in C' nd_loop S
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the loop is represented with a method M of the form:
M = {ndl(t L), (P\Ty P,T»)}

where:
ndl is a compound task that represents the loop;
¢ represents the arguments passed to the loop method;
L is a list representing the collection C,
P, is a precondition that contains as their first two queries head(V L) and rest(L’ L), which
are used to compute the first item of L and bound it to V', and to compute the remaining
items of L and to bound it to L’;
Ty represents the sequence of steps S, where any use of I should be done through V', and
which contains a task invocation ndl(v L) as its last task;
P is trivially true and
T5 is the empty list,

thus:
M = {ndl(f L), ((head(V L) rest(L' L)) (S ndl(t L)) true ()}

for-each loops with implicit collections

For a non-deterministic loop of the form:
foreach 1% satisfying C' nd_loop S

the loop is represented with a method M of the form:
M = {ndi(t), (P\Ty P.T»)}

where:
ndl is a compound task that represents the loop;
t represents the arguments passed to the loop method;
P is a precondition that represents the condition C' and contains as its last query an expres-

—

sion not(pv(Vie (V)));

Ty represents the sequence of steps S and contains, as its last task, a task invocation sequence
cpv(Vie (V) ndl(t);

P, is trivially true and

T3 contains task invocations for the proper auxiliary operators that will remove the Vi,
persistent variables: dav(Vy.)),

thus:
M = {ndl(8), ((C not(pv(vie V))) (S epv(vse V) ndl(®)) true (dav(Vie)))}

5.4.9 Unordered strategy steps

Unordered steps are a sequence of transformations whose steps can be applied in an unspecified
order. We represent them with JSHOP2 HTNs as a set of separate methods with the same
name and number of arguments, each one encapsulating one of the transformation steps. Each
method uses persistent variables as “flags” to avoid being re-invoked. The sequence of steps is
written as a sequence of as many identical invocations as the number of transformation steps.
A last additional step is included in the original intended sequence in order to remove all the
persistent variables used.
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More formally, an unordered sequence of steps S of the form:

S = unordered(sy S2 ... Sp)
is represented as a sequence of task invocations T' and a set of methods My, Mo, ..., M,, of the
form:

T = (ut(@) ut(@) ... ut(a@)) dapv(V)) and
M; = {ut(a@), (P; Ti)}

where:
T is a sequence of n identical invocations of ut(@), ended by a task dapv(V')) for removing
all the persistent variables V' used for controlling the invocations;
each M; encapsulates the transformation step s;;
ut represents an unordered step;
the methods’ header ut(@) is the same for all the unordered steps, so each one is invoked
through it;
a is a list of arguments comprising the union of all the parameters needed by all steps s;;
P; contains a single predicate not(pv(V 7)) and
T; is a task invocation list containing the task t; that represents the transformation s;, and
a task cpv(V i),

thus:
M; = (ut(@) (not(pv(V 4))) (ti cpv(V 9)));

where:
V' is a persistent variable that represents the unordered task list control, and stores which
unordered steps have been applied already;
pu(V i) is a persistent variable predicate that states the task ¢; has already been applied by
the planner;
cpu(V i) is the invocation of a method that stores the persistent variable pv(V i) and
dapv(V) is the invocation of a method for removing all the persistent variables pv(V 7) used.

Refactoring strategies

Refactoring strategies (see Section 4.3.3) are composed of a precondition, a sequence of strategy
steps and can have a parameter list. They are also addressed through achieving a certain goal.
In a similar way to refactorings, representing refactoring strategies with JSHOP2 HTNs is
straightforward.

More formally, a refactoring strategy rs that addresses a goal g can be specified with a
method M of the form:

M ={rs(gt), (PT)}

where:
rs is a compound task that represents a refactoring strategy addressing the goal g;
t is a list of variables that represents the strategy’s list of parameters;
P is used to specify the strategy’s precondition and
T is a task list representing the sequence of steps which comprise this particular strategy.
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As opposed to refactoring’s or NBPT’s algorithms, the steps in T' can refer to any kind of
transformation: nbpt, r, rs, try, I, alt, ndl, ndalt, add, del or rep.

5.4.10 Refactoring strategies specification language as JSHOP2 HTNs

In addition to the previous specifications on how to write the refactoring strategies elements
as HTNs, we have formulated a set of systematic rules to translate the refactoring strategies
specification language as JSHOP2 HTNs. We have considered that, in order to be useful,
the translation of the refactoring strategies specification language has to be described at the
language level, using the JSHOP2 syntax directly. In order to improve the readability of the
present chapter, these rules have been placed in Appendix B.

5.5 Computing a refactoring planning problem

Having described how refactoring strategies can be written as JSHOP2 HTNs, this section
describes how a refactoring strategy is computed and instantiated with JSHOP2.

Planning domain

Refactoring strategies are used to compile, through “recipes”, the available knowledge about how
to remove a design smell or to apply a complex refactoring process. These “recipes” can be
written and organised with the concepts defined in chapter 4: refactoring strategies, refactorings
and non-behaviour preserving transformations.

In order to instantiate a refactoring strategy with an HTN planner, the strategy, and all
the associated knowledge needed, has to be specified in an HTN domain. All the operators,
methods, axioms and external procedures that comprise the set of available refactoring strategies
constitutes the refactoring planning domain.

The planning domain D for the refactoring planning problem is a set of the form:
D={0, M, A, P}
where:

O is a collection of operators containing at least the following:

e operators implementing the three basic system changes: add, del and rep,

e operators implementing auxiliary tasks for managing persistent variables: cpv, dpv and
dapv;

M is a collection of methods representing refactoring strategies —rs—, refactorings —r—, non-
behaviour preserving transformations —nbpt—, deterministic and non-deterministic control
constructs —I, alt, try, ndl and ndalt— and blocks of unordered steps —ut—;

A is a collection of axioms representing a variety of system queries, containing at least the
following;:

e axioms to query persistent variables safely: gpwv,

e axioms implementing auxiliary functions for managing lists, such as: head and rest;
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P is a collection of external procedures representing a variety of system queries that cannot
be implemented as axioms, such as lexical queries and user queries.

System’s initial state

The software system to be transformed has to be fed to the planner as its initial state. As we
have mentioned, we use a first-order-logic predicate representation of the system’s AST as the
system representation for the planner. In order to find a refactoring plan for a given objective
and a given software system, we use the current version of the system’s AST as the planner’s
initial state.

More formally, the system’s initial state S is a set of the form:
S=A{Ei, Es, ..., E,}

where F; are logical atoms representing the elements of the whole system’s AST. All E; should
be ground.

Refactoring planning problem

Finding a refactoring plan to achieving a certain objective, such as removing a bad smell from
a software system, is performed through the instantiation of a refactoring strategy that specifies
how to address that objective by transforming the system with a behaviour-preserving trans-
formation sequence. The instantiation of a refactoring strategy for a particular case is carried
out, in our approach, as the computation of a planning problem formulated over the refactoring
planning domain.

More formally, the instantiation of a refactoring strategy rs that addresses a goal g, over a
system S, is the computation of a solution for a refactoring planning problem P that models
that particular situation.

A refactoring planning problem P is represented as an HTN planning problem of the form:
P={D, S, G}

where:
D is the refactoring planning domain;
S is the initial system state and
G is a ground task list of the form: G = (rs(g p)) with rs representing a refactoring strategy
that addresses g and p representing the strategy’s ground parameter list.

The goal G can be defined for addressing multiple sequential objectives by specifying a list of
different strategies:

G = (rs(g1 p1) rs(g2 p2) --- r5(gn Pn))

Refactoring plan

A refactoring plan is a solution to a refactoring planning problem. The refactoring plan is pro-
duced by the planner at the lowest level of detail. The plan is given in terms of a sequence of
operators, which, in our approach, are atomic changes to the AST. Nevertheless, the more coarse-
grained representation of the plan, specified in terms of refactorings, non-behaviour-preserving
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transformations and refactoring strategies, is extracted from the decomposition tree that is tra-
versed during the planning process.

A refactoring plan rp is an instantiation of a refactoring strategy rs, if it is a solution for a
refactoring planning problem P = {D, S, G}, where G = (rs(g p)).

A refactoring plan rp is a sequence of source code transformations. It is given by the planner
as a sequence of atomic AST transformations:

rp = (sc1 scy ... scp)
where s¢; are atomic ground system changes, either add, del or rep system transformations.

A refactoring plan is more useful when expressed as a sequence of higher level transforma-
tions, mainly refactorings. The plan rp can be split into non-overlapping sequences (sc; . .. scy),
which are partial plans for G and plans for a higher level transformation ¢;. The trace of the
decomposition tree traversed by the planner to obtain (scj sca ... scn) as a plan for rs(g p) can
be used to extract this information and represent rp in terms of higher-level transformations.

A refactoring plan rp can be represented as a sequence:
rp = (tl to ... tn)

where t; are system transformations, such as refactorings and non-behaviour-preserving trans-
formations, for which sequences of atomic system changes (sc; ... scy) are plans for each ;.

5.6 How JSHOP2 meets the requirements of refactoring plan-
ning

In this section, we discuss how HTN forward planning, and specifically the JSHOP2 planner,
meets the requirements we have formulated for the refactoring planning problem.

5.6.1 General requirements
Computation.

The relations between refactorings —dependencies and conflicts— are not actually computed by
the planner. Instead of that, our approach implements the alternative computational method
mentioned in Section 4.5. The dependencies between refactorings are explicitly or implicitly
embedded into the refactoring planning domain HTN. The refactoring strategy addressing a
certain refactoring would include its dependencies as optional preparatory refactorings. The
planner allows us to define full specifications of refactorings that can be executed over the system’s
state. The plan is computed and generated in the same order as it would be applied. These two
features allow us to compute whether those preparatory refactorings would be needed or not.
The availability of the current system’s state also allows refactoring conflicts to be managed.
These are not explicitly included in the HTN, but if a conflicting sequence of transformations
is attempted, the planner would detect it by means of unmet preconditions and would therefore
select another conflict-free sequence.
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Software model.

The AST representation of the software system can be represented as a set of ground logic pred-
icates. JSHOP2 uses a set of ground logic predicates to represent the system’s state. Therefore
a set of ground logic predicates that represent the software system’s AST can be trivially used
in the planner to represent the current state of the system.

Deterministic and non-deterministic control constructs.

In this chapter, we have described how control constructs can be expressed as JSHOP2 tasks
and thus how they can be used in the planner. The computational model of the JSHOP2
planner, planning in the same order as the tasks should be applied over the system, implies that
planning for these tasks, which represent control constructs, is exactly the same as executing the
algorithms they implement. JSHOP2 HTNs can be seen as a true programming language and,
as we have described in this chapter, these control constructs can be written with it.

Incomplete specifications.

The presented approach enforces the incremental development and formalization of refactoring
heuristics. The refactoring planning domain, written as JSHOP2 HTNs, is meant to be incre-
mentally improved. However, the quality of the refactoring plans produced for a given objective
depends on the quality of the refactoring planning domain used. Results may vary from finding
no plan at all, to obtaining a set of good applicable plans. A more complete refactoring plan-
ning domain will lead to better plans for more objectives in more possible situations. A more
optimized planning domain will increase the efficiency of the planning process.

Elements of refactoring strategies.

All the elements we have identified to define refactoring strategies can be specified as JSHOP2
task networks to implement the computation of a complex refactoring process as a planning
problem. In this chapter, we have demonstrated this by describing how each element can be
specified with JSHOP2 HTNs. As an exception to this, we have not addressed duplicate code
queries and entity kind queries. The objective of this PhD dissertation is not to develop refactor-
ing strategies themselves, but to propose how they can be supported. Given the complexity of
their implementation, we have considered they are beyond the scope of this Thesis. These query
types will allow for more advanced refactoring strategies, but they are not, however, needed for
demonstrating our approach.

5.6.2 Requirements as a planning problem
Planning assumption A0 (finite number of states)

The task network helps to prune most of the state space. Even in a scenario of infinite states,
this means that the search space can be finite. The computation of a plan in an HTN approach is
performed by reducing tasks down the task network. A task network contains a finite number of
levels. Each non-primitive task can only be decomposed into a finite number of tasks. Therefore,
an acyclic task network defines a finite search space. Recursive or cyclic tasks, which we have
used to define loops, can make the state-space infinite, so special caution should be taken when
defining them in order to avoid this problem. The precondition of loop methods has to be carefully
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written, because a bad precondition can cause “infinite loops” to appear during the planning
process. This is always important for every programming language but, in our experience, this
is even more important in this case, because HTN domains are hard to debug.

Planning assumption A4 (restricted goals)

HTN planning allows the use of unrestricted goals. The necessary constraints to specify un-
restricted goals can be included as domain knowledge specified with HTNs. In our case, one
of the constraints for the plans produced by a refactoring planner states that the sequence of
transformations represented by the plan should be behaviour-preserving. Refactoring strategies
are behaviour-preserving by definition. The search for a plan is performed by strictly following
the control rules specified by them. Correctly written refactoring strategies force the planner to
produce plans which adhere to the behaviour-preservation constraint.






Chapter 6

Case Study

In order to demonstrate the feasibility of our approach, we have developed a small HT'N domain
for the refactoring planning problem, which addresses Feature Envy and Data Class design smells.
We have assembled a prototype that uses tools from other researchers and carried out a case
study over a set of open-source systems to characterise it. This chapter comprises a description of
the refactoring planning domain we have elaborated, the reference prototype we have integrated,
and an analysis and discussion of the results obtained with them for the two types of design
smells addressed. The design smell correction proposal, based on refactoring planning, that is
presented in this Thesis is characterised with the taxonomy defined in Chapter 3 as well.

6.1 A refactoring planning domain

Our main contribution in this prototype is the refactoring planning domain we have written to
demonstrate our approach. In order to feed the planner, the specifications of a set of refactor-
ings, refactoring strategies, other transformations and system queries have been represented as
JSHOP2 task networks. In practice, this actually means programming these transformations
and computations in the JSHOP2 domain definition language. We have used a diagramming
tool and a simple text editor to write this domain knowledge. The diagramming tool has been
useful for designing the task networks that have been coded with the text editor. Writing and
debugging the refactoring planning domain has been the most difficult activity of our approach.
However, these specifications can be easily reused. So far, refactoring strategies have been written
for: Remove Data Class, Remove Feature Envy and MOVE METHOD; and refactoring speci-
fications for 9 refactorings: ENCAPSULATE FIELD, MOVE METHOD, RENAME METHOD,
RENAME FIELD, RENAME PARAMETER, RENAME LOCAL VARIABLE, REMOVE FIELD,
REMOVE METHOD and REMOVE CLASS. We have also used the ECLIPSE + JTRANSFORMER
combo to develop and debug the main set of system queries, over 150, that we store in a PRO-
LOG file. These system queries and the rest of available elements in the refactoring planning
domain we have elaborated are listed in Appendix C. A review of one of the refactorings we have
implemented and the three strategies we have developed follows.

6.1.1 Refactorings

As mentioned before, writing refactoring specifications for the planner actually means pro-
gramming them with the JSHOP2 language. In order to illustrate how refactorings are im-
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(move-method ?method ?tgt-class ?reference ?delegate)

common-preconditions-ok

| (task ?param1 ?param2 ?param) |

method variant

; The method is not a constructor.
; The method does not call super.

1
1
1
1
1
1
1
1
1
1
1
1
1
1
i
1
; The src and tgt classes are not the same class. | - ) -
- The method is not static. ! | precondition first precondition
; There is no conflict. E
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

; Features of the source class used by the moved method
; should be accessible from the method's new class.

; There is no polymorphic usage of the method.

task list decomposition

v — — ordering — —>

(move-method-transformation ?src-class ?method ?tgt-class ?reference ?delegate) | ~ “------------------------------------—-

Figure 6.1: Root of the MOVE METHOD refactoring design. The top method’s precondition enumerates
the conditions common to all the three refactoring’s variations. The right-hand side of the Figure depicts
the meaning of the graphical notation used in this and the subsequent MIOVE METHOD design Figures.

plemented in the refactoring planning domain, we will describe here the MOVE METHOD
refactoring [FBB199, page 142|. This refactoring’s procedure is briefly described by Fowler et
al. as: “Create a new method with a similar body in the class it uses most. Fither turn the old
method into a single delegation, or remove it altogether.”

The refactoring’s mechanics will be reviewed in more detail as we describe its implementation
for the refactoring planning domain. This description mimics the actual process we have followed.
We have used a diagram editor to help us design the HT'Ns. Then we have implemented each
HTN branch and method with a text editor. We have performed separate tests for each method
and comprehensive tests for the full refactoring. The implementation of the MOVE METHOD
spans over 30 JSHOP2 methods.

In order to implement the refactoring, we have split its mechanics into three separate HTN
branches: move the method and reference it through a field of the source class, move the method
and reference it through a parameter of the original method, and move the method and keep
a delegating method in the original class. Some initial preconditions have to be checked before
trying to apply the refactoring. We have factored out the preconditions common to the three
different variations of the refactoring and placed them in the top entry point of the refactoring.
The diagram of this design is depicted in Figure 6.1. Listing 6.1 shows the implementation of
the MOVE METHOD refactoring root method.

We have defined four arguments for this refactoring: ?method references the method to be
moved; ?tgt-class references the target class where the method shall be moved to; 2reference
relates to the entity which is going to be used to reference the moved method, it can be either a
field of the original class or a parameter of the original method; finally, 2delegate is a kind of
boolean parameter indicating whether a delegating method should be kept in the original class
or not. It is expected to be either true or false. As described in Figure 6.1, the refactoring’s
top method establishes that if the method’s preconditions are met, the task move-method can
be achieved by decomposing it into the subtask move-method-transformation, which defines
the actual transformation. A new parameter ?src—class has been added to reference the source
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| (move-method-transformation ?src-class ?method ?tgt-class ?reference ?delegate)

through-delegate

; We want to keep a delegate method

v

(move-method-keeping-delegate ?src-class ?method ?tgt-class ?reference)

through-field-reference

; We do not want to keep a delegate method
; the reference is a field of the target class type

; declared in the source class

! \

(move-method-through-field ?src-class ?method ?tgt-class ?reference) |

through-parameter-reference

; We do not want to keep a delegate method
; The reference is a parameter of the target class type
; in the method's list of arguments

| (move-method-through-parameter ?src-class ?method ?tgt-class ?reference)

Figure 6.2: Design of the decomposition of the task move-method-transformation into the three
different variations of the MOVE METHOD refactoring.

class of the method to be moved. This is a relevant piece of information needed to perform the
transformation. Once this reference to the source class has been computed during the evaluation
of the preconditions, this information can be reused. The reference is passed as an argument to
avoid re-computing it again. This is a common practice we have used while writing refactorings
for the refactoring planning domain.

The three possible variations of the refactoring have been designed as three different alterna-
tive methods. This is shown in Figure 6.2. This design states that the method at the top of the
figure, move-method-transformation, can be achieved by applying one of the three alterna-
tive method decompositions: move-method-keep-delegate, move-method-through-field
or move-method-through-parameter. No order has been specified, so these alternatives are
non-deterministic. Additional preconditions have been defined to guard each method decom-
position, therefore, the planner would only attempt to apply those whose precondition holds.
The implementation of this non-deterministic alternative method decomposition is displayed in
Listing 6.2. In order to define a non-deterministic alternative, we have written three different
methods that share the same task symbol move-method-transformation. They specify three
different method decompositions for achieving this task. Each method contains a different pre-
condition and task decomposition. Each decomposition specifies a different list of subtasks to be
applied in order to achieve the move-method-transformation task.

Since the full implementation of the MOVE-METHOD refactoring is too big to be completely
reviewed here, from this point on, we will only traverse and describe in detail, at each task
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| (move-method-through-field ?src-class ?method ?tgt-class ?reference) |

; For all classes that contain a call to the moved method,
; the reference field is accessible from it

(move-method-definition ?src-class ?tgt-class ?method)
1 4 | A\
| (adjust-parameter-list ?src-class ?tgt-class ?method) |
Y AN
| (update-references-in-called ?src-class ?method) |
X
| (update-references-in-caller ?method ?reference) |
h |
| (!'del-rpvar move-method-added-parameter) |

Figure 6.3: Design of the MOVE METHOD refactoring variation that moves the method to a target
class referenced through a field of the source class. If the precondition holds, this task has to be achieved
by applying five subtasks in the specified order.

network level, the task decomposition and just one of its subtasks. As for the three variations
of the refactoring, we will focus on move-method-through-field, the one that attempts to
move a method completely, using a field of the original class as a reference and without keeping
a delegate method. Figure 6.3 represents the design of this variation’s implementation. We
have defined a single decomposition to achieve the task move-method-through-field. This
decomposition is guarded by a precondition which is specific to this particular MOVE-METHOD
variant. The task list of this decomposition is composed of five tasks that have to be applied
in the given order. The first four tasks actually implement the transformation, while the last is
aimed at deleting a persistent variable move-method-added-parameter that is used during the
plan computation.

The first four tasks define a basic procedure for moving the method. Firstly, the method
definition has to be moved from the source class to the target class. This implies modifying the
method’s header and the involved classes, so the AST references between the original class and
the method are removed, and the new AST references between the method and the destination
class are added. When moving a method from a source class to a target class, a new parameter
of the source class type is added to the method. This parameter is used to pass a reference to
an object of the source class type to the method so it can still access all the features it uses from
this class. The next task defines a transformation for modifying all the references to objects
of the original class types within the moved method. These references are changed so they are
performed through the newly added parameter, instead of through implicit accesses —unqualified
access— or through explicit accesses —using the explicit “this” receiver. Finally, the fourth task
will describe how to update all the existing calls to the moved method. These references have to
be re-routed through the requested field, in order to point them to the method in its new place
within the target class. The implementation of the task network from Figure 6.3 is performed
with a single method, which is displayed in Listing 6.3 (page 134).
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| (update-references-in-called ?src-class ?method)

; Blank precondition ‘
T,

(add-explicit-this-receivers ?src-class ?method) | | (change-this-to-parameter-receivers ?method)

)

; Blank precondition '
- =2

(add-explicit-this-receivers-to-call ?src-class ?method) | | (add-explicit-this-receivers-to-getfield ?src-class ?method)

Figure 6.4: Design of a transformation for updating the references to the source class within the moved
method during a MIOVE METHOD refactoring.

