
ASSISTING REFACTORING TOOL DEVELOPMENT THROUGH
REFACTORING CHARACTERIZATION

Authors: Raúl Marticorena rmartico@ubu.es
Carlos López clopezno@ubu.es

 Javier Pérez jperez@infor.uva.es
Yania Crespo yania@infor.uva.es

Grupo de Investigación en Reutilización
y Orientación a Objeto

mailto:rmartico@ubu.es
mailto:clopezno@ubu.es
mailto:yania@infor.uva.es

 Sevilla, July 2011

2 of 17

Assisting Refactoring Tool Development through Refactoring Characterization

Outline

Context
Problem
Goal
Refactoring Characterization
How to use the characterization
Conclusions and Future Work

 Sevilla, July 2011

3 of 17

Assisting Refactoring Tool Development through Refactoring Characterization

 Refactoring [Fowler, 2000]

 “Process of changing a software system in such a way that it
does not alter external behavior of the code yet improve its
internal structure”

 Example: Add Parameter (275)

 Open Research Trends
 Define new refactorings
 Identify code defects (Bad Code Smells)
 Apply refactorings
 Tool support
 Certain language independence
 etc.

Context
 Context
 Problem
 Goal
 Refactoring

Characterization
 How to use the

characterization
 Conclusions and future

work

 Sevilla, July 2011

4 of 17

Assisting Refactoring Tool Development through Refactoring Characterization

Problem
 Refactorings

– Great number of refactorings
– e.g. Fowler's catalog as the “standard” catalog

• Initially in [Fowler,2000]: 68 “medium” refactorings
• Currently in the web catalog: 93 (and growing!)

– http://www.refactoring.com

 Main task
– Build a refactoring tool

 Questions

» How to begin the implementation:
• What criteria should I use to select them?

» Reuse building GUI

 Context

 Problem
 Goal
 Refactoring

Characterization
 How to use the

characterization
 Conclusions and future

work

http://www.refactoring.com/

 Sevilla, July 2011

5 of 17

Assisting Refactoring Tool Development through Refactoring Characterization

Problem

 Refactorings are grouped by some criteria
– e.g. Functionality (aim) [Fowler,00]

• Composing methods
• Moving features between objects
• Organizing data
• Etc.

• Design defects / smells can suggest refactorings

– Grouped by taxonomies of design defects

 Lack of guidelines:
– How to face their implementation order
– How to group refactorings on the basis of common

implementation issues

– Reuse previous efforts

Introduction
Context
 Problem
 Goal
 Refactoring

Characterization
 How to use the

characterization
 Conclusions and future

work

 Sevilla, July 2011

6 of 17

Assisting Refactoring Tool Development through Refactoring Characterization

Problem
 Subjective problem

– Same refactorings but different points of view

 Introduction
 Context
 Problem
 Goal
 Refactoring

Characterization
 How to use the

characterization
 Conclusions and future

work

1st Step

2nd Step

3rd Step

1st Step

2nd Step

3rd Step

Common agreement?

 Sevilla, July 2011

7 of 17

Assisting Refactoring Tool Development through Refactoring Characterization

Goal

 Simple criteria
 Avoid subjective criteria
 From basic observation
 Low/medium number of features

 Selected features
– Design and language issues
– Scope
– Inputs
– Actions

1

2

3

Context
 Problem
 Goal
 Refactoring

Characterization
 How to use the

characterization
 Conclusions and future

work

4

 Sevilla, July 2011

8 of 17

Assisting Refactoring Tool Development through Refactoring Characterization

Refactoring Characterization

 Design and language issues (DLI): programmers applying the
refactoring should know

– Basic (B)
• Basic programming concepts

– e.g. In OOP: classes, inheritance,
generics, etc.

– Advanced (A)
• Advanced programming concepts

– e.g. In OOP: exceptions, Design by
contract, annotations/attributes,
delegates, etc.

– Design patterns (DP)
• Well-known patterns

– e.g. In OOP: Factory Method,
Adapter, Command, etc.

Context
 Problem
 Goal
 Refactoring
Characterization

 How to use the
characterization

 Conclusions and future
work

 Sevilla, July 2011

9 of 17

Assisting Refactoring Tool Development through Refactoring Characterization

Refactoring Characterization
 Scope: elements affected

– Intraclass (I)
• Do not affect other classes

– Clients (C)
• Client classes suffer its effects

– Inheritance (H)
• Ancestors or descendants are affected

Context
 Problem
 Goal
 Refactoring
Characterization

 How to use the
characterization

 Conclusions and future
work

 Sevilla, July 2011

10 of 17

Assisting Refactoring Tool Development through Refactoring Characterization

Refactoring Characterization

 Inputs:
– Root input

• Selected item in current code
– e.g. Class, method, attribute, etc.

