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 Refactoring [Fowler, 2000]

 “Process of changing a software system in such a way that it 
does not alter external behavior of the code yet improve its 
internal structure”

 Example: Add Parameter (275)

 Open Research Trends
 Define new refactorings
 Identify code defects (Bad Code Smells)
 Apply refactorings
 Tool support 
 Certain language independence 
 etc.
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Problem
 Refactorings

– Great number of refactorings
– e.g. Fowler's catalog as the “standard” catalog

• Initially in [Fowler,2000]: 68 “medium” refactorings
• Currently in the web catalog: 93 (and growing!)

– http://www.refactoring.com

 Main task
– Build a refactoring tool

 Questions

» How to begin the implementation:
• What criteria should I use to select them? 

» Reuse building GUI
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Problem

 Refactorings are grouped by some criteria
– e.g. Functionality (aim) [Fowler,00]

• Composing methods
• Moving features between objects
• Organizing data
• Etc.

• Design defects / smells can suggest refactorings

– Grouped by taxonomies of design defects

 Lack of guidelines:
– How to face their implementation order
– How to group refactorings on the basis of common 

implementation issues

– Reuse  previous efforts
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Problem
 Subjective problem

– Same refactorings but different points of view
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1st Step

2nd Step

3rd Step

Common agreement?
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Goal

 Simple criteria
 Avoid subjective criteria
 From basic observation
 Low/medium number of features

 Selected features
– Design and language issues
– Scope
– Inputs
– Actions

1

2

3
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Refactoring Characterization

 Design and language issues (DLI): programmers applying the 
refactoring should know

– Basic (B) 
• Basic programming concepts

– e.g. In OOP: classes, inheritance, 
generics, etc.

– Advanced (A)
• Advanced programming concepts

– e.g. In OOP: exceptions, Design by 
contract, annotations/attributes, 
delegates, etc.

– Design patterns (DP)
• Well-known patterns

– e.g. In OOP: Factory Method, 
Adapter, Command, etc.
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Refactoring Characterization
 Scope: elements affected

– Intraclass (I)
• Do not affect other classes

– Clients (C)
• Client classes suffer its effects

– Inheritance (H)
• Ancestors or descendants are affected
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Refactoring Characterization

 Inputs:
– Root input

• Selected item in current code
– e.g. Class, method, attribute, etc.

• It determines the available refactoring set:
– e.g. Method  Rename Method, Move →

Method, etc.

– Additional inputs
• Extra information provided by the refactoring 

user to drive the refactoring execution
• The greater size of inputs, the more 

complicated GUI is
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Refactoring Characterization

 Action: 
– Select one and just one action  that characterizes the 

refactoring in terms of the changes to the current 
state of the code

– Small set (from lower to higher complexity):
• Add  +→
• Rename  n  n'→ →
• Remove   -→
• Replace   – & + to the same element→
• Move  - & + to different elements→

– Although more actions can be identified the main goal 
is to select the most representative action
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How to use the characterization
 1st step

– Main features ordered:
• DLI  Scope  Inputs  Action→ → →

 2nd step
– Sub-features are also ordered as 

decreasing complexity:
• e.g. DLI: DP  Advanced  Basic→ →

 3rd step
– Order the refactorings in descending 

complexity using main features as first 
criteria and subfeatures as second
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How to use the characterization
 Example: 

– Grouped by Fowler as Move features between objects
• 8 refactorings in this group

– Order to face the implementation?
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Refactoring DLI Scope Root input
Additional 

Inputs
Action

Hide Delegate Design Pattern ICH 1 Class N Clsses Move

Remove 
Middle Man Design Pattern ICH 1 Class N Classes Remove

Introduce Local 
Extension Basic ICH 1 Class 1 Class N 

Methods Add

Extract Class Basic ICH 1 Class N Attributes Move

Inline Class Basic ICH 1 Class 1 Class Move

Move Method Basic ICH 1 Method 1 Class Move

Move Field Basic ICH 1 Attribute 1 Class Move

Introduce 
Foreign 
Method

Basic IC 1 Class N Instructions Add
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How to use the characterization

 Example:
– Fowler defines a “use” relationship that can be 

depicted as a graph  [Fowler, 2000]
– Graph extracted for this refactoring group:

– More fine grained partial order, while in the 
graph this decision is more subjective...
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How to use the characterization
 Building tools with GUI

– Root inputs
• Allow to filter the set of available refactorings
• Help to the user
• Provide dynamic menus
• e.g.

– Same GUI
• Reuse same graphical interface in case of 

common additional inputs
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Refactorings with 
same root input

e.g. Method

Method root input
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Conclusions and Future Work

 Conclusions
– Characterization easy to use

– Helpful to take decisions before beginning refactoring 
implementation

 Future work
– Validate the characterization with different 

programmers
• How each programmer understands one 

concrete refactoring?

– Check the characterization with more refactorings 

– Apply this idea to other contexts
• e.g. Refactoring databases catalog
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