The review of the refactoring implementation continues by describing in detail one of the
subtasks in the next step down the task network. The update-references-in-called task is
dedicated to updating the references within the moved method. The design of this task is illus-
trated in Figure 6.4. All the accesses to the features of the source class within the moved-method
should be performed through the added parameter. The update-references-in-called task
implements this part of the refactoring. It is decomposed into a task list with two subtasks.
Firstly, all unqualified accesses are turned into qualified accesses through the explicit “this” re-
ceiver. This is performed by the add-explicit-this-receivers task. Afterwards, all occur-
rences of “this” are substituted by accesses to the newly added parameter, which references the
source class. This transformation is defined in the change-this-to-parameter-receivers
task. Finally, the add-explicit-this-receivers task is further decomposed into a task list
of two more subtasks. One of them implements the addition of “this” receivers to implicit method
calls, while the other performs the same operation over implicit field accesses. The task lists in
this design should be applied in the specified order and no preconditions are needed to guard
any of these decompositions. The implementation of these tasks is shown in Listing 6.4 (page
134). These two levels of the task network, which are fairly easy to implement, are supported by
two simple methods, each containing blank preconditions and a single decomposition.

The review of the MOVE METHOD refactoring implementation will be completed by de-
scribing some of the methods at the lowest level of this refactoring’s task network. These methods
are not decomposed into other methods, but into primitive tasks or operators which specify the
actual transformations of the system’s state.

The add-explicit-this-receivers task, whose design is depicted in Figure 6.5, represents
a deterministic while loop. As presented in the former chapter, this kind of loop is designed as
a task with two ordered alternative decomposition. One of them specifies the loop’s body and
condition and the other serves as the exit branch of the loop. The first decomposition’s branch,
which is represented with the calls-with-implicit-receiver task, is always evaluated in
the first place due to the alternative decompositions being ordered. The exit branch, represented
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(add-explicit-this-receivers-to-call ?src-class ?method) |

VAR
caIIs-wynplicit-receivér

% no-more-implicit-receivers

; get a call with implicit receiver
(callT ?call ?parent ?method nil ?name ?args ?any-method) ; Blank precondition
(get-new-id ?pef-id)

llupdate-last-id 1)

| (ladd (identT ?pef-id ?call ?method this ?src-class))
h |

(Irep
(callT ?call ?parent ?method nil ?name ?args ?any-method)
(callT ?call ?parent ?method ?pef-id ?name ?args ?any-method)

)

Q.
| (add-explicit-this-receiver-to-call ?src-class ?method) |

Figure 6.5: Design of a transformation for adding a “this” reference to all unqualified calls to the source
class from the moved method during « MIOVE METHOD refactoring.

with the no-more-implicit-receivers task, is only attempted when the first one fails. The
implementation of this task is shown in Listing 6.5.

The condition in the first branch looks for an unqualified call within the method, and obtains
the full predicate that represents this call. This is a callT predicate whose third term —its
enclosing method- is the current method, and whose fourth term —its receiver— is the empty list
—represented with nil. If some unqualified call is found, the next condition —get-new-id— is used
for computing a new identifier for a new predicate that will be added to the system’s state.

The loop’s body task decomposition is a task list containing four tasks. Firstly, an auxiliary
operator is used to increment an internal counter that logs the newly created predicate. The
second operator in the task list adds this predicate, which represents the “this” receiver, to the
system’s state. The third operator in the task list modifies the current call predicate by linking
it to the explicit “this” receiver. The fourth element in the task list is a recursive invocation of
the current task that represents entering the next iteration of the loop.

The add-explicit-this-receiver-to-call will continue to be invoked recursively until
the precondition fails. That is, when no more calls with implicit receivers can be found within the
method. The loop’s precondition is marked as a “first” preconditon. If an iteration fails, the plan
will not try to meet the precondition with a different call predicate. This implies that the plan-
ner should not attempt different orderings for the loop iterations in order to obtain a valid plan
for the loop as a whole. When the loop condition no longer holds, the planner will select the sec-
ond branch. It will evaluate a blank precondition, which is trivially true, and will apply an empty
task list, thus completing the planning process for the add-explicit-this-receiver-to-call
task.

The change-this-to-parameter—receivers is reviewed here in order to give a complete
vision of how the accesses from the moved method are finally updated to point to the parameter
referencing an object of the original class type. This task implements the transformation of all
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| (change-this-to-parameter-receivers ?method) |

AN

this-receivers

i no-more-this-receivers

; get an explicit "this" receiver

(identT ?receiver ?parent ?method this ?src-class)
; get the recently added parameter

(rp-var move-method-added-parameter ?param)

; Blank precondition

(paramDefT ?param ?method ?type ?param-name)

(Irep : | |
(identT ?receiver ?parent ?method this ?src-class) H
(identT ?receiver ?parent ?method? param-name ?param)

)

N

| (change-this-to-parameter-receivers ?method) |

Figure 6.6: Design of a transformation for replacing all “this” references within a moved method to the
method’s parameter referencing its source class during a MOVE METHOD refactoring.

the “this” accesses into parameter accesses. The design of this task is quite similar to the previous
one and is illustrated in Figure 6.6. This task network also represents a while loop.

In this case, the loop’s condition is aimed at gathering all the explicit “this” receivers —
identT predicates. If the first condition holds, the next condition is used to query a persistent
variable, in order to find out which parameter references an object of the original class type.
This parameter was added to the method at a previous stage, more specifically, within the
adjust-parameter—1list task (see Figure 6.3). The loop’s body is a task list decomposition of
two tasks. The first one is an operator that replaces the “this” receiver, for the parameter. The
second task is the recursive invocation of the next iteration of the loop. The implementation of
the change-this-to-parameter—-receivers task can be found in Listing 6.6 (page 136).

6.1.2 Refactoring strategies

We have compiled some basic strategies into HTN domain knowledge: a strategy for applying
the MoOVvE METHOD refactoring, and two strategies for removing Feature Envy and Data Class
design smells. They are reviewed in this section. Refactoring strategies can be extracted from
the literature and compiled into HTN domain knowledge. The strategies presented here are a
subset selected from those that can be found in some catalogues [FBBT99, LMO06]. They have
been translated into the JSHOP2 domain definition language and used to test the suitability of
this approach. They are not complete, since the objective of this work is to provide an approach
to support refactoring planning, but not to develop the refactoring strategy specifications that
can be applied with this technique. As we have already mentioned, our approach allows the
incremental improvement of the planner by adding more specifications.
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1 (:method (move-method ?method ?tgt-class ?reference ?delegate)
2 ( ; Precondition

3 ; The method is not a constructor

4 (not (is_constructor ?method))

5

6 ; The method does not call super

7 (not (call-to-super ?method ?super-method ?super-call))
8

9 ; The src and tgt classes are not the same class

10 (enclosing-class—-of-method ?method ?src-class)

11 (not (same ?src-class ?tgt-class))

12

13 ; The method is not static

14 (not (is—-static ?method))

15

16 ; There is no conflict

17 (not (is-name-conflict ?tgt-class ?method))

18

19 ; Features of the source class used by the moved method
20 ; should be accessible from the method’s new class

21 (forall (?src-class-method)

22 (

23 (method-call-from ?method ?src-class-method ?call)
24 (contains-method ?src-class ?src-class-method)

25 )

26 (can—access—method ?src-class-method ?tgt-class)

27 )

28 (forall (?src-class—-field)

29 (

30 (field—-access—from ?method ?src-class—-field ?access)
31 (contains—field ?src-class ?src-class—field)

32 )

33 (can—access—field ?src-class-field ?tgt-class)

34 )

35 )

36

37 ( ; Task decomposition

38 (move-method-transformation ?src-class ?method ?tgt-class
39 ?reference ?delegate)

Listing 6.1: Root of the MOVE METHOD refactoring implementation. The precondition includes
queries to gather the full information of the involved entities, and the preconditions common to the
different move method variations.
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1 (:method (move-method-transformation ?src-class ?method ?tgt-class
2 ?reference ?delegate)

3 through-delegate

4 ( ; Precondition

5 ; We want to keep a delegate method
6 (same ?delegate true)

7 )

8 ( ; Task decomposition

9 (move-method-keeping-delegate ?src-class ?method ?tgt-class ?reference)

13 (:method (move-method-transformation ?src-class ?method ?tgt-class
14 ?reference ?delegate)

15 through-field-reference

16 ( ; Precondition

17 ; We do not want to keep a delegate method

18 (same ?delegate false)

19

20 ; the reference is a field of the target class type,

21 ; declared in the source class

22 (declares—-field ?src-class ?reference)

23 (field-type ?reference ?tgt-class)

24 )

25 ( ; Task decomposition

26 (move-method-through-field ?src-class ?method ?tgt-class ?reference)
27 )

28 )

29

30 (:method (move-method-transformation ?src-class ?method ?tgt-class
31 ?reference ?delegate)

32 through-parameter-reference

33 ( ; Precondition

34 ; We do not want to keep a delegate method

35 (same ?delegate false)

36

37 ; the reference is a parameter of the target class type,

38 ; 1n the method’s list of arguments

39 (method-parameter ?method ?reference)

40 (parameter-type ?reference ?tgt-class)

41 )

42 ( ; Task decomposition

43 (move—-method-through-parameter ?src-class ?method ?tgt-class ?reference)
44 )

45 )

Listing 6.2: Different method decompositions, implemented as separate methods, that implement the
three variations for performing a MIOVE METHOD refactoring.
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© 0 N O U e W N =

10
11
12
13
14
15
16
17
18
19
20
21

(:method (move-method-through-field ?src-class ?method ?tgt-class ?reference)
move-method-through-field-reference
( ; Precondition
; For all classes that contain a call to the moved method,
; the reference field is accesible from it
(forall (?caller-class)
(
(method-call-from ?caller-method ?method ?call)
(enclosing-class-of-method ?caller-method ?caller-class)
)

(can—access—-field ?reference ?caller-class)

)

( ; Task decomposition
(move-method-definition ?src-class ?tgt-class ?method)
(adjust-parameter-list ?src-class ?tgt-class ?method)
(update-references—-in-called ?src-class ?method)
(update-references-in-caller ?method ?reference)
(!!'del-rpvar move-method-added-parameter)

Listing 6.3: Method that implements a MOVE METHOD refactoring by referencing it in its destination
class, through a field of its original class. This variation of the refactoring does not leave a delegate

method.

1 (:method (update-references-in-called ?src-class ?method)
2 () ; Blank precondition

3

4 ( ; Task decomposition

5 (add-explicit-this-receivers ?src-class ?method)

6 (change-this-to-parameter-receivers ?method)

7 )

8 )

9

(:method (add-explicit-this-receivers ?src-class ?method)
() ; Blank precondition

( ; Task decomposition
(add-explicit-this-receivers-to-call ?src-class ?method)
(add-explicit-this-receivers-to-getfield ?src-class ?method)

Listing 6.4: Methods that decompose the task of updating the references within the moved method.
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1 (:method (add-explicit-this-receivers-to-call ?src-class ?method)
2 calls—-with-implicit-receivers

3 (:first ; First satisfier precondition

4 (

5 ; get a call with implicit receiver

6 (callT 2call ?parent ?method nil ?name ?args ?any-method)

7 (get-new-id ?pef-id)

8 )

9 )

10 ( ; Task decomposition

11 (!'update-last-id 1)

12

13 ; add an explicit receiver and replace the call to use it
14 ('add (identT ?pef-id ?call ?method this ?src-class))

15 (!'rep

16 (callT ?call ?parent ?method nil ?name ?args ?any-method)
17 (callT ?call ?parent ?method ?pef-id ?name ?args ?any-method)
18 )

19

20 ; loop

21 (add-explicit-this-receiver-to-call ?src-class ?method)

22 )

23

24 no-more—-implicit-receivers

25 () ; Blank precondition

26 () ; Empty task decomposition

27 )

Listing 6.5: Method that implements a loop for replacing all the implicit unqualified receivers within the
moved method by explicit “this” receivers instead.
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1 (:method (change-this-to-parameter-receivers ?method)
2 this-receivers

3 (:first ; First satisfier precondition

4 (

5 ; get an explicit "this" receiver

6 (identT ?receiver ?parent ?method this ?src-class)
7

8 ; get the recently added parameter

9 (rp—var move—-method-added-parameter ?param)

10 (paramDefT ?param ?method ?type ?param—-name)

11 )

12 )

13 ( ; Task decomposition

14 ('rep

15 (identT ?receiver ?parent ?method this ?src-class)
16 (identT ?receiver ?parent ?method? param-name ?param)
17 )

18

19 ; loop

20 (change-this-to-parameter-access ?method)

21 )

22

23 no-more-this-receivers

24 () ; Blank precondition

25 () ; Empty task decomposition

Listing 6.6: Method that implements a loop for replacing all the explicit “this” receivers within the moved
method by references to the parameter pointing to the method’s original source class.
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move-method all-sts (method, tgt-class, reference)

RN
trivial strategy basic strategy

mm-pre-refactorings renaming (method, tgt-class) mm-post-refactorings access-method (method)

| rename-method(method, new-name) |

" mm-pre-refactorings access-methods (method, tgt-class) "

________________ ‘o

| show-method (called-method) !

i

i strategy

1

i
i

i

mm-pre-refactorings access-fields (method, tgt-class)

-- \
- \

- \

e--""" A

move-method (method, tgt-class, reference, false) | | move-method (method, tgt-class, reference, true) |

Figure 6.7: Ouerview of a simple strategy for applying the MOVE METHOD refactoring.

A MoveE METHOD application strategy

A simple strategy for applying the MOVE METHOD refactoring is described here. The design of
the strategy is displayed in Figure 6.7 and its specification with our strategy definition language
is represented in Listings 6.7 and 6.8.

A MoVE METHOD refactoring can be attempted by two alternative strategies: a trivial
strategy that would simply try to apply the refactoring as it is, and a basic strategy, that will
try to perform some preparatory transformations before trying to apply the refactoring. The
trivial strategy will try to apply the refactoring without keeping a delegate method in the source
class. The top strategy, which in this case has been labelled “all-sts”, is not meant to impose
any ordering or precondition over the alternate strategies it comprises. Therefore, the planner
can freely choose from among the available strategies freely. The basic strategy is composed
of five sequential substrategy invocations. The first one -mm-pre-refactorings renaming—
will attempt to solve any name conflicts that might surface when moving the method to the
target class. This will be addressed by computing a new name for the method and invoking a
RENAME METHOD refactoring. The second and third substrategies are aimed at modifying
the visibility of any class members, methods or fields that will not otherwise be visible from the
moved method at its new location. These lead to transformations that will simply turn these



138 CHAPTER 6. CASE STUDY

strategy move-method all-sts (method, tgt-class, reference)
body
alt
branch apply move-method trivial (method, tgt-class, reference)
branch apply move-method basic (method, tgt-class, reference)
end

end

strategy move-method trivial (method, tgt-class, reference)
body
apply move-method (method, tgt-class, reference, false)
end

strategy move-method basic (method, tgt-class, reference)
body
apply mm-pre-refactorings renaming (method, tgt-class)
apply mm-pre-refactorings access-methods (method, tgt-class)
apply mm-pre-refactorings access—-fields (method, tgt-class)
apply move-method allow-delegate (method, tgt-class, reference)
end

strategy move-method allow-delegate (method, tgt-class, reference)
body
alt
branch apply move-method (method, tgt-class, reference, false)
branch apply move-method (method, tgt-class, reference, true)
end

end

Listing 6.7: A strategy defining different approaches that increase the chances of applying the Move
Method refactoring successfully.

members to public visibility. After scheduling these preparatory transformations, the fourth
substrategy in the basic strategy will try to apply the Move Method refactoring. This will be
attempted by two alternative substrategies in no particular order. One of them will try to apply
the MOVE METHOD refactoring without keeping a delegate method, and the other will invoke
the refactoring, explicitly forcing the planner to leave the delegate. Finally, the fifth substrategy
in the basic strategy will modify the visibility of the moved-method if needed.

A Feature Envy strategy

A method that suffers from Feature Envy is a method that accesses and manipulates data from
other classes rather than its own. It accesses fields directly or through accessor methods. This
smell can be repaired by moving the method to the class whose fields it uses most or by reallocat-
ing the accessed data into the method’s class. It can also be noticed that there is a relationship
between the Feature Envy and Data Class design smells [LMO06]. If a Feature Envy method
is accessing a Data Class, itis highly desirable to move the method to that class. A graphical
overview of the strategy for removing a Feature Envy smell is shown in Figure 6.8.
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strategy mm-pre-refactorings renaming (method, tgt-class)

body
if is-name-conflict (tgt-class, method) then
alt
branch
compute—-new—name (method, new-name)
branch

method-fgn (method, src-pkg-name, src-class—name, method-name)
class—-fgn(tgt-class, tgt-pkg-name, tgt-class—name)
user—query ("New name for method",
(tgt—-pkg—name, tgt-class—name, method-name), new—name)
end
apply rename-method (method, new-name)
end
end

strategy mm-pre-refactorings access-methods (method, tgt-class)
body
foreach called-method
satisfying
method-call (method, called-method) and
not (can—access-method (called-method, tgt-class))
loop
apply show-method (called-method)
end
end

strategy mm-pre-refactorings access—fields (method, tgt-class)
body
foreach accessed-field
satisfying
field-access (method, accessed-field) and
not (can—access-field (accessed-field, tgt-class))
loop
apply show-field (accessed-field)
end
end

strategy mm-post-refactorings access-method (method)
body
if method-call (caller-method, method) and
enclosing-class-of-method (method, caller-class) and
not (can—-access-method (method, caller-class))
then
apply show-method (method)
end
end

Listing 6.8: Strategies defining the additional transformations that can be applied before a MIOVE

METHOD refactoring.
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Figure 6.8: Overview of a simple strategy for removing a Feature Envy smell.

Figure 6.8 portrays an overview of the relationships between the Feature Envy strategies and
the refactorings involved. Refactoring strategies are labelled with a goal and a name. Most
strategies are labelled with a remove-feature-envy goal. One of them —trivial- describes a
trivial recipe: removing a Feature Envy smell by removing the affected method. Another strategy
—move-method— specifies that the method should be moved to another class. The strategy
named all-sts is used as the “entry point” one. This is the strategy that should be invoked for
instantiating a remove—-feature-envy strategy. The planner computes the applicability of each
alternative strategy and selects the suitable one in order to include it in the refactoring plan.

The difference between applying a refactoring directly instead of through the invocation of
an associated refactoring strategy can be noticed in the example. In our example, the REMOVE
METHOD refactoring is invoked directly, while the MOVE METHOD refactoring is invoked
through a refactoring strategy. A direct application of the REMOVE METHOD refactoring will
only succeed when its preconditon is met. In this case, we do not want the planner to apply any
additional transformation. On the other hand, the application of the MOVE METHOD refac-
toring through one of its refactoring strategies will result in some preparatory transformations
being planned before the refactoring is attempted, in order to enable the refactoring’s precondi-
tion. In this case, we want the planner to examine all the available ways of performing the Move
Method refactoring, even if this implies applying some additional refactorings, because we want
this refactoring to be applied by any means.

The alternatives under remove-feature—envy move—method represent the strategies that
are available for removing the design smell by moving the method to another class. These
alternatives are mainly focused on how the target class of the MOVE METHOD refactoring can
be computed. A closer look at how this is done is displayed in Listing 6.9.

Three different heuristics can be used and each one uses a different query to achieve it.
We can simply obtain the candidate target class by querying the system for all the classes
accessed from the feature envy method. This heuristic is specified in the substrategy named
remove-feature-envy move-method-to-envied-class. The get-envied-class query is
used to obtain those candidate classes. The planning mechanism checks all suitable solutions
until one which works is found or until no more possibilities are left.
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strategy remove-feature-envy all-sts (method)
body
alt
branch apply remove-feature-envy trivial (method)
branch apply remove-feature-envy move-method (method)
end
end

strategy remove-feature-envy trivial (method)
body
apply remove-method (method)
end

strategy remove-feature-envy move-method (method)
body
alt
branch
apply remove-feature-envy move-method-to-user-class (method)
branch
apply remove-feature-envy move-method-to-data-class (method)
branch
apply remove-feature-envy move-method-to-envied-class (method,env-class)
end
end

strategy remove-feature-envy move-method-to-user-class (method)
precondition
method—-fgn (method, pkg-name, class—name, method-name)
user—query ("Package name of new class for method",
(pkg-name, class-name, method-name),
tgt-pkg—name)
user—query ("Class name of new class for method",
(pkg-name, class—-name, method-name),
tgt-class—name)
class—-fgn(tgt-class, tgt-pkg-name, tgt-class—name)
body
apply remove-feature-envy move-method-to-envied-class (method, tgt-class)
end

strategy remove-feature-envy move-method-to-data-class (method)

precondition
smell ("data class", env-class)
get-envied-class (method, env-class)
body
apply remove-feature-envy move-method-to-envied-class (method, env-class)
end

strategy remove-feature-envy move-method-to-envied-class (method, env-class)
precondition
get—-envied-class (method, env-class)
get-movemethod-reference (method, env-class, reference)
body
apply move-method all-sts (method, env-class, reference)
end

Listing 6.9: Draft of some strategies that may be defined to remove a Feature Envy method.
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The move-method-to-data-class strategy specifies checking Data Classes as candidate
target classes. The smell ("data-class", env-class) query uses the information provided
by iPlasma, to find classes labelled as Data Classes. Once a Data Class is selected, it is passed as
an argument to the remove-feature-envy move-method-to-envied-class strategy. Since a
solution for the variable env-class has already been found, in this case, the get-envied-class
query does not compute the target class but verifies that the selected Data Classs can be identified
as such.

The remaining strategy —remove-feature—envy move-method-to-user-class— employs
a user query to compute the candidate target class. A dialog is displayed to the developer
requesting the necessary information. The message shown to the user is represented as the first
set of arguments, and the information obtained is collected in the second set of arguments.