• It determines the available refactoring set:
– e.g. Method Rename Method, Move →

Method, etc.

– Additional inputs
• Extra information provided by the refactoring

user to drive the refactoring execution
• The greater size of inputs, the more

complicated GUI is

Context
 Problem
 Goal
 Refactoring
Characterization

 How to use the
characterization

 Conclusions and future
work

 Sevilla, July 2011

11 of 17

Assisting Refactoring Tool Development through Refactoring Characterization

Refactoring Characterization

 Action:
– Select one and just one action that characterizes the

refactoring in terms of the changes to the current
state of the code

– Small set (from lower to higher complexity):
• Add +→
• Rename n n'→ →
• Remove -→
• Replace – & + to the same element→
• Move - & + to different elements→

– Although more actions can be identified the main goal
is to select the most representative action

Context
 Problem
 Goal
 Refactoring
Characterization

 How to use the
characterization

 Conclusions and future
work

 Sevilla, July 2011

12 of 17

Assisting Refactoring Tool Development through Refactoring Characterization

How to use the characterization
 1st step

– Main features ordered:
• DLI Scope Inputs Action→ → →

 2nd step
– Sub-features are also ordered as

decreasing complexity:
• e.g. DLI: DP Advanced Basic→ →

 3rd step
– Order the refactorings in descending

complexity using main features as first
criteria and subfeatures as second

Context
 Problem
 Goal
 Refactoring

Characterization

 How to use the
characterization

 Conclusions and future
work

 Sevilla, July 2011

13 of 17

Assisting Refactoring Tool Development through Refactoring Characterization

How to use the characterization
 Example:

– Grouped by Fowler as Move features between objects
• 8 refactorings in this group

– Order to face the implementation?

Context
 Problem
 Goal
 Refactoring

Characterization
 How to use the
characterization

 Conclusions and future
work

Refactoring DLI Scope Root input
Additional

Inputs
Action

Hide Delegate Design Pattern ICH 1 Class N Clsses Move

Remove
Middle Man Design Pattern ICH 1 Class N Classes Remove

Introduce Local
Extension Basic ICH 1 Class 1 Class N

Methods Add

Extract Class Basic ICH 1 Class N Attributes Move

Inline Class Basic ICH 1 Class 1 Class Move

Move Method Basic ICH 1 Method 1 Class Move

Move Field Basic ICH 1 Attribute 1 Class Move

Introduce
Foreign
Method

Basic IC 1 Class N Instructions Add

 Sevilla, July 2011

14 of 17

Assisting Refactoring Tool Development through Refactoring Characterization

How to use the characterization

 Example:
– Fowler defines a “use” relationship that can be

depicted as a graph [Fowler, 2000]
– Graph extracted for this refactoring group:

– More fine grained partial order, while in the
graph this decision is more subjective...

Context
 Problem
 Goal
 Refactoring

Characterization
 How to use the
characterization

 Conclusions and future
work

1 2 8

5 4 3

7 6

 Sevilla, July 2011

15 of 17

Assisting Refactoring Tool Development through Refactoring Characterization

How to use the characterization
 Building tools with GUI

– Root inputs
• Allow to filter the set of available refactorings
• Help to the user
• Provide dynamic menus
• e.g.

– Same GUI
• Reuse same graphical interface in case of

common additional inputs

Context
 Problem
 Goal
 Refactoring

Characterization
 How to use the
characterization

 Conclusions and future
work

Refactorings with
same root input

e.g. Method

Method root input

 Sevilla, July 2011

16 of 17

Assisting Refactoring Tool Development through Refactoring Characterization

Conclusions and Future Work

 Conclusions
– Characterization easy to use

– Helpful to take decisions before beginning refactoring
implementation

 Future work
– Validate the characterization with different

programmers
• How each programmer understands one

concrete refactoring?

– Check the characterization with more refactorings

– Apply this idea to other contexts
• e.g. Refactoring databases catalog

 Context
 Problem
 Goal
 Refactoring

Characterization
 How to use the

characterization
 Conclusions and
Future Work

Thank you very much

ASSISTING REFACTORING TOOL DEVELOPMENT
THROUGH REFACTORING CHARACTERIZATION

Authors: Raúl Marticorena rmartico@ubu.es
Carlos López clopezno@ubu.es
Javier Pérez jperez@infor.uva.es
Yania Crespo yania@infor.uva.es

mailto:rmartico@ubu.es
mailto:clopezno@ubu.es
mailto:jperez@infor.uva.es
mailto:yania@infor.uva.es

	Página 1
	Página 2
	Página 3
	Página 4
	Página 5
	Página 6
	Página 7
	Página 8
	Página 9
	Página 10
	Página 11
	Página 12
	Página 13
	Página 14
	Página 15
	Página 16
	Página 17