A Data Class strategy

A Data Class is a class that contains little functionality and whose data is excessively accessed
from other classes. The symptoms of a Data Class are that it exposes a lot of public fields; it
declares very few methods, or mainly accessor methods, and it presents low complexity. In order
to remove a Data Class one would try to follow the general approach of bringing behaviour and
data close together. If the Data Class is trivially simple and it is being accessed from just a
single method or class, it would be desirable to move the Data Class members to its client class
and, if possible, to get rid of the Data Class. Moreover, if the class is not being used at all,
it could even be completely removed. If the Data Class is being used from several clients and
the class is worth keeping, one should rather move their client methods to the Data Class. The
relation between the Feture Envy and the Data Class smells also plays an important role here.
When moving client methods to the Data Class, those client methods suffering from Feature
Envy should preferably be moved.

The strategies we have implemented for removing a Data Class are a little more complex than
the ones for Feature Envy. The overview of the strategy we have defined, within the refactoring
planning domain, for removing Data Class smells is shown in Figure 6.9.

The top-most strategy, that acts as the entry point for all the available Data Class strate-
gies, has been labelled remove-data-class all-sts. In order to instantiate this, the planner
can choose between two different strategies. The simplest one, remove-data-class trivial,
attempts to erase the Data Class from the system by removing the affected class, thus invoking
the REMOVE CLASS refactoring. As in the Feature Envy case, the Remove Class refactoring
is invoked directly, because we only want this strategy to be applied when the current system’s
state meets the refactoring’s preconditions. The other alternative Data Class strategy —remove-
data-class reorganize class— comprises a basic class reorganization strategy that is achieved by
performing three substrategies.

The first substrategy attempts to move all the Feature Envy methods which are clients of the
Data Class. In order to do that, the remove-data—-class move-fe-methods deals with finding
and gathering all the candidate methods. For each method, it invokes the remove—feature-envy
move-method-to-envied-class. This is a strategy that was already developed as part of the
Feature Envy removal strategies, and that is being reused here. The second Data Class substrat-
egy —remove-data-class move-client-methods— attempts to move the other regular client
methods of the data class. These two substrategies invoke the MOVE METHOD strategy, so for
each candidate method, all available strategies for moving it are checked.
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Figure 6.9: Ouverview of simple strategies for removing a Data Class.

The third substrategy —remove-data-class clean-class— is dedicated to modifying the
target class members that may be causing the class to be identified as a Data Class. This
substrategy decomposes into three steps. Firstly, encapsulate-fields non-private is used
for gathering all the publicly exposed fields and ENCAPSULATE FIELD is invoked to hide all
of them. Then, all the unused accessors, which may also be exposing the data class fields too
much, are removed. Two strategies remove-getters unused and remove-setters unused
are defined for this purpose. They simply find all the class accessors and invoke the REMOVE
METHOD refactoring directly over them. Therefore, all those accessor methods which would
meet this refactoring precondition, those which are unreferenced and hence unused, are planned
to be removed.

The implementation of the strategies we have written for removing a Data Class is detailed
in Listings 6.10, 6.11 and 6.12. It is worth noticing the usage of the try invocation in some
circumstances, instead of the apply invocation. For example, in Listing 6.11, using the try
invocation within the loops’ bodies implies that the desired strategy will be attempted to be
planned for each method satisfying the given conditions. Nevertheless, we do not want the
planner to fail if these strategies cannot be instantiated due to one of these methods failing. In
order to avoid this issue, the written specification tells the planner to apply the strategy over as
many methods as possible. The planner is commanded to “try” these strategies but not to fail if
it is not possible to apply them for all cases.
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strategy remove-data-class all-sts (class)
body
alt
branch
apply remove-data-class trivial (class)
branch
apply remove-data-class reorganize-class (class)
end
end

strategy remove-data-class trivial (class)
body
apply remove-class (class)
end

strategy remove-data-class reorganize-class (class)
body
apply remove-data-class move-fe-methods-to-class (class)
apply remove-data-class move-client-methods-to-class (class)
apply remove-data-class clean-class (class)
end

Listing 6.10: Top strategies that we have defined to remove a Data Class smell.

strategy remove-data—-class move-fe-methods—-to-class (class)

body
foreach fe-method
satisfying
smell ("feature envy", fe-method)
get-envied-class (fe-method, class)
loop

try remove-feature-envy move-method-to-envied-class (method, class)
end
end

strategy remove-data-class move-client-methods-to-class (class)
body
foreach method
satisfying
client-method-of-class (method, class)
loop
try move-method all-sts (method, class, reference)
end
end

Listing 6.11: Strategies that we have defined to move behaviour into a Data Class smell in an attempt
to remove the smell.
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strategy remove-data-class clean-class (class)
body
apply encapsulate-fields non-private (class)
apply remove-getters unused (class)
apply remove-setters unused (class)
end

strategy encapsulate-fields non-private (class)

body
foreach field

satisfying
nonprivate-field (class, field)

loop
compute-getter—-name (field, getter-name)
compute-setter-name (field, setter-name)
apply encapsulate-field (field, getter—-name, setter-name)

end

end

strategy remove—getters unused (class)
body
foreach accessor
satisfying getter-method(class, accessor)
loop
try remove-method (accessor)
end

strategy remove-setters unused (class)
body
foreach accessor
satisfying setter-method(class, accessor)
loop
try remove-method (accessor)
end

Listing 6.12: Strategies that we have defined to clean a Data Class smell by encapsulating its fields and
getting rid of its unused accessor methods.
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6.2 A refactoring planner prototype

We have assembled a prototype that integrates a set of tools from other authors: JTRANS-
FORMER, JSHOP2 and IPLASMA. It should be noticed that our intention has been to demon-
strate the approach presented in this Thesis and not to build a production tool. Therefore, in
some cases, the ease of integration for experimentation purposes, and the availability of a tool
have been the criteria we have followed when selecting a particular tool version among their
different variants.

6.2.1 Tools used in our prototype
JTRANSFORMER

Description: JTRANSFORMER is a tool developed by the ROOTS group [JTr|. It is a Java
source code analysis and transformation tool based in PROLOG. It converts ECLIPSE projects
into logical representations of their ASTs. These first-order-logic predicates are called program
element facts (PEFs) by the authors. With this tool an ECLIPSE project can be analysed and
manipulated with complex queries and transformations written in PROLOG.

Installation and versions: The tool is distributed and deployed as an ECLIPSE plugin and,
in its most recent version —2.9.0—, it supports the full Java 1.4, 1.5 and 1.6 specifications, except
for generics. We use the 2.3.1 version of the tool, which is not its latest version, because it
was the version available when we started writing refactoring specifications and system queries.
The PEF specification has changed between versions and therefore, in order to use the latest
JTRANSFORMER version, our HT'N domain should be migrated to the latest specification too.
Inputs and outputs: Being an ECLIPSE plugin, it uses a project from the IDE’s workspace
as its input. The tool translates the project’s source code into a PEF representation and offers
a PROLOG console to interact with the PEF factbase and a tool to explore and inspect it. The
tool produces two kinds of output: to an ECLIPSE project and to a file. The system’s source
code and the factbase are kept in sync, so changes in any of the system’s representations are
propagated to the other. In addition to this, the tool can export the current system’s factbase
representation to a text file. This file contains the set of PEFs representing the whole system’s
source code, as well as the additional PEFSs representing the binary elements referenced from the
source code’s AST, such as those of the JAVA language library. PEFs are written in PROLOG
syntax. For reference purposes, the Java PEFs specification we use is available at the website of
the ROOTS research group [JPs].

What do we use it for?: We use JTRANSFORMER for two purposes. We use the tool to
process a software system’s source code, in the form of an ECLIPSE project, obtaining an output
text file that contains the logic-based representation of it in the form of a PEF factbase. We also
use it to write, test and debug system queries. We mantain a separate ECLIPSE project with
system queries written in PROLOG and we use the PROLOG console of JTRANSFORMER to test
them.

Limitations: The JTRANSFORMER version we use presents some limitations that restrict the
range of systems that can be processed with it. The ECLIPSE project used as the JTRANSFORMER
input should compile correctly. This means that all references to, for example, any external
libraries used in the project, should be resolved. As far as we know, the tool considers each
single project as a separate system. We can use it with different projects within the same
workspace, but we have not been able to generate a joint PEF representation comprising them.
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This makes it difficult to use it with big software systems, which are usually organised into several
projects. The 2.3.1 version does not support generics either and, as a consequence, the tool will
not accept a project with generics appearing in the source code as a valid input.

According to the authors of JTRANSFORMER, the latest version of the tool overcomes these
limitations. It can deal with unresolved references. Therefore, it is able to work with project
parts or in the absence of some required libraries. It does support systems which are split into
different projects. It does not support generics fully yet, but it can parse and represent any
system’s source code, even if it uses generics.

JSHOP2

Description: JSHOP2 is an HTN forward planner developed in the Computer Science De-
partment of the University of Maryland [JSHa|. The planner has already been described in the
previous chapter (see 5.3.2), so only some additional interesting technical aspects are detailed
here.

Installation and versions: The planner is a standalone tool that can be obtained in different
“flavours” SHOP2, which is the original Lisp version, JSHOP2, which is the JAVA version we
use, and JSHOP2GUI, which is a modified version of JSHOP2 that integrates a graphical in-
terface. Both SHOP2 and JSHOP2 are used through command-line interfaces. We use the 1.0.3
version of the tool, which is the latest one. The graphical version displays a tree for visualizing
how the search space and the task network are being explored during the planning process. We
have chosen the command-line version of the tool because it is easier to integrate with other tools,
as it can communicate with them through text files; it can be used for performing automated
experiments, because it can be run in the background, with no need for user interaction; and
because it is much more efficient than the graphical version.

Inputs and outputs: The JSHOPZ2 planner needs two main text files as its inputs: a planning
domain and a planning problem. The planning domain file contains the methods, operators and
axioms that comprise the problem domain. The planning problem file contains one or several
specifications of planning problems, each one composed of the initial state of the system, as a
set of ground first-order-logic predicates, and a goal, as a ground task list. These two files have
to be written in the JSHOP2 language [I1g06|, which presents a Lisp-like syntax. The keywords
of the JSHOP2 language cannot be used in the specifications of the domain or the planning
problem. This can be taken into account when writing domain specifications, but it forces us
to pre-process the representation of the initial state of the system, in order to “protect” the
forbidden terms that can appear in JAVA entities’ names. The external user-defined procedures,
that can be invoked during the planning process through call terms, should be specified as JAVA
classes implementing an abstract method. These JAVA source files, one per external procedure,
are additional input files complementing the domain definition.

As its output, the planner produces the sequence of operators as a list of ground primitive
task symbols that constitute the found plan. Some details about the planning process are also
given: the elapsed time of the process and the plan cost —the sum of all costs of the operators
in the plan. The planner can be asked to produce only the first valid plan it finds, a maximum
number of plans, or all the plans it can find. The plans are dumped to the standard output so
it is easy to redirect and store them in a text file.

What do we use it for?: We use JSHOP2 to compute refactoring plans. We specify the
refactoring planning domain as a set methods, operators, axioms and external procedures, as
described in Chapter 5. This domain implements a set of system queries, refactoring strategies,
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refactorings and non-behaviour preserving transformations, that are gathered in the domain
definition input file. It also includes some queries that have to be implemented through JAvA
files, as external procedures. We use a logic-based representation of the current version of the
system source code as the initial state in the problem definition file. The goal in this file is a
ground task that represents the refactoring strategy that we want to instantiate into a refactoring
plan.

The output the planner produces contains operators only. In our approach, operators are

used just to represent the most basic AST changes. Therefore, in order to interpret the plan
at a higher-level, and to be able to identify which strategies, refactorings and non-behaviour-
preserving transformations have been included in the plan, we use some auxiliary operators.
These are included in the plan each time a higher-level transformation is selected. In addition to
a sequence of operators representing the atomic AST changes, the auxiliary operators in the plan
provide enough information, so the refactoring plan can be digested from it at different levels of
detail.
Limitations: The JSHOP2 planner is case insensitive, and due to this, some information from
the original source code can be lost in the planning process. Despite the terms’ capitalization in
the original input files, all terms are converted to lowercase during the planning process. Since
the JAVA language specification defines the language as case sensitive, this information loss can
introduce ambiguities in the results. This can even produce undesired results and errors, because
two JAVA entities of the same type and the same name, but with different capitalization, can be
mistakenly identified.

The problem solver integrated in JSHOP2 can cope with a good range of axioms, even with
rather complex ones, but is limited to strict functional computations. Some additional com-
putation mechanisms, such as the cut operator of PROLOG (“!”), are absent. Also, external
procedures do not have access to the whole system state. These limitations imply that some op-
erations, such as some metrics computations, are difficult to implement or can only be performed
in a very inefficient way. A more complete logics-engine, such as the PROLOG inference engine,
would be desirable.

Some technical features of the JSHOP2 planner impose certain restrictions on how the plan-
ner can be used and integrated with other tools. One of these features is the JSHOP2 language
used in both input and output files. It might not be a problem for defining the refactoring
planning domain, but the representation of the system’s states has to be given to the planner as
a set of logical terms in the same Lisp-like language.

All these limitations are acceptable for a prototype. Name capitalization loss does not really
lead to conflicts or ambiguities in the end. Our approach can be demonstrated even if we cannot
implement certain metrics. The set of tools we use can communicate through translators and
pre-processing scripts. Nevertheless, these limitations have to be solved in order to build a
production tool. The development of a custom implementation of the JSHOP2 algorithm, more
integrated with the other set of tools, could solve all these problems. A PROLOG version of the
planner, for example, could be easily and straightforwardly connected to JTRANSFORMER which
is tightly integrated with ECLIPSE already.

IPLASMA

Description:  1PLASMA is a tool by the LOOSE research group [iPl, MMM™05]. It is an
integrated environment that performs a great variety of quality analysis over Object-Oriented
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systems. Among other features, it contains tools for software visualisation, metrics computation
and detection of bad smells. It implements the design smell detection strategies defined in [LMOG6].
Installation and versions: IPLASMA is available as a standalone research tool written in
JAVA. We use the 6.1 version of the tool, which is its latest version. Other manifestations of the
tool exist. INFUSION is a more complete and evolved version of IPLASMA. It detects more design
smells and displays more complete reports. INCODE is an alternative version of INFUSION that
is distributed and deployed as an ECLIPSE plugin. Unfortunately, we have not found a way to
export the lists of smells detected with either INFUSION or INCODE.

Inputs and outputs: The tool can scan a given directory in search of JAVA source code files
and the libraries referenced from them. It uses a set of JAVA files as inputs, analyses them and pro-
duces on-screen graphical reports as outputs. These reports include metrics summaries [LMOG,
Chapter 3|, graphical visualisation of the system’s structure [LM06, Chapter 4] and table-like re-
sults for the system entities. These table-like reports can be customised with filters, for example
to list the entities affected by a certain design smell, and with additional columns, for example
to show the fully qualified name or associated metrics for each listed system entity. Finally, the
table-like reports can be exported as CSV-kind files.

What do we use it for?: We use IPLASMA to pre-compute a list of the design smells present
in the targeted system. This complementary information is added to the representation of the
initial system’s state. Knowing which design smells an entity suffers from can be useful during
the planning process. For example, we would prefer to move a feature envy method to a data
class instead of to a class that does not present this smell.

Limitations: It is not possible to integrate this tool, as it is, to couple its design smell detection
capabilities more tightly with the correction planning our approach provides. We have not found
a way to specify new detection strategies or to customize the included ones, which would be
desirable.

Possible solutions for these problems can vary from implementing, in the same environment as
the planner, the detection strategies from [LMO06], to using similar tools, such as Cultivate [Cul,
SRKO07], which might be easier to integrate, or even to collaborate with the authors of INCODE
in order to be able to interact with their ECLIPSE-plugin version of the tool.

6.2.2 How the tools are integrated into our prototype

Our prototype is composed of a refactoring planning domain specification, the tools from other
authors that we have described in the previous section and a set of SHELL and SED' scripts that
are used to translate the files interchanged between tools, to prepare the necessary inputs for
the planner and to launch the planning experiments. A general schema of how these parts are
integrated is shown in Figure 6.10.

To search for refactoring plans, we intially obtain the logic-based representation of the system
we want to process. We rely on JTRANSFORMER. to convert the system’s AST into a set of logical
terms. This set builds up the initial state of the system for the planner. Additionally, we use
iPlasma to detect the design smells in the system, and to generate smell-entity reports that
complement the information about the current state of the system. We generate a separate
report per design smell kind. These processes are both interactive. They cannot be automated
and thus, have to be performed manually. The result of these processes are several text files: one
containing the set of PEFs representing the system’s initial state and another set for the smell

!The UNIX command line stream editor.
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reports, in the form of lists of the affected entities with their fully qualified names. This process
should be run for each software system, and moreover, for each version or state of the system we
want to address, in order to obtain the initial state files.

A set of SHELL and SED scripts translates the output produced by the JTRANSFORMER tool,
which is PROLOG-based, to a Lisp-based version matching the syntax and rules of the JSHOP2
language. The smell reports are also converted to first-order-logic predicates that relate smells
and the affected entities. This translation and pre-processing stage is performed automatically
when needed —the first time a certain initial source code is used. The result of this process is a
file containing the specification of the system’s initial state written in the JSHOP2 language.

We have organised the refactoring planning domain in different text files: one for each refac-
toring strategy and refactoring implementation, one for the operators implementing the basic
AST changes, one for a set of system queries, one for a set of auxiliary methods, operators, and
axioms, and a set of JAVA files implementing a few external procedures (See Appendix C for a
reference list). The system queries are originally written and tested in PROLOG using ECLIPSE
and JTRANSFORMER. A set of SHELL and SED scripts translates these PROLOG queries automat-
ically into the JSHOP2 language. The refactoring planning domain definition file is compiled
by another set of SHELL scripts that gathers all the JSHOP2 files into a single file.

A launcher SHELL script prepares the system’s initial state, the refactoring planning domain,
etc., to use them as inputs for the planner, and then runs the computation of the requested plans
by invoking the JSHOP2 planner. The computation can be configured to request a single plan, or
to launch a battery of experiments. The raw planner’s output, containing the resulting plans and
some debugging information, is then collected in a text file. The produced plans are processed
with SHELL and SED scripts to remove the low-level details — the sequence of basic operators in
the plan — and a digested plan, containing only refactorings, and refactoring strategies, is finally
produced.

6.3 Description of the case study

In order to exercise our prototype and evaluate our approach, we have performed some exper-
iments based on case studies. We present two case studies that address the instantiation of
refactoring strategies for removing the Data Class and Feature Envy design smells. They use the
refactoring planning domain described in Section 6.1.

6.3.1 Experiments setup
Description and objectives

The evaluation of our approach has been performed in an empirical way and has focused on
the efficiency and scalability of the planning process. The effectiveness of our initial refactoring
planning domain has also been tested. Nevertheless, the ability of our prototype to produce
refactoring plans that effectively correct a design smell is linked to the range of situations covered
by the strategies defined in the refactoring planning domain. Since the number of cases addressed
by our sample refactoring planning domain is rather limited, we have given more attention to
the efficiency and the scalability of the approach rather than to the effectiveness of the plans.
Therefore, the experiments presented here are mainly oriented to testing the time consumed by
the process regarding the size of the targeted software system. Using the template for experiment
definition from [WRH™00], our intention with this case study can be described as:
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Experiment Goal: Analyse our refactoring planning approach for the purpose of characterisa-
tion and evaluation with respect to their effectiveness, efficiency and scalability from the
point of view of the researcher in the context of the reference prototype we have assembled.

The objectives of the experiments are further decomposed and listed below:

To characterise our prototype. The first objective of the experiments is to give an overview
of the efficiency of our approach and of the reference prototype we have assembled.

To evaluate the scalability of the approach. One of our major concerns is the feasibility
of applying our approach over real systems, in a size range from medium to large. We
aim to check whether our approach could be implemented as a production tool that would
produce refactoring plans in a reasonable time.

To establish a base line for future research. To the best of our knowledge, we do not know
of any other approach dealing with automated refactoring planning. Therefore, it is nec-
essary to measure our prototype behaviour so that future research and improvements can
be compared against it.

Variables

The variables used in this study are listed below:

e Independent variables:

— PEF: number of program element facts in the initial state of a software system
representation. Defines the size of a system and therefore the size of each experiment.

— FE: number of Feature Envy design smells in the initial state of a software system
representation. Defines the number of Feature Envy experiments to be run for each
system.

— DC'": number of Data Class design smells in the initial state of a software system
representation. Defines the number of Data Class experiments to be run for each
system.

e Dependant variables

— P: Number of plans obtained for each system. It is used for characterising the effec-
tiveness of the approach.

— T;: Total elapsed time. Time elapsed for running an experiment completely, from
launching the JSHOP2 tool until the execution of the planner ends. Total elapsed
time is the sum of precompilation time and planning time. It is used for characterising
the efficiency and scalability of the approach. This variable is measured in seconds.

— T.: Precompilation time. Time elapsed during the precompilation time of the JSHOP2
tool, from launching the JSHOP2 tool until starting the generated planner to initiate
the planning process. It is used for characterising the efficiency and scalability of the
approach. This variable is measured in seconds.

— Tp: Planning time. Time elapsed during the planning process, from starting the

planner until the termination of the planning process. It is used for characterising the
efficiency and scalability of the approach. This variable is measured in seconds.
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System Version | NOC | NOM | LOC PEF | Feature Envy | Data Class
0 | Void — 1 1 4| 12696 — —
1 | JTombstone | 1.1.1 40 233 | 1938 | 32780 2 (2) 7
2 | Groom 1.3 34 243 | 3699 | 35434 2 (5) 2
3 | Lucene 1.9 199 | 1998 | 17627 | 85064 18 (25) 16
4 | Pounder 0.96 218 | 1318 | 9410 | 98570 26 (26) 3
5 | MyTelly 1.2 72 941 | 12625 | 133605 2 (6) 13
6 | Jwebap 0.6.1 114 | 1278 | 16417 | 141047 17 (18) 21
7 | dbXML 2.0 389 | 3336 | 25862 | 199400 21 (30) 40
8 | GanttProject | 2.0.10 515 | 5048 | 40775 | 241095 36 (64) 27
9 | JfreeChart 1.0.11 561 | 8024 | 80668 | 354543 45 (46) 29
Total number of experiments ‘ 169 ‘ 158 ‘

Table 6.1: Details of the system used in our experiments, with its number of classes (NOC), methods
(NOM), lines of code (LOC), program element facts in the first-order logic representation of the sys-
tem(PEFs), Feature Envy and Data Class design smells. The first row —Void— represents, as a reference,
an empty JAVA system.

Samples

In order to test our approach we ran experiments over a set of open source systems. The subjects
of our study are: JTOMBSTONE, a program for reporting dead code in Java programs [JTol;
GROOM, a lightweight webserver |Gro|; LUCENE, a textual search engine for Apache [Apal;
POUNDER, a GUI testing utility [Pou|; MYTELLY, a program for managing custom TV list-
ings [MyT]; JWEBAP, a profiler tool for monitoring Java systems [Jwe|; DBXML, a native
XML database [dbX]|; GANTTPROJECT, a project scheduling and management tool |Gan|; and
JFREECHART, a data chart library [JFr|.

As mentioned in Section 6.2, the limitations of some of the tools we use restrict the systems
that can be processed with our prototype. These limitations have been the main criteria we have
followed to select the systems. We have browsed sourceforge manually and searched among those
systems which are suitable to be used with our prototype. We have gathered a set of systems of
different sizes, which vary from small to medium in size.

Table 6.1 summarises the details of the targeted systems, which have been obtained by
analysing them with iPlasma. The table shows the number of classes, methods (NOM), lines
of code (LOC), Feature Envy and Data Class smells detected by the tool. We have removed
some smells from the experiments because they affected structures our representation does not
support, such as nested classes. The total number of smells detected by iPlasma is shown
between parentheses. The number of smells we have used for our experiments is shown without
parentheses. It is worth noticing that an additional entry, labelled “Void”, has been included
as the first row of the table. This entry represents a JAVA system composed of a single class,
enclosed in the default package, and that only contains a single and empty main method. It
serves as a reference to illustrate that a part of the initial state factbase belongs to the basic
definitions of the JAVA language. The table is ordered by factbase size because the factbase
representation of each system is what is used as the actual input for the planning process.

The materials, data and results of this case study are available at http://www.infor.uva.
es/~Jjperez/thesis.


http://www.infor.uva.es/~jperez/thesis
http://www.infor.uva.es/~jperez/thesis
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Figure 6.11: QOverview of the experiment’s execution environment.

Execution environment

The experiments’ execution environment is comprised of a set of experiment scripts. These scripts
prepare each experiment setup, and launch the refactoring planner described in Section 6.2.2.

For each experiment, we have collected the total elapsed time (7}), the planning time (7))
and the raw output of the planner. The planning time (7},) is measured by JSHOP2 and
included in its output, the total elapsed time (7}) is measured by the experiment scripts and the
precompilation time (7¢) is computed as T} — T),.

As described in Section 6.2.2, the raw output of the planner produces not only the plan but
also a good amount of debugging information. This output has been filtered afterwards in order
to extract the relevant information regarding the sequence of refactorings in the plan and the
strategy paths traversed through the task network to obtain them.

At the end of each run, the experiment scripts process the raw output of the planner in
order to obtain the measured times and the digested refactoring plans for each experiment. An
overview of this setup is shown in Figure 6.11 (see also Figure 6.10 for the overview of the
refactoring planner prototype).

The experiments have been executed on a Core 2 Quad Q9400 / 2.66 GHz computer with
4GB of RAM running Ubuntu Linux 9.10 operating system.

Experiment procedure

The experiments comprise the execution of the refactoring planner prototype for solving a set of
324 refactoring planning problems, aimed at removing Feature Envy and Data Class smells — 169
and 158 cases —, which span across the 9 software systems selected. Each experiment requests
the planner to search for a plan as a solution for instantiating one of the refactoring strategies
previously described in 6.1.2. Each experiment is a planning problem whose goal is to achieve
a design smell refactoring strategy. The arguments for the strategy are the entities involved in
each design smell detected.
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Feature Envy

System PEFs Smells | Plans % Mean T3 | Mean T | Mean T}
1 Jtombstone 32780 2 1 50 29.52 23.02 6.49
2 | Groom 35434 2 1 50 30.55 21.57 8.98
3 | Lucene 85064 18 3 16.67 64.1 53.71 10.4
4 | Pounder 98570 26 21 80.77 107.7 103.66 4.04
5 | MyTelly 133605 2 0 0 253.69 182.85 70.84
6 | Jwebap 141047 17 9 52.94 182.03 148.05 33.98
7 | dbXML 199400 21 11 52.38 413.21 303.29 109.92
8 | GanttProject | 241095 36 13 36.11 544.79 385.46 159.32
9 | JfreeChart 354543 45 24 53.33 1065.54 960.83 104.71
Totals 169 83 49.11
Data Class
System PEFs Smells | Plans % Mean Ty | Mean T. | Mean Tj,
1 | Jtombstone 32780 7 6 85.71 26.28 22.5 3.78
2 | Groom 35434 2 2 100 30.56 21.63 8.93
3 | Lucene 85064 16 16 100 62.96 53.48 9.48
4 | Pounder 98570 3 3 100 179.91 104.28 75.63
5 | MyTelly 133605 13 11 84.62 206.36 186.15 20.21
6 | Jwebap 141047 21 20 95.24 167.55 148.36 19.2
7 | dbXML 199400 40 40 100 431.47 300.36 131.11
8 | GanttProject | 241095 27 24 88.89 530.18 386.57 143.62
9 | JfreeChart 354543 29 23 79.31 1021.41 959.76 61.65
Totals 158 145 91.77

Table 6.2: Summary of the results regarding the number of produced plans and the elapsed times of the
planning process. Times are given in seconds.

The experiments have been prepared according to the prototype described in Section 6.2.2.
The initial state of each system, comprised of its first-order logic representation and the smell-
entity predicates with the design smells detected, have been prepared for all samples prior to the
execution of the experiments. The experiments have been run in batch mode and the resulting
files: raw plans, refactoring plans and measured times, have been collected afterwards.

6.4 Analysis of the results

The summary of the results obtained are shown in Table 6.2. This table displays an initial
overview of the prototype. These results are discussed in further detail in this section. The
analysis of the results will be focused first on the produced plans, and then on the efficiency and
the scalability of the approach.

6.4.1 Discussion on the produced plans

The first point worth discussing is the difference in the total number of plans produced for each
design smell. In the case of the Feature Envy case study, our prototype has been able to produce
almost 50% of the requested plans, while it has generated plans for over 90% of the experiments
in the Data Class case study. Despite the simplicity of the sample strategies implemented in the
prototype, the results obtained are quite acceptable. Therefore, we consider them as good results.
The difference in the success ratios between the Feature Envy and the Data Class case studies is
due to the nature of the implemented strategies. The Feature Envy strategy can only generate a
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Feature Envy

System | 1 | 2 3 4 5 6 7 8 9 Totals
Plans | 1 | 1 3 |21 0 9 11 | 13 | 24 83
Trivial (Remove Method) St. 0[O0 2 19| 0 1 7 6 7 42
Move Method St. 1 1 1 2 0 8 4 7 17 41
To Data Class St. 0|1 1 0 0 5 1 1 5 14
To Envied Class St. 1|0 0 2 0 3 3 6 12 27
Data Class
System | 1 | 2 3 4 5 6 7 8 9 Totals
Plans | 6 | 2 | 16 3 11 | 20 | 40 | 24 | 23 145
Trivial (Remove Class) St. 1{0] 0 0 3 0221 4 1 31
Reorganize Class St. 5|21 16 3 8 20 | 18 | 20 | 22 114
Move Feature Envy Methods St. | 0 | 1 1 0 0 2 1 1 3 9
Move Client Methods St. 2|2 3 2 4 2 4 8 10 37
Clean Class St. 51| 2| 16 2 8 20 | 18 | 17 | 16 104

Table 6.3: Summary of the strategies traversed for producing the plans per system and strategy type.

49 %
| all-sts |
51% T 49%
I trivial I I move-method I
" 34 % .. 66 %
A SN
I move-method-to-data-class I Imove-method-to-envied-classI

(a) Feature Envy strategies.
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21% o e 79%
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9 L/37 \ 104
I move-fe-methods I I move-client-methods I I clean-class I

(b) “Data Class” strategies.

Figure 6.12: Distribution of the strategy “paths” traversed for computing the plans obtained.
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plan when the targeted method can be either removed or displaced to another class, closer to the
data it accesses. The Data Class strategy has more chances of success. It can generate a plan
when the targeted class can be removed, when any method can be transferred to the class, or
when some “class cleaning” is performed by improving the encapsulation of its publicly exposed
fields. Further efforts in the refactoring planning domain and smell strategies could include
additional knowledge to improve these figures. The distribution of how the substrategies have
been traversed to obtain the resulting plans is summarised in Table 6.3, and graphically shown,
in a more concise manner, in Figure 6.12. Dashed arrows represent alternative substrategies
and are decomposed by percentages. Regular arrows represent complementary strategies and
therefore, just a count is shown. The top strategies display the ratio of plans obtained for each
design smell from the total number of experiments launched. The strategy that asks the user for
the target class to host the moved method has been disabled in the experiments, since they are
meant to be run unattended.

Table 6.4 summarises the number of refactorings in the produced plans per system and
refactoring type. A graphical depiction of the number of refactorings in the produced plans
per case study is shown in Figure 6.13. Some observations can be extracted from these results.
In the Feature Envy case, the majority of method movements have been done by completely
moving the method. Only in a few cases, 5 against 36, the method had to be moved by leaving a
delegating method behind, in the original method’s place. Most Feature Envy smells in system 4
—POUNDER- have been corrected by removing the affected methods. This is because this system
is a test utility for JAVA GUIs. A closer examination of these methods reveals that they are not
actually used within the system, but they seem to expose an API for offering the system’s test
functionality. It should be noticed that our approach does not discriminate whether the cases
programmed for planning are actually design smells or not, so this inspection and the consequent
decision should be performed by the developer, either before or after requesting the refactoring
plan.

Regarding the Data Class cases (see Table 6.4), we have found the results obtained from
system 4 —POUNDER- and system 7 -DBXML— to be particularly interesting. Among the
MoVE METHOD count in the plans of system 4, 24 out of the 27 methods displayed in
the table have been displaced to one particular Data Class: PounderController in package
com.mtp.pounder.controller. This class contains over 20 fields, exposed through accessor
methods, and serves merely as a container for them. As a consequence, the planner has found
many candidate methods, those accessing the class’ fields, to be moved into the class.

In system 7 -DBXML~—, the planner has found that almost half the Data Class smells can
be easily addressed by applying the REMOVE CLASS refactoring in order to get rid of the
affected class (See Table 6.4). We have anaysed these particular cases in more detail and
found that 15 out of the 22 classes proposed to be removed come from just two packages:
com.dbxml.db.admin.nodes and com.dbxml.db.enterprise.jsp. These classes are not
used, and therefore, they are not being referenced from within the system. As in the case
of the removed methods from the Feature Enwvy case study, we have tried to guess whether it
could make sense to keep these classes in the system, even when they are not being used. We
couldn’t find a reason for this. Therefore, we have considered it would be safe to remove them
as the computed plans instructed us to do.

Regarding the MOVE METHOD refactorings, in the Data Class case, similarly to the Feature
Envy case, the majority of the moved methods were completely moved, without the need to add
a delegating method.
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Figure 6.13: Number of refactorings and transformations in the produced plans.

Feature Envy

Systems 1 2 3 4 5 6 7 8 9 Total
Plans 1 1 3 21 0 9 11 13 24 83
Remove Method 0 0 2 19 0 1 7 6 7 42
Show Method 2 0 0 0 0 9 2 3 9 25
Show Field 0 1 3 0 0 6 2 0 6 18
Move Method 1 1 1 2 0 8 3 5 15 36
Move Method Keeping Delegate 0 0 0 0 0 0 1 2 2 5
Total | 3 2 6 21 0 24 15 16 39 126
Data Class
Systems 1 2 3 4 5 6 7 8 9 Total
Plans 7 2 16 3 13 21 40 27 29 158
Remove Class 1 0 0 0 3 0 22 4 1 31
Show Method 6 1 9 0 0 8 5 22 17 68
Show Field 10 | 3 29 171 0 25 10 34 68 196
Move Method 6 5 10 | 27| 1 24 6 26 50 155
Move Method Keeping Delegate 1 0 1 0 0 6 0 7 4 19
Encapsulte Field 12 | 22 s 8 27 | 82 169 64 23 484
Remove Setter 18 | 13 | 50 8 17 | 58 179 | 42 68 453
Remove Getter 8 3 23 0 14 35 143 28 72 326
Total | 62 | 47 | 199 | 60 | 62 | 238 | 534 | 227 | 303 | 1732

Grand Total [ 65 | 49 [ 205 | 81 | 62 [ 262 | 549 | 243 [ 342 | 1858 |

Table 6.4: Summary of the plans produced and the number of refactorings in them per system and
refactoring.
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As for ENCAPSULATE FIELD, which is the most commonly used refactoring for removing a
Data Class case in our experiment, we have noticed some smell manifestations that concentrate
most of these refactorings. In one particular manifestation of the design smell, in system 7, the
planner has found a Data Class exposing its content through over 40 fields with default —package—
visibility. This class, PreferencesDialog in package com.dbxml.db.admin.dialogs, is a GUI
class representing a dialog. The exposed fields store all the descendant graphical components
contained within it. For this particular Data Class manifestation, the planner has generated a
plan with 43 ENCAPSULATE FIELD refactorings (out of the 169 displayed in the table) and
as many REMOVE GETTER and REMOVE SETTER refactorings as well. This is caused by a
“collateral effect” of the ENCAPSULATE FIELD refactoring, which creates accessors when they
do not previously exists. As these newly created accessors are never accessed from anywhere
in the system, they are removed later on. Another 6 GUI classes, also in system?7, present the
same problem as this one, with a number of ENCAPSULATE FIELD refactorings between 14
and 18 per Data Class. As a summaty, all the set of GUI classes in system 7, adds up to
132 ENCAPSULATE FIELD refactorings, out of the 169 displayed in the table, and a similar
number of REMOVE GETTER and REMOVE SETTER refactorings.

Despite the simplicity of the strategies implemented in the current refactoring planning
domain, the experiments presented illustrate the benefits we claimed our approach provides.
The refactoring strategy concept allows us to describe smell correction and refactoring appli-
cation‘recipes” in a semi-formal way and to organize them into reusable knowledge. In our
experiments, the “apply move method” strategies have been used in both smell strategies devel-
oped. A substrategy of the Feature Envy has also been employed in the Data Class strategy.
How the HTN planning approach, and in particular the JSHOP2 planner, provides support for
instantiating refactoring strategies for each particular case has also been demonstrated. The next
section will further analyse the suitability of this type of planner by discussing the efficiency of
the planning process.

6.4.2 Discussion on the prototype efficiency

The discussion on the efficiency of our prototype is focused on the time elapsed for computing
the refactoring plans. Table 6.2 shows an initial overview of the total elapsed mean times. They
have been summarised by system and divided into their components: precompilation time and
planning time.

Descriptive analysis

A quick skim over the results may show that the elapsed total time seems to be related to system
size, and that bigger systems imply higher total times. Nevertheless, this has to be examined in
more detail.

During the development of the refactoring planning domain definitions, we have noticed that,
with JSHOP2, the biggest fraction of the total elapsed time is due to the precompilation stage.
This stage involves parsing a huge domain specification, including HTNs, queries and system
state, and generating a JAVA program with all the problem definition embedded as methods,
strings, arrays of strings, variables etc., within its source code. This process, as stated by the
authors of JSHOP2, performs some optimizations while synthesizing a problem-specific plan-
ner that may increase the efficiency of the planning process [IN03|. Nevertheless, the authors
use problem domains with a small number of predicates in their initial system’s state defini-
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Feature Envy | Data Class
Size / Mean total elapsed time 0.97 0.98
Size / Mean precompilation time 0.95 0.95
Size / Mean planning time 0.82 0.43

Table 6.5: Pearson’s correlation coefficients between PEFs (system size) and mean elapsed times for
each design smell.

tion. Their biggest examples contain about 600 predicates, while our experiments range from
32780 to 354543. We suspect that the precompilation stage is very ineflicient for problems
with initial states of this size. We even had to implement minor modifications to the JSHOP2
pre-compilation code because the original did not support our larger initial system states and
often crashed. Our modifications allowed the pre-compilation stage’s planner synthesizer to run
considerably faster. We speculate that the benefits of the precompilation stage may not apply
to our case. The added cost of the precompilation stage, which is significant for problems like
ours, might overcome the improved efficiency of the planning process. We intend to explore this
further in future work.

We have computed the Pearson’s correlation coefficients between PEFs (system size) and
mean elapsed times for each design smell. The correlation coeflicients, which are displayed in
Table 6.5, show that the tight correlation between system size and total elapsed time might be
due to the correlation between system size and precompilation time. The correlation between
size and planning time is not so evident, it is lower in the Feature Envy case and much lower in
the Data Class case. As will be shown in the normality tests we have performed, the planning
time variable does not present a normal distribution and therefore this correlation analysis has
only a purely descriptive interest. Inferential analysis of the dependency between system size
and planning time is carried out later on in this section. Nevertheless, this quick analysis serves
to warn us that precompilation and planning times have to be examined separately.

As a consequence of all these initial considerations, and in order to give more precise results,
we have decided to measure both the precompilation time and the planning time, and to examine
them separatedly. Hence, our efficiency analysis is more focused on the planning time costs. As
summarised in Tables 6.2 and 6.5, not only the mean precompilation times are higher than the
mean planning times, but in addition, precompilation times seem to be tightly correlated to
system size. Regarding the planning times, as the targeted system gets bigger, the planning time
also seems to get larger, but the correlation with system size is less clear than in the case of
precompilation time.

Therefore, the potential threats to the scalability of our approach, if any, might be mainly
caused by the JSHOP2 pre-compilation stage. This may be improved in the future by imple-
menting a custom planner, based on JSHOP2, that would avoid this overload. Moreover, even
if the growth of the mean planning time were to be correlated to the targeted system size, it
appears to scale for even bigger systems. The mean planning time is under 3 minutes in all cases.
Therefore, we consider this result to be quite acceptable for our prototype in terms of efficiency
and scalability. The great benefit of the HTN planning approach is that the planner searches
a severely pruned state space. The time results are quite good despite the refactoring planning
problem having a huge search space.

As for the differences between both design smell case studies (see Table 6.2), for some systems,
the mean planning times do not seem to differ very much between the two explored case studies
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—Data Class and Feature Envy. At first sight, the mean planning time is higher in the case of
Feature Envy experiments for systems 1, 5 and 6. In the case of the Data Class experiments,
they seem to be higher for systems 4, 7 and 9. Finally, the mean planning times for systems
2, 3 and 8 appear to be rather similar between both case studies. Therefore, there is no clear
evidence of the planning times being generally dependent on the requested strategy.

In order to analyse precompilation and planning time in more detail, their raw figures are
graphically depicted, separated per design smell case study, in Figures 6.14 and 6.15 as scatter-
plots. These diagrams clearly reveal that the precompilation time (see 6.14(a) and 6.15(a)) is
almost the same regardless of the individual experiments and the case study, and it seems to
be only dependent on the system’s state size. These Figures also illustrate that the majority of
planning times (see 6.14(b) and 6.17(b)) actually fall below the 3 minute limit. In addition, they
also reveal that the planning time results are very dispersed. It also seems that this dispersion
may increase alongside system size.

From this point, the discussion will be focused on the planning time. This will be reviewed
in greater detail.

Review of the outliers

A closer description of the dispersion of the planning times has been performed by obtaining
additional statistics and by representing them with boxplot diagrams. The computed statistics
are compiled in Tables 6.6 and 6.7. Boxplots representing the distribution and dispersion of
the planning time are shown in Figure 6.16. In order to find the cause of this dispersion, we
have perfomed a closer examination of the outliers. We have analysed the outliers in the bigger
systems —dbXML, GanttProject and JFreeChart— but we could not find any general cause for
them.

We have reviewed whether the higher planning times are due to the planner failing to find
a plan. In these cases, the planner would presumably search a bigger state space until run-
ning out of possible paths. Therefore, it might make sense that these experiments would take
longer to compute. Nevertheless, this cannot be rightfully confirmed. We have looked more
carefully into the Feature Envy experiments’ results because the number of successful and un-
successful plan computations in this case study were balanced. In the experiments of system 8
—GANTTPROJECT—, with 4 outliers, the three highest planning times belong to unsuccessful plan
computations while the fourth one belongs to a successful experiment that produced a valid plan.
In system 9 —JFREECHART— experiments, with 9 outliers, the two most extreme ones belong to
experiments for which the plan was not found, but the other 7 outliers belong to experiments
for which valid plans were successfully obtained. However, in system 7 -DBXML— experiments,
with 4 outliers, the two highest planning times belong to successful plan computations, while
the other two belong to unsuccessful ones. We did not see that the dispersion and the higher
planning times could be clearly and entirely related to not finding a plan, at least with the data
we have.

We have also analysed the outliers of the Data Class study case. All the outliers we have
reviewed belong to experiments for which a plan has been computed successfully. Therefore, the
outliers of this case study have been useless for searching for more evidence of whether not finding
the plan could affect the planning time. In this case study, we have specifically searched for a
relation between the higher planning times and the number of refactorings in the plan. In system
7 -DBXML- with 9 outliers, we have found that the experiment with the highest planning time
corresponds to the plan with the highest number of refactorings among all the experiments —127.
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(b) Planning time of the “Remove Feature Envy” case study per system size.

Figure 6.14: Distribution of the elapsed time for the Feature Envy experiments per system. The total
time is presented in two separate and well distinguished stages: the JSHOP2 precompilation stage time
and the actual planning time. Time is given in seconds. System size is given as the number of predicates
in the factbase representing the software system.
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(b) Planning time of the “Remove Data Class” case study per system size.

Distribution of the elapsed times for the Data Class experiments per system. The total

time is presented in two separate and well distinguished stages: the JSHOP2 precompilation stage time
and the actual planning time. Time is given in seconds. System size is given as the number of predicates
in the factbse representing the software system.



164 CHAPTER 6. CASE STUDY

Feature Envy

System | Plans | Mean Plan. Time | Median | Std. Deviation | Min. Max. Range | Coef. of Variance
1 2 6.49 6.49 8.11 0.76 12.23 11.47 124.93%
2 2 8.98 8.98 9.69 2.13 15.83 13.70 107.89%
3 18 10.40 8.20 11.81 0.10 51.23 51.13 113.56%
4 26 4.04 3.64 2.00 0.05 10.01 9.96 49.53%
5 2 70.84 70.84 32.60 47.79 93.89 46.10 46.01%
6 17 33.98 19.89 41.50 3.44 152.98 149.54 122.13%
7 21 109.92 42.83 148.23 0.43 419.37 418.94 134.86%
8 36 159.32 40.47 379.76 0.06 | 2036.04 | 2035.99 238.36%
9 45 104.71 32.62 216.00 6.54 | 1058.49 | 1051.95 206.29%

Data Class

System | Plans | Mean Plan. Time | Median | Std. Deviation | Min. Max. Range | Coef. of Variance
1 7 3.78 1.57 3.58 0.26 8.34 8.08 94.92%
2 2 8.93 8.93 0.05 8.89 8.96 0.07 0.56%
3 16 9.48 7.24 10.42 2.56 45.30 42.74 109.87%
4 3 75.63 65.80 73.19 7.86 153.24 145.38 96.77%
5 13 20.21 13.59 27.23 0.00 105.35 105.35 134.72%
6 21 19.20 14.84 20.28 0.01 92.45 92.45 105.66%
7 40 131.11 16.43 258.01 2.07 | 1334.63 | 1332.55 196.78%
8 27 143.62 49.46 297.85 2.96 | 1464.97 | 1462.00 207.39%
9 29 61.65 32.60 93.17 5.79 442.06 436.27 151.12%

Table 6.6: Descriptive statistics of the experiments’ results, regarding the T, variable, summarised by
system and design smell study case.

Feature Envy

System Q1 Q3 IQ Range | Outliers (below) | Outliers (above) | Plans | Plans — Outliers
1 0.76 12.23 11.47 0 0 2 2
2 2.13 15.83 13.70 0 0 2 2
3 3.63 10.76 7.13 0 2 18 16
4 3.43 4.35 0.92 1 3 26 22
5 47.79 93.89 46.10 0 0 2 2
6 8.39 37.52 29.13 0 2 17 15
7 5.87 94.20 88.33 0 4 21 17
8 23.88 76.04 52.17 0 4 36 32
9 19.17 61.60 42.43 0 11 45 34
Total | 5.87 [ 50.39 | 4452 | 1 { 26 [ 169 142 \
Data Class
System Q1 Q3 IQ Range | Outliers (below) | Outliers (above) | Plans | Plans — Outliers
1 0.92 7.97 7.06 0 0 7 7
2 8.89 8.96 0.07 0 0 2 2
3 3.50 11.16 7.66 0 1 16 15
4 7.86 153.24 145.38 0 0 3 3
5 5.86 17.34 11.48 0 1 13 12
6 5.92 20.10 14.18 0 2 21 19
7 7.84 86.56 78.72 0 9 40 31
8 9.86 139.76 129.90 0 3 27 24
9 13.57 | 49.98 36.41 0 4 29 25
Total | 7.16 [ 46.46 | 39.30 | 0 { 20 [ 158 ] 138 \

Table 6.7: Quartiles and ranges for analysing the planning time distribution and for drawing the boxplot
diagrams. We have also included the count of the outliers that have been identified.
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Figure 6.16: Distribution of the planning time for the two case studies and per system. Systems are
ordered by growing factbase size from left to right.
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Moreover, the plans of 7 out of 8 of the highest planning times among this system’s experiments,
include a big number of refactorings, over 40, and 50 in one case. Nevertheless, this does not apply
to all outliers. One of the outliers among this system’s experiments corresponds to a plan with
a smaller number of refactorings —8. In addition to this, we have not found examples in system
7 of experiments with a big number of refactorings in their plans and regular planning times.
In system 8 -GANTTPROJECT— with 3 outliers, the three experiments correspond to plans with
a medium number of refactorings —19, 23, 27. However, among the experiments of this system,
we can find experiments whose plans include a similar or bigger number of refactorings —31,
24, 17, 15— and which have taken a regular time to compute, below the Q3 of this system. In
system 9 ~JFREECHART— with 4 outliers, 3 of them belong to experiments whose plan contains
a medium number of refactorings —31, 31, 22. Nevertheless, one of these outliers, specifically the
second highest, belongs to an experiment with only 2 refactorings in the resulting plan. Among
the other experiments of this system, we found cases with a big number of refactorings in the
obtained plans —48, 35— which have nevertheless been computed in a regular time, below the Q3
of this system.

By reviewing the outliers for the planning time, we could not find an evident cause for the
dispersion of the results. We have speculated that, in the Feature Envy case, the dispersion might
be caused by the unsuccessful plan computations taking significatively longer than the successful
ones. We also suspect that the higher planning times might be due to the application of the
ENCAPSULATE FIELD refactoring in the Data Class case, maybe originated by an inefficient
implementation of the refactoring. There is a big number of this type of refactorings in the plans
of most of the experiments that present the highest planning times. However, we are afraid that
more data is needed to confirm these hypotheses in the future.

The next sections are dedicated to performing several inferential statistical analyses over the
planning time variable.
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Inferential analysis of planning time.

To begin with, a quick look at the descriptive analysis of the experiments’ elapsed time suggests
that planning time does not follow a normal distribution. Therefore, we have performed normality
tests in order to decide which statistical analysis would be the most appropriate to apply. We
have split the planning time samples by system and case study. To check normality, we have
performed the Shapiro-Wilk’s test [SCJ88]. We have been able to apply the test to all but 5
samples, for which there were too few values —less than 5 experiments.

Test: Normality test. Shapiro-Wilk.
Variable: T, (Planning time)
Hypotheses: Hj: T}, belongs to a normal distribution.

Hi: T, does not belong to a normal distribution.

According to the test results, which are shown in Table 6.8, we can reject Hy with 5%
significance level in all cases, therefore T' (planning time) does not belong to normal distributions.
As a consequence, further data tests are performed, from now on, with non-parametric analysis.

System Feature Envy Data Class
Sample Size w p — value Reject? Sample Size w p — value Reject?
1 2 — — — 7 0.804977 | 4.58401E-02 yes
2 2 — — — 2 — — —
3 18 0.649539 | 6.40190E-06 yes 16 0.623839 | 1.10907E-05 yes
4 26 0.775442 | 3.28060E-05 yes 3 — — —
5 2 — — — 13 0.611090 | 5.41966E-05 yes
6 17 0.712305 | 8.28891E-05 yes 21 0.714140 | 1.57207E-05 yes
7 21 0.704426 | 1.11940E-05 yes 40 0.557180 | 3.76366E-13 yes
8 36 0.430888 | 5.21805E-14 yes 27 0.494779 | 6.79791E-10 yes
9 45 0.450082 0.0 yes 29 0.616717 | 1.42539E-08 yes

Table 6.8: Results of the Shapiro- Wilk’s normality tests for the planning time variable (T,,). The table
shows the Shapiro- Wilk’s W statistics, p-values and the results of the tests.

We have tried to find what probability distribution the planning time belongs to. We have
checked all the most usual distributions, which are available in the StatGraphics tool 2. Unfor-
tunately, we have not found any distribution that significantly fits the planning time variable.
Among all the probability distributions checked, the lognormal distribution seems to be the one
closest to our results. More experiments should be performed as future work to reach a proper
conclusion on this subject.

ZSpecifically, we have employed the 16.1.07 version of the STATGRAPHICS statistics tool, named “Statgraphics
Centurion XVI”.
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Relation between planning time and system size

In order to characterise how our approach behaves with respect to the target system size and
to check its scalability, we have looked for the relation between planning time and system size.
Given the results of the normality tests, we cannot apply linear regression tests, and due to the
high dispersion of the data, we have relied on the median rather than the mean for comparing
the different samples. We have used the Kruskall-Wallis non-parametric test [SCJ88| in order
to verify, for each design smell case, the equality of medians for planning time (7},) between
the different systems. Samples with less than 5 experiments have been omitted from the tests.
Nevertheless, the significance of the results does not change even if we include all the systems.

Test: Median equality test. Kruskall-Wallis.
Variable: T, (Planning time)
Hypotheses: Hj: T}, medians are equal for all systems in case <.
Hi: T, medians are different between some systems; (—Hp).
Cases: case i € {Feature Envy, Data Class}

The test results, which are displayed in Table 6.9, confirm that Hgy can be rejected with
95% confidence in all cases. Medians for 7}, (planning time) are different between systems,
and therefore, there is a dependency between system size (PEF') and planning time (7},). As a
consequence, it can be assured that there is some kind of relationship between the time elapsed to
compute a refactoring plan and the size of the targeted system. Recalling the descriptive analysis,
the data suggest the planning time increases as the target system gets bigger. Unfortunately,
given the non-normality of planning time, we cannot determine the regression function. As a
consequence, we cannot characterise the relationship between the two variables properly and
thus, we cannot infer the planning time for a given system size. More experiments and data, at
least 5 experiments per system, are needed to further investigate this in the future.

Svstem Feature Envy Data Class
Y Sample size Median Sample size Median
1 2 (6.4925) 7 1.5650
2 2 (8.9820) 2 (8.9275)
3 18 8.1995 16 7.2395
4 26 3.6425 3 (65.8030)
5 2 (70.8390) 12 13.5880
6 17 19.8890 21 14.8370
7 21 42.8300 40 16.4325
8 36 40.4710 27 49.4620
9 45 32.6160 29 32.5980
Test result K = 71.1583; p — value = 0 K = 33.2451; p — value = 0.00000940631
Reject Hyp Reject Hyg

Table 6.9: Results of the Kruskal-Wallis tests for the planning time variable (T,). The table shows
the planning time medians and the results of the tests. Medians enclosed in parentheses correspond to
samples with less than 5 experiments that have not been used in the tests.
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Relation between planning time and case study (strategy)

We have also checked whether there are significant differences between the elapsed planning time
with respect to the smell strategy requested. Unfortunately, since we have only two case studies
—Feature Envy and Data Class—, this cannot be a conclusive analysis. Nevertheless, it can still
serve to characterise the prototype for current and future reference. Following the same criteria
as the previous test —non-normality, high dispersion— we have selected a non-parametric test and
we have compared, for each system, the medians between the two design smell cases. Since, in
this case, we are comparing two groups only, we have performed a Mann-Whitney (Wilcoxon)
test [SCJ88]. The test has only been performed for those pairs of medians for which the size of
both samples are equal or greater than 5 experiments.

Test: Median equality test. Mann-Whitney (Wilcoxon).

Variable: T, (Planning time)

Hypotheses: Hj: T}, medians are equal between both case studies (Feature Envy
and Data Class) for system i.
Hi: T, medians are different between both case studies (Feature Envy
and Data Class) for system i; (—Hp).

Systems: system i € {1 .. 9}

The results of the tests, which are shown in Table 6.10, determine that the null hypothesis
cannot be rejected. Therefore, we cannot conclude, with a 95% confidence, that the planning
time (7)) is different between the smell correction strategies we have implemented. In order to
determine the conclusiveness of this results, the type 2 error of the tests have been computed
(|Coh88, pages 36 and 42|). Assumming normality for T, the test’s type 2 error () varies
between 0.69 and 0.90. According to Siegel [SCJ88|, this error would be even bigger for non-
parametric tests. Specifically, in the non-parametric tests we have carried out, the error should
be incremented by 5% over the parametric tests’ error. In our case, the test’s type 2 error ranges
between 0.74 and 0.95, therefore the results of these tests —do not reject Hp— are not conclusive.

System Feature envy Data Class Test result
Sample size | Median | Sample size | Median W | p—wvalue | Reject?
1 2 6.4925 7 1.5650 — — —
2 2 8.9820 2 8.9275 — — —
3 18 8.1995 16 7.2395 | 132 | 0.691521 no
4 26 3.6425 3 65.8030 | — — —
5 2 70.8390 12 13.5880 | — — —
6 17 19.8890 21 14.8370 | 143 | 0.304172 no
7 21 42.8300 40 16.4325 | 401 | 0.778845 no
8 36 40.4710 27 49.4620 | 469 | 0.818735 no
9 45 32.6160 29 32.5980 | 556 | 0.287789 no

Table 6.10: Results of the Mann-Whitney (Wilcozon) test for checking, for each system, median equality
of planning time (T,) between case studies. The table shows the sample’s medians, the Mann- Whitney’s
W statistics, p — values and the test results.
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Upper bounds for planning time

Finally, based on the information we have gathered in all the previous analyses, we have per-
formed another attempt to give a rough estimation of how the planning time behaves with respect
to system size. Although we could not determine the correlation function between planning time
and system size, mean and standard deviation can still be used to define probabilistic boundaries
for planning time. For this purpose, we have computed the probabilistic boundaries defined by
Chebishev’s inequality [SCJ88]: Pr(|X — u| > ko) < 1/k2.

Chebishev’s inequality defines the probability (1/k?) of a variable having an observation that
is further than ko from the mean u. For each system and design smell case study —Feature
Envy and Data Class— we have computed the upper boundaries under which 75% and 90%
of the planning times are guaranteed to be found. Boundaries are computed as ko 4+ p and
probabilities as 1 — 1/k?, for k = 2 and k = 3.2. The results are shown in Table 6.11 and are
displayed graphically in Figure 6.17. The results in Table 6.11 should be read as “The time
required for planning a Feature Envy strategy for a system of a similar size as the system 1 is
expected to be less than 22.71 seconds in 75% of cases and less than 32.45 seconds in 90% of the
cases.”

These boundaries summarise the general findings we have been able to gather with the
experiments and the data we have. The mean planning times behave in a quite constrained
manner even for the biggest systems. They fall below 3 minutes in all cases, and if we used
medians to summarise the planning time, the results would be even better (see Table 6.6 and
Figure 6.16). We cannot precisely infer how the mean planning time can evolve for systems
bigger than those we have employed, due to the high dispersion of the data, but the trend seems
to be promising. Despite the variability of the planning times obtained, it can still be predicted
that 75% of the plan computations should fall below 15 minutes, in the case of the Feature Envy
smells, and below 12 minutes in the Data Class smell cases. Broadening these boundaries, 90%
of the plan computations should fall below 21 minutes for the Feature Envy case and 18 minutes
for the Data Class case.

This analysis confirms that the main threat to the scalability of the approach is the high
dispersion of the planning time. This issue will be one of the major concerns in future improve-
ments and experiments. A small fraction of the requested plans can take a long time to compute.
Moreover, the difference between the planning times of these extreme cases and the majority of
the plan computations is quite significant. It also seems that the planning time dispersion prob-
lem is worse in the Feature Envy case. This can give us some hint in order to tackle the problem
in future works.

As a final remark, it should also be noticed that, since Chebishev’s inequality does not make
any assumption about the probability distribution of the analysed variable, the given boundaries
are quite poor and loose. Future experiments and additional data could help us confirm the data
distribution and therefore to compute more precise and tighter boundaries.

Summary of the findings of the statistical analyses

As a final summary, the compiled results of the different statistical analyses performed regarding
the objectives of the experiments are:
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Feature Envy Data Class

System | Mean Time | Std. Deviation 0.75 0.90 Mean Time | Std. Deviation 0.75 0.90
1 6.49 8.11 22.71 32.45 3.78 3.58 10.95 15.25
2 8.98 9.69 28.36 39.99 8.93 0.05 9.03 9.09
3 10.40 11.81 34.01 48.18 9.48 10.42 30.31 42.81
4 4.04 2.00 8.04 10.44 75.63 73.19 222.01 | 309.83
5 70.84 32.60 136.03 | 175.15 20.21 27.23 74.67 107.34
6 33.98 41.50 116.97 | 166.77 19.20 20.28 59.76 84.1
7 109.92 148.23 406.39 584.27 131.11 258.01 647.12 956.73
8 159.32 379.76 918.85 | 1374.56 143.62 297.85 739.32 | 1096.75
9 104.71 216.00 536.7 795.9 61.65 93.17 247.99 359.8

Table 6.11: Probabilistic upper bounds for the planning time (I,,) according to Chebishev’s inequality.
The 0.75 and 0.90 columns show the boundaries below which T, is expected with the probability of the
column header. Boundaries are computed as ko + pu and probabilities as 1 —1/k?, for k =2 and k = 3.2.
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Figure 6.17: Means and upper bounds for 0.75 and 0.90 probabilistic upper bounds of planning time per
factbase size, according to Chebishev’s inequality. The top chart refers to the Feature Envy case, while
the bottom one refers to the Data Class one.
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e Effectiveness:

— The effectiveness of the approach, in terms of the plans produced for each case study,
is quite satisfactory —42% for Feature Envy and 92% for Data Class—, specially given
the relative simplicity of the refactoring planning domain implemented.

e Efficiency and scalability:

— Precompilation time is tightly correlated to system size.

— Planning time does not follow a normal distribution, therefore we have used non-
parametric tests for all the inferential statistic analyses.

— Planning time depends on system size, although a correlation function could not be
defined.

— Planning time does not depend on the strategy requested.

— The probabilistic upper bounds of the planning time for the evaluated systems are
quite satisfactory, specially for a prototype.

— More experiments and data, including more systems and design smell refactoring
strategies, are needed in order to obtain more conclusive results regarding planning
time.

6.5 Conclusions of the case study

In this chapter we have presented a case study to evaluate the suitability of our approach to
improve the automated support for complex refactoring processes. JSHOP2 is an HT'N forward
planner that computes the plan in the same order that it would be applied. The current state
of the system is available during planning time, so this allows complex queries, calls to external
procedures, etc., to be used. With this study, we have found that the efficiency of this family
of planners and the expressiveness of the JSHOP2 domain specification language makes it the
appropriate planner to support the refactoring planning problem. The chapter is concluded by
discussing the issues we have found and the possible solutions and improvements that can be
explored in the future.

Sample refactoring planning domain

The refactoring planning domain is the “core” of our approach. We have compiled and tested
some refactoring strategies. Even though they are simple strategies, they illustrate how more
complex strategies can be supported, and how the approach can help to improve the automation
of complex refactoring processes. Due to the relative simplicity of the refactoring strategies
we have compiled, simple refactoring plans are produced. The refactoring domain has been
implemented for demonstration purposes and, as such, it is only able to solve a very narrow
range of smells and refactoring applications. Nevertheless, this is not really an issue, since
our approach has been designed to be improved by the reuse and incremental enrichment of the
specifications available. The refactoring planning domain can be incrementally improved, in order
to cover more design smells and refactorings, as developers compile more empirical knowledge
in the form of additional refactoring strategies. Our future intentions are to increase and refine
the refactoring planning domain, writing more refactorings, transformations, and refactoring
strategy specifications in order to improve the refactoring plans produced.
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Implementing the refactoring planning domain

One of the drawbacks of our approach is that writing HTNs for this kind of problem is quite
difficult. Writing and debugging the JSHOP2 domains is a hard task. Nevertheless, once the
underlying infrastructure — i.e. refactorings, queries, etc.— has been written and optimized, they
can be easily reused. In order to hide the internal complexity of the tool, while allowing the reuse
of these specifications, we have defined a domain specific language for developing new refactoring
strategies. Refactoring strategies can be formulated naturally and directly from the correction
recipes that a developer would write from empirically obtained knowledge. We expect the writer
of refactoring strategies to use only this language. We plan to develop a compiler/translator to
offer automated support for this language in the near future.

Outdated version of JTRANSFORMER

The JTRANSFORMER version we use has some limitations that affect the usefulness of our pro-
totype. For example, it does not support JAVA generics and as a consequence, it is not able
to generate the PEF factbase for systems that use generics. It cannot process and represent
incomplete systems with unresolved references and library dependencies either. Luckily, there is
a straightforward solution to this, because the newest version of JTRANSFORMER can parse and
represent incomplete projects and systems with generics. We have not migrated our refactoring
planning domain because it implies rewriting a number of queries, refactorings and transforma-
tions, but we have scheduled this as future work.

Different logic computation environments

One of the limitations of our approach is the absence of an embedded smell detection mechanism
within the domain knowledge and the plan computation environment. It would be useful so that
additional information could be used to guide the selection of strategy paths. Unfortunately,
some of the computations needed to implement this feature, i.e. metrics, are hard to implement
within the JSHOP2 planning domain, or can only be implemented in a very inefficient way. In
order to solve this issue, we also plan to aim our future efforts at translating the JSHOP2 planner
algorithm into PROLOG, so we can develop an integrated prototype on top of the current versions
of EcLIPSE and JTRANSFORMER. This would allow us to circumvent the current limitations of
the approach, for example by using the PROLOG prunning operator to implement efficient metric
computations.

Impact of loosely integrated tools isolated from the IDE

Our prototype generates the system’s required representation with the ECLIPSE IDE and the
JTRANSFORMER plugin. This representation is processed outside the IDE in order to obtain the
requested refactoring plans and a list of refactorings is produced as the output of this process.
This sequence of refactorings has to be manually applied by the developer with the refactoring
tools provided by the IDE. This process is acceptable for a prototype, but it is not valid for
a production tool. Moreover, the prototype has been built upon a mixture of interactive and
non-interactive tools. Shell scripts have been used to automatize the planning process. This
kind of “integration” also has a negative impact on the efficiency of the tool. An integrated tool,
directly available from the IDE, should be developed in the future for our approach to be useful
in a production environment.
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Efficiency issues

We have been able to extract some conclusions with respect to the efficiency of our approach in
the context of our particular reference prototype. It seems that planning time increases as the
target system gets bigger. However, while more experiments and data are needed to characterise
this correlation, it is usually under four minutes. The approach scales for the mean planning
time, but presents a high variability and thus, a small fraction of the plans can take much more
time to compute. The planning time does not belong to a normal distribution. It seems to fit a
lognormal distribution, but more experiments and data are needed to confirm this. If this can
finally be corroborated, it would seem that it would only take a long time to compute a plan
for a few rare cases, while the vast majority would be obtained within low time boundaries. We
have not been able to establish correlations or good estimations to predict how long it will take
a plan to compute for a system of a given size. All these issues are due to the great dispersion
of the planning times, because of the big number of extreme outliers. Unfortunately, we have
not found a cause for these outliers yet, so this is definitely an issue we should look at in future
work.

The JSHOP2 precompilation stage adds a significant overload to the total plan computing
time. In the case of this first prototype, strategy instantiations can be packed and launched
within the same planning problem so the precompilation stage is performed just once. The
precompilation time will become marginal as more refactoring plans are computed for the same
run. Moreover, as already mentioned, we plan to develop a custom implementation of the
planning algorithm with PROLOG so we can fully avoid this overload in a future version of the
prototype.

As a general conclusion on efficiency, we can say that even with a prototype, comprised
of loosely integrated tools, and with a demonstration implementation of a refactoring planning
domain, we have obtained quite satisfactory results regarding time costs for systems of small to
medium size. We expect an integrated and more mature tool could give better results in the
future.

6.6 Characterisation of the refactoring planning approach

According to the taxonomy we have presented in Chapter 3, the refactoring planning approach
introduced in this PhD Thesis dissertation can be described along the three main dimensions
defined in the feature model (see Figure 3.2 in page 25): supported design smells, targeted
artefact and supported activities.

6.6.1 Regarding design smell

Our approach can deal with any type of design smell for which a correction strategy can be
written. The technical requirements we have defined for an environment supporting refactoring
planning, such as the expressiveness for representing the full software system’s AST, and the
ability to specify and perform structural, lexical and numerical system analises, guarantee that
any kind of design smell can be managed. Nevertheless, specifically in regards of the sample
prototype presented in this dissertation, the refactoring strategies developed as part of our ref-
erence implementation address two design smells: Feature Envy and Data Class. These are the
only smells our prototype actually supports for now.
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6.6.2 Regarding target artefact

Our approach has been specifically developed for targeting JAVA source code. Nevertheless, it
can still be used for other cases. It can be applied to any scenario for which a logic-based
representation of the target artefact can be obtained. Our approach can be used for other
programming languages or either for different types of artefacts, such as models. In order to
do that, other tools different than JTRANSFORMER [JTr| should be used for translating the
target artefact into a first-order logic predicate representation and different refactoring planning
domains should be written for each particular case.

As its internal representation, our approach uses first-order logic predicates that model the
full software system’s AST. Regarding the support for multiple system versions, our approach
has not been designed to allow this, and it is not planned as future work either.

6.6.3 Regarding activities

As for the design smell activities supported, our approach is focused on specification and cor-
rection. It can be further extended to also support detection, and maybe impact analysis in a
lesser extent. On the contrary, we do not see how our approach could helpfully support design
smell visualisation.

Specification

Our approach supports the specification of correction strategies with domain specific languages.
The JSHOP2 language [Ilg06] is preferred to define specifications of refactorings and other non-
behaviour-preserving transformations. On the other hand, refactoring strategies are more easily
written with the strategy specification language we have defined. As an alternative, in the case
of the system queries, it could also be possible to write most of them in PROLOG and to translate
them automatically into the JSHOP2 language.

The specification process is currently manual. Nevertheless, we look forward to explore how
this can be automated in the future. Artificial intelligence techniques that require knowledge to
be written are often improved by developing ways of automatically acquiring and refining this
knowledge. In regards of the automated planning approach we use, some techniques already exists
for developing and improving HTN domains automatically [CMGF*07, Hay08, JD10, RHO7,
ZHH'09]. Future work should explore the chances of capturing the necessary knowledge for
building refactoring planning domains from the regular usage of a refactoring tool by developers.

The result of the specification activity is a refactoring planning domain definition composed of
refactoring strategies, refactoring and transformation specifications and a set of system queries.

Correction

Design smell correction is the central activity supported by our approach. It is based on the
specification of design smell correction recipes as refactoring strategies and the automated in-
stantiation of them into refactoring plans for each particular case. The automation level of the
approach, in its current state of development, is equivalent to “execute on approval”. Our cur-
rent prototype does not integrate the functionality to apply the computed plan, but the fully
instantiated plan generated can be straightforwardly used to feed a refactoring tool and launch
the refactoring sequence under the user request.
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The result of the correction activity is a refactoring plan: A sequence of behaviour-preserving
transformations that can be applied over the target artefact at its present version. As mentioned
in the paragraph above, the prototype can be improved in the future in order to offer the
immediate application of the generated plan. As a consequence, the result of this activity could
also be the transformed artefact.

Detection

The detection of design smells is not currently designed into our approach, thus this activity
is not supported. Nevertheless, reports of entity-smell relationships are introduced and used
alongside the target artefact to make this information available for helping the instantiation of
the refactoring strategies. Additional queries can be added to the refactoring planning domain
in the future, so that the activity of design smell detection can be supported by means of rules,
heuristics and metrics that might be composed into design smell detection queries.

Impact analysis

The impact analysis activity is not intended to be supported by our approach. Nevertheless, the
refactoring plans generated by the refactoring planner, can be used to overview and evaluate the
impact of applying the proposed design transformation. The refactoring sequence is not applied
to the target artefact, but the developer has to do it. This way, the impact or the cost of applying
the obtained refactoring plan can be examined at a rough level of detail in terms of the number
of entities to be changed or the number of transformations in the plan.



Chapter 7

Conclusions

This chapter summarises and discusses the results of this PhD Thesis dissertation. It also
reviews the differences with related approaches, details the main contributions and limitations,
and presents the future work and open questions that have arisen.

7.1 General results

A historical review of the technique of improving software’s structure through the detection and
correction of bad smells and related design problems has been performed. The similarities and
differences between the different approaches and catalogues addressing design problems have
been reviewed. As a result, we have proposed a unifying terminology for these design issues,
referring to them, homogeneously, as “design smells”. The current situation of the research in
this field has been analysed and the automation of design smell correction activities has been
identified as the next milestone.

A comprehensive survey on the subject of design smell management has been performed and
a taxonomy using feature diagrams as a graphical guidance has been elaborated to illustrate
it. This taxonomy can help in various ways. Newcomers to the domain can use it to become
acquainted with the important aspects of design smell management. Tool builders may use it to
compare and improve their tools, while software developers may use it to assess which tool or
technique is most appropriate to their needs.

We have proposed a unification and generalisation of the variety of existing design smell
correction approaches into the form of refactoring strategies and refactoring plans. Refactoring
strategies compile the empirical knowledge on how to remove a bad smell or how to apply a
refactoring when preparatory refactorings are required to enable the refactoring’s precondition.
Refactoring plans are instantiated from refactoring strategies and represent the precise sequence
of behaviour-preserving transformations which can be immediately applied to a system at its
current state. The refactoring strategies concept has been defined and elaborated as a way to
allow the description and formalization of complex refactoring processes. Refactoring strategies
have been defined in terms of UML class diagrams, and a simple domain specific language has
also been proposed for writing them.

The main characteristics of the problem of instantiating refactoring strategies into refactoring
plans have been stated. These characteristics define which approaches are suitable for addressing
the instantiation of refactoring plans. Thus, they have been used to filter out and select the
most appropriate approach. The instantiation of refactoring strategies has been represented as
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an automated planning problem. We have selected HTN planning and, particularly, JSHOP2 as
the most appropriate planning approach and planner available for the instantiation of refactoring
strategies into refactoring plans.

We have stated that refactoring plans can be computed with an automated planner, specif-
ically, by implementing refactoring strategies as task networks for a HTN planner. In order to
demonstrate this, we have defined how refactoring strategies can be specified as JSHOP2 task
networks and how the refactoring planning problem can be addressed as a JSHOP2 planning
problem. The elements of refactoring strategies have been formulated as JSHOP2’s HTN ele-
ments. We have also formulated the instantiation of refactoring strategies into refactoring plans
as a JSHOP2 planning problem.

A sample prototype has been assembled to demonstrate our approach. Some existing tools
from other authors have been integrated for building the basic prototype’s infrastructure and a
refactoring planning domain has been developed: a HT'N domain specification comprising system
queries, refactoring strategies, specifications of refactorings and other non-behaviour-preserving
transformations.

Two case studies have been carried out to evaluate our approach, and the reference prototype
has been tested in terms of effectiveness, efficiency and scalability. The case studies used are
addressed for removing the Feature Envy and Data Class design smells and have been performed
over 9 software systems of different sizes ranging from small to medium size. The results of
the study confirm that our approach can be used to automatically generate refactoring plans
for complex refactoring processes in a reasonable time. The studies performed also demonstrate
that the efficiency of the HTN family of planners and the expressiveness of the JSHOP2 domain
specification language makes it the appropriate planner to support the refactoring planning
problem.

7.2 Results regarding thesis statements

For reference purposes, the main Thesis statement, formulated in Chapter 1, is reproduced again
here:

The activity of refactoring, when complex refactoring sequences have to be applied, as
in the case of design smell correction in Object-Oriented software, can be assisted by
means of refactoring plans that can be obtained automatically.

The discussion on how the main Thesis statement has been addressed is performed by re-
viewing the thesis statements in which the main one was decomposed. The thesis statements
listed in Chapter 1 are recalled here and discussed individually:

e State of the art in automated design smell management is mature in detection but still has
to be improved in correction.

The revision of the state of the art performed in Chapters 2 and 3 has served to demonstrate
this. The degree of automation achieved by the design smell detection tools and approaches
has reached the “fully automated” level in many cases. Moreover, the results, as claimed
by the authors, are quite acceptable and, as already mentioned, there is a chance of seeing
industry tools based on them soon.
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Nevertheless, the correction of design smell has barely materialised into tools. There are few
approaches dealing with design smell correction, the catalogues of correction “recipes” being
the main reference of the current state of the art in this design smell management activity.
The “manual” level of automation is, therefore, the maturity level achieved in general.
To the best of our knowledge, there have only been a few heuristic implementations of
correction procedures for very specific smells. The “fully-automated” level of automation
has been achieved for these few particular and individual cases. However, in general, as
already mentioned in Chapter 2, design smell correction lacks more successful work on
precise and systematic specification and automation.

o Refactoring Suggestions produced by current design smell detection tools are not directly
applicable.

The revision of the state of the art performed in Chapters 2 and 3 has also served to
demonstrate this. Those approaches dealing with design smell correction are only able
to produce suggestions for correction. These suggestions are based on general strategies
and are produced without taking into account the current state of the system or how the
suggestion should be applied for the particular case. An exception is provided by the few
approaches and tools focused on single smells, developed for applying specific strategies for
particular smells.

o Design smell correction with refactorings corresponds to the gemeral schema of applying
complex refactoring sequences with a strategic objective.

Chapter 4 has been dedicated to analysing how design smell corrections have been specified
in the literature until now. How complex refactorings are specified has also been reviewed.
We have also analysed how both types of transformations are applied. This Thesis state-
ment has therefore been addressed by elaborating the refactoring strategy concept which
represents design smell correction strategies in particular, and specifications of complex
refactoring processes in general. Smell correction strategies and refactoring mechanics can
be described homogeneously as complex refactoring processes. As a consequence, both can
be defined as refactoring strategies and refactoring plans can be instantiated from them.

o Complex refactorings can be assisted with refactoring planning, by enabling refactoring
preconditions with preparatory refactorings that can be obtained automatically.

To address this Thesis statement, we have developed an approach and a prototype, based on
HTN planning, which can be used to instantiate refactoring strategies into refactoring plans.
A sample refactoring planning domain has been written to be used as the domain knowledge
for a planner. This domain contains the specification of a complex refactoring -MOVE
METHOD- along with a strategy for computing the necessary preparatory refactorings in
order to increase the applicability of this refactoring. The approach has then been evaluated
with case studies involving the use of the MOVE METHOD refactoring.

e Design smell correction, as a special kind of complex refactoring process, can be assisted by
means of refactoring planning.

This Thesis statement addresses a more general case than the previous one and it is aimed at
a more complex objective. Refactoring strategies for two design smells —Feature Envy and
Data Class— have been written and tested experimentally, and successful results regarding
effectiveness, efficiency and scalability have been obtained.
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7.3 Results regarding thesis objectives

The Thesis objectives formulated in Chapter 1 are reproduced here and discussed individually:

1. Provide an automated or semi-automated support to plan ahead the preparatory refactoring

sequences —refactoring plans— that can enable the precondition of a desired set of refactor-
ngs.
An approach has been elaborated based on refactoring strategies that are instantiated
into refactoring plans by means of HT'N planning. The approach allows the empirical
knowledge gathered by software developers, refactoring and reengineering practitioners to
be formalised into “recipes” about how to apply a particular refactoring, we have named
“refactoring strategies”.

The approach allows the exact refactoring sequence that needs to be applied for each
particular case, to be computed from the refactoring strategies. We have named these
sequences “refactoring plans”. The specific refactoring plan obtained for each case contains
all the necessary preparatory refactorings that have to be executed to allow the application
of the particular desired refactoring. This has been demonstrated by writing a refactoring
strategy for assisting the application of the MOVE METHOD refactoring.

The approach has been designed to be fully automated, but user interaction can be re-
quested for cases in which the inference mechanism is not smart enough and additional
information has to be collected from the user during the refactoring plan computation
process.

2. Provide an automated or semi-automated support to assist the generation of refactoring
sequences —refactoring plans— that can transform a system, following a redesign proposal
while preserving the system’s behaviour. More specifically, to provide an automated or
semi-automated support to the generation of refactoring plans for design smell correction.

Refactoring strategies and refactoring plans have been defined in such a way that our
approach can be used for design smell correction. The refactoring planning approach we
have developed can address the purpose mentioned in objective 1 but, in a more general
way, it can also be used for computing the refactoring plan for any complex refactoring
process aimed at a particular objective.

Specifically, we have demonstrated that our approach can be applied to the problem that
motivates this PhD Thesis dissertation: the correction of design smells. Refactoring strate-
gies for removing Feature Envy and Data Class design smells have been written and tested
for this purpose.

3. Provide a way to help software developers use the techniques elaborated in this PhD Thesis
Dissertation.

Our refactoring planning approach has been designed in such a way that it allows three
different kinds of software developers to use it.

The most common users of the approach would simply use it to find a way to apply a
desired complex refactoring process. They would select the strategy they want to apply,
fill in the required parameters, launch the strategy instantiation and wait for the planner
to produce a refactoring plan. The refactoring plan could be then applied with the help of
a refactoring tool.
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A developer with enough experience in refactoring and reengineering would also be able
to write customised refactoring strategies. This is allowed by the strategy specification
language proposed in this Thesis and the system queries that hide the complexity of the
internal representation of the system’s AST. Moreover, refactoring strategies can be shared
and reused. Therefore, these developers can contribute to, or take advantage of, public
shared catalogues of refactoring strategies.

A developer with a deeper knowledge of our approach, such as the logics-based internal
representation employed, and specially with HTN planning, would be able to write system
queries, non-behaviour transformations and refactoring specifications.

4. FEvaluate the effectiveness, efficiency and scalability of the approach presented in this PhD
Thesis Dissertation by developing a prototype which implements this approach and by per-
forming an experimental study with it.

A reference prototype has been assembled that implements our refactoring planning ap-
proach and serves to demonstrate it. An experimental evaluation of the approach has then
been performed by carrying out two case studies dedicated to removing Feature Envy and
Data Class design smells over nine different systems, ranging from small to medium size.

7.4 Characterisation of the approach

According to the taxonomy presented in Chapter 3, our approach can be described along the
three main dimensions defined in the feature model (see Figure 3.2): supported design smells,
targeted artefacts and supported activities.

Regarding the Design Smells addressed, our approach can deal with any type of design
smell for which a correction strategy can be written. The requirements we have established for
our approach and the internal representation used guarantee that any kind of design smell can
be managed. Nevertheless, the reference prototype presented in this dissertation only supports
two design smells: Feature Envy and Data Class.

Regarding the Target Artefact, our approach deals with JAVA source code, uses first-order
logic predicates, which model the full software system’s AST, as its internal artefact represen-
tation and does not support multiple system versions. The approach can also be adapted and
modified to support other programming languages and artefacts. It can indeed support any
target artefact for which a logic-based representation can be obtained.

Regarding the Activities supported, our approach can address: specification in a manual
way, for which the activity result is a refactoring planning domain definition; and correction at
an “execute on approval” automation level, for which the activity result is a refactoring plan. The
rest of the design smell management activities we identified in the taxonomy are not supported:
detection is not currently supported, but it may be in the future, impact analysis could also
be offered to some degree but wisualisation is not supported and neither is this planned in the
future.

7.5 Comparison with related works

The only similar works we have knowledge of, regarding design smell correction, are those from
Trifu et al. [TSGO4, Tri08]. They present an approach to define and apply restructuring strategies



182 CHAPTER 7. CONCLUSIONS

that specify how to remove a design smell in a similar recipe-based way as our refactoring
strategies. Our refactoring strategies are indeed inspired by the concept of restructuring strategies
from these authors. However, they lack the instantiation of the strategies that our approach
provides, supported by automated planning.

Our approach applies automated planning, an artificial intelligence technique, in order to
solve a software engineering problem, computing the refactoring sequences needed for performing
complex refactoring processes. To the best of our knowledge, this is a novel approach, because
we have not found any other work that uses automated planning for this particular purpose.
Moreover, we have found only a few references on the usage of automated planning in software
engineering.

Memon et al. have used automated planning to develop a tool for generating GUI test
cases [MPS01|. In their work, the user interface is analysed to obtain a list of the allowed events
as the applicable operators. The test designer would then define the preconditions and effects of
the different events the user can trigger and the initial and goal states of the testing scenarios
are also specified. The plans produced by the planner would represent testing sequences aimed
at covering the whole set of the GUI’s possible states. They use the Interference Progression
Planner (IPP) [KNHDO97|, a partial order planner that belongs to the GRAPHPLAN family of
planners. Their choice of planner seems to be appropriate for the problem they tackle. Nev-
ertheless, their results cannot be compared against ours since the two problems differ greatly
in nature and, probably, in size. Moreover, their experiments were performed in 2001 with a
PENTIUM®-based computer. According to the authors, their GUI testing domain is composed of
32 planning operators but, unfortunately, they do not specify the size of the system’s state. We
can nonetheless guess that it cannot be even close to the 32780 to 354543 predicates in the system
states from our problem. Despite the fact that their results are not comparable with ours, their
experiments also take into account hierarchical planning techniques, which are related to HTN
planning. The experiments performed by the authors with and without hierarchical planning
techniques reveal the relevance of HT'N planning with respect to efficiency.

HTN planning, the SHOP2 planner in particular, has been used for web service composition
by Sirin et al. [SPW104]. They address the problem of selecting which web services have to
be invoked, from among a set of available services, and in which order, to build up a more
complex composed web service. Although their problem is different in nature and size, some of
the techniques we have used for materialising our approach are similar to theirs. In their work,
the HTN domain definition is obtained from the available web services specification —written
in the Web Ontology Language (OWL), reference version 1.0 [DCvH102]- by translating these
specifications into HTN elements. This translation is defined with systematic rules. A similar
approach has been followed here for translating refactoring strategies, and the refactoring strategy
language, into HTN elements. We have even translated some elements, such as loops, in a similar
way to them. We have also used persistent variables for similar purposes as they do in their work.
They have also used, as we do, external procedure calls from the planner in order to query the
user for additional information during the planning process.

Pinna et al. have explored the suitability of partial order planning for dealing with model
inconsistencies [PVDSM10]. Their system states represent UML models, particularly class dia-
grams and consistency rules. Their planning operators represent simple model transformations.
They search for plans aimed at removing model inconsistencies, represented as violations of the
consistency rules. They have experimented with forward and backward partial order planners,
and found that an approach based on these kinds of planners presents severe efficiency issues even
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for very small problems. As they have concluded, a planner that searches the whole state-space
without any domain-knowledge guidance does not scale well for big problems. This is consistent
with our findings, which were described in Chapter 5.

7.6 Limitations of the approach

The requirement of writing an HTN domain —the refactoring planning domain— is the main limi-
tation of the approach presented in this PhD Thesis dissertation. Our approach does not compute
refactoring plans by exploring the whole search space, the planner instantiates them from heuris-
tics that have already been defined in the form of refactoring strategies. These specifications
have to be gathered from empirical knowledge and translated into HT'Ns. As a consequence, the
effectiveness of the approach depends greatly on the amount of refactoring strategies, refactoring
specifications, transformations and system queries defined and implemented in the refactoring
planning domain. How refactoring strategies’ specifications can be found has not been addressed
here. Writing a big amount of comprehensive strategies is beyond the scope of this dissertation.
Rather, we have focused on defining the approach and building a reference implementation in
order to evaluate and demonstrate it. Therefore, the number of design smells, and the particular
manifestations of them, that our prototype can manage are somewhat limited. Nevertheless,
the refactoring planning domain we have written serves as a reference and can be enlarged and
improved in the future.

As another drawback, writing knowledge for the refactoring planning domain is hard, specially
without any tool or assistance, as we have done during the elaboration of this dissertation. It
is a complex and error-prone task if it is manually performed. Nevertheless, this limitation
can be avoided by developing custom tools to assist the development and maintenance of the
refactoring planning domain. As an initial step, a domain specific language has been proposed
for writing refactoring strategies and we have discussed in Chapter 5 how the different elements
of a refactoring planning domain can be translated into JSHOP2 HTNs.

Some computations are hard to implement in PROLOG or the JSHOP2 language. Our
approach can only use the structural, lexical and numerical information that can be obtained
from the target system’s AST. Some information is difficult to infer. For example, in order
to write a refactoring strategy for applying the EXTRACT METHOD refactoring, the planner
should be able to find the portions of the method to extract. There may also exist problems when
computing plans that need semantic information for example, if a refactoring strategy needs to
identify whether a class is a GUI class or a library class. These issues have not been addressed
here. Nevertheless, for these cases, our approach can still obtain the needed information by
querying the user. If the needed information, which cannot be computed through the inference
mechanisms of the planner, can still be computed in some way by means of some other tools,
these can be “plugged” into the planner as external procedures.

The tool developed during the elaboration of this PhD Thesis dissertation is a prototype that
only serves the purpose of evaluating and demonstrating the approach presented here. Although
we have been able to demonstrate the feasibility of our approach, further work is still needed in
order to materialize these results into a tool that could actually be used. As listed in the results of
the prototype evaluation in Chapter 6, our approach presents some applicability restrictions due
to technical limitations in the reference prototype. For example, our prototype cannot deal with
JAVA systems that use generics. These limitations can easily be overcome, in order to produce a
better integrated and actually usable tool, either by updating the prototype for using the most
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recent versions of the tools used here, such as JTRANSFORMER, or by reworking the prototype.

Due to the great dispersion in the results of the experiments regarding planning time —the
elapsed time for computing the refactoring plans—, we have not been able to give a prediction or
estimation on how long it would take for the prototype to obtain a plan depending on the target
system’s size. Nevertheless, in our opinion, for the systems we have used in the experiments, the
results have been rather good.

7.7 Summary of contributions

This PhD Thesis dissertation presents a novel approach on the automation of complex refactoring
processes, and in particular on the correction of design smells. It also presents a novel application
of automated planning. We do not know of other approaches employing automated planning for
this particular problem —computation of refactoring plans for removing design smells. Moreover,
as already discussed in Section 7.5, automated planning, to the best of our knowledge, has
scarcely been used in software engineering.

This approach constitutes an appropriate infrastructure to automate design smell correction
strategies, because it allows planning ahead for the precise and applicable transformation se-
quence for each particular case. Refactoring strategies are written in the same homogeneous way
for the application of complex refactorings, for the correction of design smells, or for other similar
objectives that can be explored in the future. Due to the use of an automated planner, non-
deterministic constructs are available, so it allows specifications of complex refactoring processes
to be written as refactoring strategies. These specifications can be very expressive, and can be
directly used to automate the heuristic rules that would be written with natural language. The
approach allows refactoring strategies to be specified in a modular way, and to be reused and
shared.

The contributions of this PhD Thesis Dissertation are listed here. This can overlap in some
way with the Thesis results previously enumerated in Section 7.1, but it emphasises that these
results are contributions to the state of the art. The contributions of this PhD Thesis dissertation
can be summarised as:

e A review of the design smells’ literature, a historic overview of design smell management
approaches, and a terminology proposal, aimed at clarifying and unifying the terms and
concepts related to this subject.

e A survey on design smell management and a taxonomy, based on feature models and co-
written with other authors, to characterise the present and future approaches and tools.

e The definition of refactoring strategies as a way of writing automation-suitable specifica-
tions of complex refactoring processes.

e The definition of a refactoring strategy specification language that software developers can
use to write strategies for design smell correction and other complex refactoring processes.

e The definition of refactoring plans as specific refactoring sequences, instantiated from refac-
toring strategies, that can be effectively applied to a system in its current state.

e The definition of the requirements that an approach has to fulfill in order to support the
computation of refactoring plans.
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e A technique to instantiate refactoring strategies into refactoring plans by means of auto-
mated planning.

e A base line and reference prototype for future research in automated refactoring planning.

7.8 Future work and open questions

Our first priority in the near future is to address the current limitations of our approach. In
particular, we hope to improve the refactoring planning domain and to evolve the reference
prototype into an actually usable tool.

In order to improve and enlarge the refactoring planning domain, firstly, it has to be adapted
to use the latest version of JTRANSFORMER’s logics-based AST representation. Then, the
amount of cases covered by the refactoring planning domain has to be increased by adding
more refactoring strategies for design smell correction, more refactoring specifications and more
strategies for the application of complex refactorings. The refactoring planning domain also has
to be improved by adding more system queries, specially for computing metrics. This kind of
queries would provide the opportunity to implement the detection strategies from Lanza and
Marinescu [LMO06| into our approach as system queries. This could greatly improve the plans
produced by allowing the planner to select the transformations more precisely, thus addressing
the elements causing a design smell.

We should also address in the future how some complex computations could be performed
or “plugged” into our approach. For example, as already mentioned, how semantic information
can be obtained, how to infer the portions of a method to be extracted during a EXTRACT
METHOD refactoring, how to distinguish a GUI class from a library class, etc., should all be
explored.

As already mentioned in the conclusions of the case study (Chapter 6), we intend to rework
the reference prototype and evolve it into an actually usable tool. A simple prototype has been
developed using existing technology and other prototype tools. Further development of a more
optimal implementation has to be undertaken. It will be based on a close connection to the latest
version of JTRANSFORMER and will involve writing the JSHOP2 algorithm into PROLOG, and
building a more integrated tool as an ECLIPSE plugin.

Alternative internal representations can also be used in the future for increasing the appli-
cability of the approach. For example, an Object-Oriented software representation model such
as MOON [Cre00, LMCP06, MLCPO07| could be explored. This model provides support for lan-
guage independence and generics, and therefore, can increase the applicability of our approach.

We also consider that it is necessary to develop tools for assisting in the writing of the
HTN planning domain. A compiler for the refactoring strategy specification language has to be
developed. We would also like to offer a tool to help in the writing and debugging of refactoring
strategies and refactoring specifications in a visual way, with a graphical editor. A tool like this
could be based on model transformations, so visually developed refactoring specifications can be
automatically transformed into HT'Ns by following the rules elaborated in Chapter 5.

It would be helpful to develop a tool for running batteries of experiments, and for easily
producing an analysis of the results. This testing tool would be used for developing the refactoring
planning domain and it could help to evaluate the domain in more detail as well. For example,
it will be interesting to find out the most adequate amount of knowledge needed to obtain the
best results regarding effectiveness and efficiency.
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Our prototype only returns the first plan found. As another way of improving the tool, we
would like to explore the possibility of dealing with multiple plans. It should be useful to be able
to obtain multiple plans, measure their differences in terms of quality factors and, either offer
the user the best plan, or inform about the different possibilities and their respective quality.

Another line of future work could be dedicated to exploring other possible uses of our ap-
proach, different from the ones which have motivated our study and that have been presented in
this PhD Thesis dissertation. As an example, it would be interesting to write refactoring strate-
gies for other objectives such as introducing design patterns. Finally, we would like to explore
how to extend the capabilities of our approach by exploring alternative techniques to support it
or by testing it in completely different usage scenarios.

A different usage scenario for the approach could be the research and development of “regular”
refactoring implementations for IDEs or refactoring tools. Mature refactoring strategies could
be transferred to a refactoring engine as high-level refactorings. Our approach could be used to
incrementally develop a refactoring strategy up to a level of detail in which the set of knowledge
defined is so exhaustive and comprehensive that the inference mechanisms and non-determinism
of the planner are not needed. A refactoring strategy with this level of detail could be taken
from the planner and be implemented as regular refactorings within an IDE or other kind of
refactoring tool.
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Appendix A

JSHOP2 Planning Language
Specification

We compile here, for reference purposes, the description of the subset of the JSHOP2 language
we have actually employed. This has been extracted from its original source [Ilg06].

A.1 Symbols

A symbol S can be composed of letters and digits, question marks, exclamations, hyphens and
underscores. Function symbols are a special type of symbols. These are valid Java identifiers
which are used to invoke external procedure calls. JSHOP2 defines the following types of
symbols:

e Constant symbols, compound task symbols, predicate symbols: s

1.e.: some—constant; some-task; some-predicate

e Variable symbols: ?s

1.e.. ?some-variable

e Primitive task symbols: !s

1.€.. la—primitive-task

e Auxiliar tasks symbols: !!s
1.e.. !lan-auxiliary-task
A.2 Terms

Terms are the most basic entities in the language. Simple terms are numerical constants, and
variable and constant symbols. Composed terms are list terms and call terms.

e List terms: (T; T, ... Tp)
Where each T; is a term. An special list term —nil— represents the empty list.

1.e. (package 10079 java_dot_lang); (argl arg2 arg3);nil

205



206 APPENDIX A. JSHOP2 PLANNING LANGUAGE SPECIFICATION

e Call terms: (call F T; T, ... Ty)

Where F is a function symbol and each T; are terms. When a call term is evaluated, the
external JAVA procedure F is invoked and each T; term is passed as an argument. After
being evaluated, the call term is substituted by the result term produced by the external
procedure. External procedures can be built-in procedures includes in JSHOP2 or user-

defined pocedures. The available built-in procedures are: <, <=, =, >, >=, =+ - *, /"
User-defined procedures have to be implemented as JAVA classes.

1.e. (call GetRandom nil); (call UserQuery please-suggest—-a-target—-class—for

?source-class)

A.3 Logical atoms and logical expressions

These constructions are the afirmations over the state of the world that can be evaluated. The
simpler logical expressions are logical atoms and call expressions.

e Logical atom: (P T; T, ... Tp)
Where P is a predicate symbol and T; are terms.
1.e. (package 10079 Jjava_dot_lang)
A logical expression is any expression that can be evaluated to a boolean value. Logical
atoms is a logical expression that will be evaluated to true if it exists in the current state of the
world or can be derived from it and to false otherwise. Call expressions are logical expressions

that are evaluated to false if the external procedure returns nil or the empty list and to true
otherwise.

e And: ([and] [L; L, ... Lyl)
It evaluates to true if all the logic expressions L; evaluate to true and false otherwise. The
and symbol is optional. An empty logical expression (), (and) or nil evaluates to true.
e Or: (or Ly Ly ... L)

It evaluates to true if at least one of the logic expressions Li evaluate to true and false
otherwise.
e Not: (not L)
It evaluates to true if there is not a valid substitution that makes 1. evaluate to true and
false otherwise.
e Imply: (imply Y 2)
It evaluates to true if there is not a valid substitution that makes vy evaluate to true, if
there is a valid substitution that makes Y and z simultaneously true, and false otherwise.
e For all: (forall v Y 2)
It evaluates to true if for all the possible substitutions for the variables in v which makes
Y evaluate to true, z also evaluates to true. It evaluates to false otherwise.
e Assign: (assign V T)

The value bounded to z is bounded to V. It evaluates to true.
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A.4 Logical preconditions

Logical preconditions are logical expressions that control whether a particular method or opera-
tors should be included in a plan or not.

e Regular precondition: L
Where 1 is a logical precondition.

eg.: (superclass a-class a—-superclass)

e First satisfier precondition: (:first L)
Where 1 is a logical precondition.
eg.: (:first (superclass ?class a-superclass))

will be evaluated until a valid substitution for ?class is found or until none can be found.
No other valid substitution will be tried even if the first one does not lead to a valid plan.

A.5 Axioms

Axioms are Horn-Clause-like expressions that can be used to derive additional knowledge from
the system’s state.

e Axiom: (:- H [Ly;] T; [Lp] Tz ... [L,] T,)

where H is the axiom’s head, each L; is an optional labels and each T; is an axiom branch.
The axiom’s head H is a logical atom. It wil be evaluated to true if T is evaluated to true
and every T;, with i< is evaluated to false. An axiom branch T; will be evaluated and
an unification attempt will be carried on only if all the precedent branches have failed.

eqg.: (:= (contains—-member ?class ?member)
member—-is—-field
(contains-field ?class ?member)
member-is-method
(contains—-method ?class ?member)

A.6 Task atoms and task lists

Tasks atoms are used to “declare” and identify tasks. They can appear in the definition of
a task method as their “header” or be “invoked” in the method’s body as the method’s task
decomposition.

e Task atom: ([[!]!']S Ty Tp ... T,

where s is a task symbol that can be interpreted as the task’s name and T; are terms, that
are mostly used as the task’s arguments. A task is identified by its name and the number
of terms in its definition. A primitive task name is written with a primitive task symbol:
!S. An auxiliary task name is written with an auxiliary task symbol: !!s. A compound
task name is written with a compound task symbol: s. A task atom is also a task list.
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e Task list: ([:unordered] T; Ty ... Tu);

where each T; is a task list. The optional unordered keyword specifies that any T; ordering
should be valid. This leaves the planner the freedom to interleave the tasks in those tasks
lists during the planning process.

A.7 Operators

Operators are the atomic tasks that can be applied to a system in order to change its state.

e Operator: (:operator H P D A [C])

where H is a primitive task term, P is a precondition, D is a list of negative effects, A is a
list of positive effects and C is the optional cost of applying the operator. Effects in D and
A are expressed as a list of logical atoms. The operator is identified by its head H. The
precondition P specifies the condition under which the operator can be applied. The lists
of effects define how the operator changes the system’s state by adding or removing the
logical terms included in A or D respectively.

A.8 Methods

Methods are specifications of how to achieve a compound tasks by decomposing it into simpler
tasks. If the method’s precondition is hold in the current state of the system, the compound
task can be achieved by performing the list of tasks defined in the method.

e Method: (:method H [L;] P; TL; [L,] P, TL, ... [Lp] P, TL,)

where H is a compound task term, and each set [L:;] P; TL; is a different method branch,
where L; is the optional label, P; is the precondition and TL; is task list of that branch.
Alternative decompositions within a method definition are visited in sequential order. The
preconditions are considered in the given order. The branch i is only attempted if the
precondition of the branch i-1 is not met. Even if the branch i-1 does not lead to a valid
plan, the branch i is not attempted unless precondition i-1 fails.

A.9 Planning domains

A planning domain is used to compile and specify all the domain knowledge available for a
given problem. A planning domain is comprised of a task network, specified with operators and
methods, and axioms, which allow to derive additional knowledge from the system’s state.

e Planning domain: (defdomain N (D; D; ... Dy)),

where the symbol N is the name of the planning domain and D; are operators, methods or
axioms.
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A.10 Planning problems

A planning problem is defined by a domain specification, the initial state of the system and the
goal to achieve. In HTN planning the goal is given as a task list. In JSHOP2 it is possible
to formulate and run several planning problems over a shared domain definition with a single
construct and file.

e Planning problem: (defproblem PN DN L; T; L, Ty, .. L, Tp)

where the symbol PN is the name of the planning problem, DN is the name of the domain,
and each L; T; is a separate planning problem where L; is a list of ground logical atoms
representing the system’s initial state and T; the goal task list for the problem 1i.
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Appendix B

Translation of the refactoring strategy
language

Refactoring strategies can be written with the small language we have provided in Chapter 4.
We have not developed a compiler or translator for the refactoring strategies specification lan-
guage. Nevertheless, this Appendix demonstrates how each refactoring strategy construct can
be translated into the JSHOP2 language so they can be added to a domain specification for the
planner. The translations are displayed with template samples of refactoring strategies, shown
on the left-hand side, and their matching JSHOP2 code on the right-hand side.

B.1 Strategy Definitions

Strategy goal name (argl, ..., argn) (:method (goal name ?argl ... ?argn)
precondition (PREC)
PREC (STEPS)
body )
STEPS (:method (try goal name ?argl ... ?argn)
end ()
(
(goal name ?argl ... ?argn)
)
)
(:method (try goal name ?argl ... ?argn)

0
0
)

A Refactoring Strategy is straightforward translated as a JSHOP2 method. The strat-
egy’s precondition and body are translated into a method’s single branch as the precondition
and task decomposition task list of this branch. Along with each strategy two additional meth-
ods have to be created in order to enable the try invocation construct. The first try method
attempts to apply the involved strategy as it is. In the case this method fails, the second try
method will be carried out by the planner. The second try method has en empty precondition
and task decomposition list, therefore it succeeds trivially. Note that all variables are preceeded
with a question mark (?) in the JSHOP2 language.

211
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B.2 Sequences of steps

Blocks, or sequences of steps, have to be processed and translated in a recursive way. In order to
be translated into a JSHOP2 domain, a block or a sequence of steps has to be split in different
fragments and then translated into several methods. This description will be first focused on
how the block fragments are translated. The explanation on how the blocks of sentences are split
into fragments is performed afterwards.

Strategy goal name (argl, ..., argn) (:method (goal name ?argl ... ?argn)
precondition (PREC)
PREC ((M1 ARGS1)
body (M2 ARGS2)
S1 (M3 ARGS3)
S2 (M4 ARGS4))
S3 )
S4 (:method (M1 ARGS1)
end (P1)

(81)

:method (M2 ARGS2)
(P2)
(S2)

:method (M3 ARGS3)
(P3)
(S3)

:method (M4 ARGS4)
(P4)
(S4)

)

Two different procedures can be used to split and translate these fragments of step sequences:
a hierarchical, or a chained way. The hierarchical procedure is shown above. Each block fragment
is transformed into a separated JSHOP2 method Mi, whose task list contains the translation
of each si. The main strategy is translated as a “top” method from which these methods are
invoked. The “top” method’s task decomposition list contains the invocations of each Mi.

The translation of each method Mi depends on the recursive translation of each block fragment
Si. The list of arguments of each method ARGSi will declare the variables that may have been
bound in the top method and are needed in each block fragment method Mi. The variables to
pass are all the variables in the top method’s argument list or precondition that appear in the
respectives si. The preconditions Pi of each Mi will be obtained from the recursive translation
of each block fragment Si.

The chained procedure for translating a block of steps is displayed below. The translation
procedure is similar to the previous one, although it differs on how the block fragment’s methods
Mi are connected and invoked. With this procedure, the “top” method’s task decomposition
list does only include the invocation of the initial method M1. Then, each Mi method includes
the invocation of the next Mi in its task decomposition list. With this procedure, the variables
needed for each Mi are passed through the invocation chain from a method to another. Each
argument list ARGSi will contain the variables needed by Mi and also the variables needed by the
next methods in the chain (Mi+1), that may have been bounded in the previous method (Mi-1)
or in the “top” method.
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Strategy goal name (argl,
precondition
PREC
body
s1
S2
sS3
sS4
end

.

argn)

(:method (goal name ?2argl
(PREC)
((M1 ARGS1)

(:method (M1 ARGS1)
(P1)
(s1
(M2 ARGS2))

(:method (M2 ARGS2)
(P2)
(S2
(M3 ARGS3))

:method (M3 ARGS3)
(P3)
(S3
(M4 ARGS4))

:method (M4 ARGS4)
(P4)
(S4)

?argn)
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As for splitting a block of steps into a set of fragments, the kind of steps involved has to be
taken into account. A step can be either a query, an invocation or a compound step. In order
to translate it, a sequence of steps should be split into the two following types of fragments:
sequences of queries followed by invocations and compound steps. Each block fragment si will
only contain query-invocation sequences or individual compound steps. An example of this is

shown below:

query 1
invocation 1
invocation 2
query 2
invocation 3
compound step 1
invocation 4
compound step 2
compound step 3

Sl:

query 1

invocation 1

invocation 2
S2:

query 2

invocation 3
S3:

compound step 1
S4:

invocation 4
S5:

compound step 2
S6:

compound step 3

It should be noticed that, after splitting a block of steps and obtaining the basic structure
by following the procedures described above, the translation of each Si sequence of steps may
have to be continued and performed recursively. This is needed when si represent a compound
step and contains a nested block of steps. These compound steps can be either loop control
structures, alt structures and unordered blocks. The translation of each particular fragment is

described later on.
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B.3 Managing variables between methods

Variables are bound to values exclusively in query invocations. Moreover JSHOP2 method’s
arguments are passed “by value”, therefore a binding taking place within a method’s precondition
is not visible from outside that method, unless the variable is passed as an argument or its bound
value is stored to the system’s state. While translating a refactoring strategy, this has to be taken
into account. We have to keep track of the variables that may have been bound in a JSHOP2
method and how they can be accessed from other methods where they are needed.

Variables are communicated through methods, either by passing them as arguments or by
storing them in the system’s state as persistent variables. The following rules have to be followed.

1.

2.

The initial variables’ scope is a strategy.

Once a variable has been bound, its binding, or the variable attached value, can be directly
accessed from within their scope or otherwise from the factbase (as persistent variables).

When generating/translating a fragment of a strategy into a JSHOP2 method, the acce-
sibility of the needed variables should be checked. If the variable bindings are accessible
from the outer scope, the variables should be passed as arguments.

If the variables are not accesible, they should be gathered with a persistent variable query.
These queries should be included at the beginning of a precondition.

All variables used in a fragment that is going be translated, should be either passed as
arguments or gathered with persistent variables queries.

All the variables that may have been bound within a certain scope, that is, all the variables
within the precondition section of a JSHOP2 method, should be propagated to the outer
scope.

If the strategy fragments are translated and chained in parallel, the variables used in the
fragment should be recalled with persistent variables queries in the JSHOP2 method’s
precondition section.

If the strategy fragments are translated and chained in cascade, the variables used in the
fragment should be passed as arguments.

Persistent variables are managed with the following refactoring planning domain elements:

e Queries:

— (rp-var ?varname ?var-value)

e Operators:

— (add-rpvar ?varname ?var-value)
— (del-rpvar ?name ?value)
— (rep-var ?name ?old-value ?new-value)

— (del-all-rpvar ?name)
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B.4 Managing lists

The auxiliary queries for managing lists that are used for translating refactoring strategy speci-
fications into the JSHOP2 refactoring planning domain are listed below.

® (get-head 7?item ?list)

® (get-rest- ?rest ?list)

® (member ?item ?list)

® (remove-member ?item ?list ?new—-list)

® (add-member ?item ?list ?new-list)

B.5 Queries, invocations and boolean expressions

apply name (argl, ..., argn) (name ?argl ... ?argn)

apply goal name (argl, ..., argn) (goal name 2argl ... ?argn)
try name (argl, ..., argn) (try name ?argl ... ?argn)

try goal name (argl, ..., argn) (try goal name ?argl ... ?argn)
queryname (argl, ..., argn) (queryname ?argl ... ?argn)
(cond) cond)

not cond not cond)

condl or cond2 or condl cond2)

condl and cond3 and condl cond2) |

condl cond2)

and condl cond2 ... condN) |
condl cond2 ... condN)

(
(
(
condl or cond2 or ... or condN (or condl cond2 ... condN)
(
(
condl and cond2 and ... and condN (
(

Invocations are translated straightforwardly. Apply invocations are translated as task atoms
which match either a transformation, a refactoring or a strategy by referencing their names or
goal-name set. In the case of the try invocations, the reference to the corresponding task is
preceeded with the try term. Queries are translated as invocations of logic expressions. Their
arguments are translated as the expression arguments and the query name is used as the first
term of the predicate.

Regarding boolean expressions, they are translated by transforming them into Lisp-like lists.
A condition is written as a list enclosed in parenthesis, with the boolean operator as the first
element of the list and the operands as the rest of the elements of the list. If the original condition
present several consecutive boolean operations of the same kind, they can be translated as a single
list, with a single operator and all the operands within the list. The and operator is optional in
JSHOP2, so in the case of conjunctions, it can be omitted altogether.

As described in B.2, blocks or sequences of steps, have to be fragmented and transformed into
several JSHOP2 methods. Fragments of queries and invocations are translated by transforming
each fragment into a method whose precondition contains the fragment’s queries and whose task
decomposition list gathers the fragment’s apply and try invocations. An example from B.2 is
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used to show how sequences of queries and invocations are translated and the matching JSHOP2
methods are displayed below.

query 1 S1: (:method (M1 ARGS1)
invocation 1 query 1 (query 1)
invocation 2 invocation 1 ((invocation 1)
query 2 invocation 2 (invocation 2))
invocation 3 S2: )
compound step 1 query 2 (:method (M2 ARGS2)
invocation 4 invocation 3 (query 2)
compound step 2 S3: ((invocation 3))
compound step 3 compound step 1 )
S4:
invocation 4 ; translation of M3
S5:
compound step 2 (:method (M4 ARGS4)
S6: ()
compound step 3 ((invocation 4)
)
; translation of M5
; translation of M6

B.6 Variables and literals

variable ?variable
"string literal" string-literal
number number

Variables and literals are easily translated into JSHOP2, albeit with some limitations regard-
ing string literals. Refactoring strategies’ variables are simply translated by preceeding their
symbol with a question mark (2). The JSHOP2 language does not define any syntax structure
to define or enclose string literals, therefore they have to be transformed into allowed JSHOP2
symbols. Non-permitted characters have to be either removed from the string or transformed.
For example, we suggest to transform space characters into dash characters, as seen in the ex-
ample above. A valid symbol has to begin wit a letter or an underline and can contain letters,
digits, question marks, exclamation points, hyphens and underlines.
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B.7 Alternatives

if COND1 then ;; 1f invocation
STEPS1 (if-xx ARGS)
elseif COND2 then
STEPS2 ;; 1f definition
else (:method (if-xx ARGS)
STEPS3 (COND1)
end (STEPS1)
(COND2)
(STEPS2)
()
(STEPS3)
)

There are two different types of alternative constructs: the regular one and the non-deterministic
alternative. The regular alternative construct — if-then-else — is translated into a single
JSHOP2 method with as many branches as the original alternative. The branches in the
if-then-else alternative are matched by the method’s branches appearing in the same order.
The condition of each branch in the if-then-else construct is translated as the precondition of
the matching branch in the JSHOP2 method. The block of steps nested in the i f-then-else
construct is transformed into the task decomposition list of the method’s branch. These steps
should be recursively translated as needed. The else part in the original structure is translated
into the last method’s branch, whose precondition is empty and, therefore, trivially true.

The JSHOP2 method representing the i f-then-else statement has to be named with a
symbol with the prefix i f- and a numeric suffix, so that the resulting symbol provides a unique
name for the method in the refactoring planning domain. The if-then-else construct in the
original sequence of steps should be then replaced by the invocation of the if method. The
method’s arguments ARGS should contain all the variables appearing in the method that are
accessible from the original sequence of steps’ scope.

All the variables used in each branch precondition of the method, may have been bound,
therefore they have to be propagated. If the blocks of steps are being translated in a hierarchical
way, the variables should be stored as persistent variables using the store-rpvar method. If
the blocks of steps are being translated in a chained way, the next fragment’s method should be
invoked with the last task in the task decomposition list of all the branches, and the variables
should be passed as arguments.

The other kind of alternative construct is the non-deterministic alternative. it is translated in
a similar way as the regular alternative, although each alt branch is translated into a separated
JSHOP2 method. Each branch condition is translated into the precondition of each matching
method. An alt branch with an empty condition will produce a method with an empty precon-
dition. All methods share the same name and list of arguments and the original alt construct
in the original sequence of steps should be replaced by an invocation of the task these methods
implement. The name of this methods is a symbol with the prefix alt- and a numeric suffix,
so that the resulting symbol provides a unique name for the method in the refactoring plan-
ning domain. The same procedures regarding how the bound variables have to be propagated
into and from the methods that were described for the regular alternatives, apply to the alt
non-deterministic construct. An example of alt translation is shown below.
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alt ;; alt invocation
branch COND1 (alt—-xx ARGS)
body
STEPS1 ;; alt definition
branch COND2 (:method (alt-xx ARGS)
body (COND1)
STEPS2 (STEPS1)
branch )
body (:method (alt-xx ARGS)
STEPS3 (COND2)
end (STEPS2)

)
(:method (alt-xx ARGS)
()

(STEPS3)
)
B.8 Loops: while
while COND ;; while invocation
loop VARS (while-xx ARGS)
STEPS
end ;; while definition
(:method (while-xx ARGS)
(:first
(COND)
)
(
STEPS

(while—-xx ARGS)

() ; exit loop

A while loop is translated with a single method that contains two branches. The first branch
of the method is used for translating the loop’s elements, while the second branch has an empty
precondition and an empty task decomposition list that works as the loop’s exit branch. The
loop’s stay condition is translated as the first branch’s precondition. The block of steps in the
loop’s body is translated into the first branch’s task decomposition list. These steps should be
recursively translated if needed. The last task in the first branch’s decomposition list should be
a recursive invocation of the loop’s translated method.

Variable bindings taking place within the loop’s method precondition are discarded between
loop iterations by default. The variables in the loop VARS section should be kept between
iterations. In order to translate it, the variables in VARS should be included in the ARGS argument
list.

The method representing the while statement has to be named with a symbol with the
prefix while- and a numeric suffix, so that the resulting symbol provides a unique name for the
method in the refactoring planning domain. The while statement in the original sequence of
steps should be then replaced by the invocation of the method. The method’s arguments ARGS
should contain all the variables appearing in the method’s steps that are accessible from the
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original sequence of steps’ scope.

If the blocks of statements are being translated in a hierarchical way, queries for recalling
the needed persistent variables that may have been previously stored, should be inserted as the
first queries in the method’s precondition. Also, if it is necessary to propagate the value of those
variables that might have been bounded in the loop’s body, the store-rpvar methods needed
to save the bindings should be included in the task decomposition list of the exit branch.

If blocks of steps are being translated in a chained way, the invocation of the next block
fragment should be included in the task decomposition list of the second branch. Also, the list
of arguments ARGS should include all the variables that have to be passed to the following block
fragments.

The translation of regular and non-deterministic loops is almost identic. Although different
kind of JSHOP2 preconditions should be used. For a regular loop the first branch’s precondition
has to be a first precondition. For a non-deterministic loop, that allows the planner to check
different iteration orderings, the first branch’s precondition is a regular precondition.

while COND ;; while invocation
unordered loop VARS (while—-xx ARGS)
STEPS

end ;; while definition

(:method (while-xx ARGS)
(
(COND)
)
(
STEPS
(while—-xx ARGS)
)

() ; exit loop
()
)

B.9 Loops: foreach

foreach V in VARS ;; foreach invocation

loop LVARS (foreach—-xx ARGS VARS)
STEPS
end ;+ foreach definition
(:method (foreach-xx ARGS VARS)
(:first

(get-head V VARS)
(get-rest REST VARS)
)
(
STEPS
(foreach—-xx ARGS REST)
)

() ; exit loop
0)
)
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A foreach loop, with an explicit collection, is translated with a single JSHOP2 method with
two branches. The template above, describes a foreach loop in which a variable v is bound to
each element of the list VARS in each iteration of the loop. The VARS list of elements to iterate
over, should be passed as arguments of the foreach method. The first method branch is used
to translate the loop’s elements while the second branch is used to exit the loop. This second
branch contains an empty precondition, that is trivially true, and an empty task decomposition
list. The first branch’s precondition should contain the necessary queries to control the iteration
over the different elements of the VARS list. The first element in the list is bound to the varaible
V, the rest of the list is bound to the list REST. The STEPS in the loop’s body are translated as
tasks in the task decomposition list of the foreach method. This steps should be recursively
translated if needed. In order to implement the loop, a recursive invocation of the foreach
method is include as the last task in the first branch’s task decomposition list. The REST list is
passed to the invocation of the next loop’s iteration as the collection to iterate over.

In the same way as while loops, variable bindings taking place within the loop’s are discarded
between loop iterations by default. The variables in the loop VARS section should be kept
between iterations. In order to translate it, the variables in LvVARS should be included in the
ARGS argument list.

The method representing the foreach statement has to be named with a symbol with the
prefix foreach- and a numeric suffix, so that the resulting symbol provides a unique name for the
method in the refactoring planning domain. The foreach statement in the original sequence of
steps should be then replaced by the invocation of the method. The method’s arguments ARGS
should contain all the variables appearing in the method’s steps that are accessible from the
original sequence of steps’ scope.

If the blocks of statements are being translated in a hierarchical way, queries for recalling
the needed persistent variables that may have been previously stored, should be inserted as the
first queries in the first branch’s precondition. Also, if it is necessary to propagate the value of
those variables that might have been bounded in the loop’s body, the store-rpvar invocations
needed to save the bindings should be included in the task decomposition list of the first branch,
between the translation of the loops’ STEPS and the invocation of the next loop’s iteration.

If blocks of steps are being translated in a chained way, the invocation of the next block
fragment should be included in the task decomposition list of the second branch. Also, the list
of arguments ARGS should include all the variables that have to be passed to the following block
fragments.

The translation of regular and non-deterministic foreach loops is almost identic. Although
they differ in how the VARS list to iterate its managed. For a regular loop the translation has
already been described. For a non-deterministic loop, the queries in the first branch’s precondi-
tion are used to randomly bound a member of VARS to a variable v. The REST list is obtained
by removing this element v from the vaRs list. The example templates are shown below.
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foreach V in VARS ;; foreach invocation
unordered loop LVARS (foreach—-xx ARGS VARS)
STEPS

end ;; foreach definition

(:method (foreach-xx ARGS VARS)
(
(member V VARS)
(remove-member V VARS REST)
)
(
STEPS
(foreach—-xx ARGS REST)

() ; exit loop

B.10 Loops: foreach

foreach VARS satisfying COND ;; foreach invocation
loop LVARS (foreach—-xx ARGS ())
STEPS
end ;; foreach definition
(:method (foreach—-xx ARGS CVARS)
(:first
(
COND

(not (member VARS CVARS))
(add-member VARS CVARS CVARS2)
)

)

(
STEPS
(foreach—-xx ARGS CVARS2)

)

() ; exit loop
0
)

The translation of a foreach loop that iterates over an implicitly defined collection is quite
similar to the translation of the foreach loop that iterates over an explicit collection.

The template above, describes a foreach loop in which each distinct binding for the variable
tuple VARS that satisfies the condition COND, is used at each loop’s iteration. As in the other
types of loops, the list of variables LVARS specify those variables whose bindings have to be kept
between loop iterations.

The condition COND that has to be evaluated at each loop’s iteration is translated into the first
branch’s precondition. A list of variable tuples CVARS is used to keep track of the bindings of the
variables in VARS that have already been checked. The queries that manage these list should be
added at the end of the first branch’s precondition. Once the condition COND has been evaluated
within the JSHOP2 method, the control queries check whether this binding has already been
checked, and if it is not, the variable tuple defined by VARS is added to the control list CVARS.
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The new control list CVARS2 is passed to the next loop iteration. The initial invocation of the
foreach method should include an empty list, that serves as the initial CVARS control list.

The translation of regular and non-deterministic foreach loops that iterate over implicit
conditions are almost identical. Although different kind of JSHOP2 preconditions should be
used. For a regular loop the first branch’s precondition has to be a first precondition. For a
non-deterministic loop, that allows the planner to check different iteration orderings, the first
branch’s precondition is a regular precondition. The example template for non-deterministic
foreach loops is displayed below.

foreach VARS satisfying COND ;; foreach invocation
unordered loop LVARS (foreach—-xx ARGS ())
STEPS

end ;; foreach definition

(:method (foreach-xx ARGS CVARS)
(
COND
(not (member VARS CVARS))
(add VARS CVARS CVARS2)
)
(
STEPS
(foreach-xx ARGS CVARS2)
)

() ; exit loop
()
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B.11 Unordered steps

unordered ;; unordered block invocation
Stepl (unordered—-xx ARGS)
Step2 (unordered-xx ARGS)
Step3 (unordered-xx ARGS)

end
;; unordered block definition
(:method (unordered-xx ARGS)
(;stepl
(not (rp-var unordered-xx—control stepl))
)
(
Stepl
(add-rpvar unordered-xx-control stepl)
)
)
(:method (unordered-xx ARGS)
(; step2
(not (rp-var unordered-xx-control step2))
)
(
Step2
(add-rpvar unordered-xx-control step2)
)
)
(:method (unordered-xx ARGS)
(;step3
(not (rp-var unordered-xx-control step3))
)
(
Step3
(add-rpvar unordered-xx-control step3)
)
)

A block of unordered steps is translated into the JSHOP2 refactoring planning domain by
transforming the steps into a set of different methods sharing the same task symbol. The methods
representing each step have to be named with a symbol that includes the prefix unordered-
and a numeric suffix, so that the resulting symbol provides a unique name for this unordered
block in the refactoring planning domain. The unordered statement in the original sequence
of steps should be then replaced by a sequence of identical invocations of these methods, with
as many identical invocations as steps in the unordered block or methods in the translation.
The methods’ arguments ARGS should contain all the variables appearing in all the steps in the
unordered block. Independently of a certain variable being used or not for a particular step, all
the ARGS lists of arguments should be the same.

Each unordered method, is used to translate each step in the original unordered block that
have to be planed once and only once. In order to keep track of this, a persistent variable
named after the methods name is used to control whether each step has been already planned
or not. The persistent variable is stored with multiple values: —stepl, step2, ..., stepn—, to
specify that the corresponding step has already been planned. Within the precondition of each
method, a persistent variable query is used to verify that the method has not been planned yet.
The original steps are included in the task decomposition list of the methods and should be
recursively translated if needed.
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If the blocks of statements are being translated in a hierarchical way, queries for recalling the
needed persistent variables that may have been previously stored, should be inserted as the last
queries in the methods’ precondition, after the query that verifies the control persistent variable
of the unordered block. Also, if it is necessary to propagate the value of those variables that
might have been bounded within the method, the store-rpvar methods needed to save the
bindings should be included in the task decomposition list of each method, after the task that
stores the persistent variable that controls the unordered block.

If blocks of steps are being translated in a chained way, the invocation of the next block
fragment should be included as the last task in each method’s task decomposition list. As in the
previous types of control structures, the list of arguments ARGS should include all the variables
that have to be passed to the following block fragments.



Appendix C

The Refactoring Planning Domain

This appendix lists the main elements defined in the refactoring planning domain.

C.1 Notation

The refactoring domain elements in this appendix are listed using PROLOG-like notation. This
notation is used refactoring strategy specification language. Some parts of the domain, like
system queries, have been written with this notation and are translated automatically in order
to be fed to the planner. External procedures have been written in JAVA. The rest of the
refactoring planning domain —operators and methods representing strategies, refactorings and
the rest of transformations— have been written in the JSHOP2 language. Nevertheless, they are
listed here using the PROLOG notation, since they would be mostly used with the refactoring
strategy specification language.

The code fragments below illustrate how the PROLOG-ike notation is translated to the
JSHOP2 Lisp-like notation.

[] () | NIL

Variable ?Variable

symbol ( Variable, literal, ‘‘string (symbol ?Variable literal string-
literal’’) literal)

goal strategy (argument) (goal strategy ?argument)

C.2 Refactoring Strategies

e move—-method all-sts (method, tgt-class, reference)
e remove-feature-envy all-sts (method)

e remove—-data-class all-sts (class)
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C.3 Refactorings

e encapsulate-field (field, getter-name, setter—-name)
e move—-method (method, tgt-class, reference, delegate)
e remove—class (class)

e remove-field (field)

e remove—-method (method)

e rename—field(field, new-name)

e rename—-local-variable (variable, new-localvar—-name)
e rename-method (method, new-method-name)

® rename-parameter (parameter, new-parameter-—name)

C.4 Operators

Add a system element:

(:operator (!add ?term)
()
()

(?term)
0 ; cost O

e Deletes a system element:

(:operator (!del ?term)
()
(?term)
()
0 ; cost O

e Replaces a system element:

(:operator (!rep ?old-term ?new-term)
()
(?old-term)
(?new—term)
0 ; cost O
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External Java Procedures

All external procedures takes list of terms as inputs.

C.6

Concatenate (?1list)

Takes a list of symbols or ground variables and returns a symbol that is the concatenation
of all them.

Debugger (?1list)

Takes a list of symbols and prints them to standard output.

GetRandom(?1list)

Returns a random integer between 1 and 23!

LesserVisibility (?1list)

Takes two terms and returns true if the first has a lesser visibility than the second one.

GreaterVisibility (?1list)

Takes two terms and returns true if the first has a greater visibility than the second one.

IsEqual (?1list)

Takes a lists of terms and returns true if all the terms are equal.

IsGround (?list)

Takes a list of terms and returns true if all the terms are ground.

UserQuery (?list)

Takes a list of terms as input. The input is interpreted as a message. The message is
shown to the user and a user input is requested. After the user introduces a response, the
procedure returns the information entered by the user as a constant term.

System Queries
fgn (Entity, (Package, Class, Field) )
fgn (Entity, (Package, Class, Method) )
fgn (Entity, (Package, Class) )
field-fgn (Field, Pname, Cname, Fname)
method-fqgn (Method, Pname, Cname, Mname)
class—-fgn(Class, Pname, Cname)
is—accessor (Method, Field)

is—accessor (Package, Class, Method, AccessedField)
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is—-setter (Package, Class,

is—-setter (Method, Field)
is—getter (Package, Class,

is—getter (Method,Field)

call-to-class—-from(CallerMethod, CalledMethod, Class,

access-to-class—from (AccessMethod, Accessedfield, Class,

Method, Field)

Method, Field)

Call)

Access)

client—-method-of-class (Method, Class)

declares-member (Package,
declares—-field(Package,

declares—-method (Package,
declares—-member (Class,
declares—-field(Class,

declares—method(Class,
extends (Class, SuperClass)
inherits (Class, SuperClass)
contains—-member (Package,
contains—member (Class,
contains-field(Class,

contains—-method(Class,
inherits-member (Class,
inherits—-field(Class,

inherits-method(Class,
inherits-member-from(Class,
inherits—-field-from(Class,

inherits-method-from(Class,
implements—-interface (Class,
explicit-visibility (Entity,

implicit-visibility (Entity,

Class,

Class,

Field)

Class,

Field)

Field)

Field,

Method)

Class,Field)

Method)

Member)

Method)

Method)

Member)

Method)

Method)

Method)

Method, SuperClass)
SuperClass)
Method, SuperClass)
Interface)

Vis)

package)
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visibility (Entity, Vis)

field-visibility (Package, Class, Field, Vis)
method-visibility (Package, Class, Method, Vis)
is—-static (ContainerPKG, ContainerClass, MethodName)
is—-static(Entity)

is—-method-void (Package, Class, Method)

is—constructor (Method)

get-method-parameters (Package, Class, Method, ParamList)
get-method-single-parameter (Package, Class, Method, Param)
get—-feature-type (Package, Class, Field, Type)
get—feature-type (Package, Class, Method, Type)
get—-field-type (Package, Class, Field, Type)
get—-method-type (Package, Class, Method, Type)
get—-parameter-type (Package, Class, Method, Param, Type)
first-parameter (Method, Param)

type-of-typeterm(Type, TypeTerm)
regular-type-of-typeterm(Type, type(class, Type, Dim))
typeterm-of-symbol (Symbol, Type)
typeterm-of-expression (Exp, Type)

exists—-package (Package)

exists-class (Package, Class)

exists—-field(Package, Class,Field)

exists-method (Package, Class, Method)

is—-package (Entity)

is—-class (Entity)

is—-field(Entity)

is-method (Entity)

is-parameter (Entity)
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class—cunit (Package, Class, CompilationUnit)
class-reference (Package, Class, Referencing-pef)
field-access (Package, Class, Field, Field-access)
implements-method (Package, Class, Method)
declares—abstract-method (Package, Class, AMethod)
contains—abstract-method (Package, Class, AMethod)
implements—-abstract-method (Package, Class, Method, AMethod)
is-method-overriden (SupP, SupC, SupM, SubP, SubC)
call-to-method (Package, Class, Method, Call)
call-to—-method-from(SClass—id, SMethod-id, TMethod-id, Call)
called-as-super (TP, TC, TM, Call)
called-as-super—-from(SP, SC, TP, TC, Method, Call)
call-to-super (SrcP, SrcC, SrcM, TgtP, TgtC, TgtM, Call)
call-to-super (SrcMethod, TgtMethod, Call)
has—-atmost-one-return (Package, Class, Method)
has—no-return (Package, Class, Method)

encl-of-callT (PefId, EnclId, EnclClass)
encl-method-of-callT (PeflId, EnclId, EnclClass)
encl-field-of-callT (PefId, EnclId, EnclClass)
encl-class—-of-method (Method, Class)

visible-in-class (Field, Package, Class)
visible-in—-method (Name, Method)
can—access—-class—from—method (Class, Method)
can—access—-class (Classl, Class?)

same-package-class (Classl, Class2)

can—access—-member (Member, Class)

can—access—-method (Method, Class)

can—access—-field(Field, Class)
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pef-subtree (Pef, SubTreePefs)

pef-children-ids (Pef, Children)

nonprivate—-attribs (Package, Class, Fields)

getter-methods (Package, Class, Getters)

setter—-methods (Package, Class, Setters)

collect-all-setter-methods (Package, Class, List, Result)

get-parent (Pef, Parent)

get-parent-stmt (Pef, Parent-stmt)

is—stmt (Pef)

get—-stmt-container (Stmt, Container)

is—-multi-stmt-container (Container)

is—-single-stmt-container (Container)

get-container-stmts (Container, Stmts)

get-envied-class (Package,

get—-envied-class (MethodID,

Class, Method, EnvPackage,

EnvClassID)

EnvClass)
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