ASSISTING REFACTORING TOOL DEVELOPMENT THROUGH
REFACTORING CHARACTERIZATION

Authors: Raul Marticorena
Carlos Lopez
Javier Pérez
Yania Crespo

Seville, Spain

rinational Conference on Software anod Pata Teck

mailto:rmartico@ubu.es
mailto:clopezno@ubu.es
mailto:yania@infor.uva.es

@ Context

@ Problem

o Goal

o Refactoring Characterization

@ How to use the characterization
@ Conclusions and Future Work

Sevilla, July 201

B Context
B Problem
H Goal

B Refactoring
Characterization

B How to use the
characterization

B Conclusions and future
work

_-

Sevilla, July 2011

[REfaCt0r|ng [Fowler, 2000]

-S|

-

m "Process of changing a software system in such a way that it
does not alter external behavior of the code yet improve its

m Example: Add Parameter

® Open Research Trends
® Define new refactorings

internal structure”

Customer

(275)

getContact])

ﬁ

Customer

getContact; Date)

® Identify code defects (Bad Code Smells)

= Tool support

= Certain language independence

etc.

B Context

® Problem
B Goal

B Refactoring
Characterization

B How to use the
characterization

B Conclusions and future
work

_-

Sevilla, July 2011

® Refactorings
Great number of refactorings

e.g. Fowler's catalog as the “standard” catalog
. Initially in [Fowler,2000]: 68 “medium” refactorings
. Currently in the web catalog: 93 (and growing!)

. =
- |

-

7]
|}

» I Marcadores

ctorings in Alphabctical Order
ings hor

® Main task

Build a refactoring tool

® Questions
» How to begin the implementation:

» Reuse building GUI

 What criteria should I use to select them?

http://www.refactoring.com/

EIntroduction

H(Context

-S|

-

= Problem = Refactorings are grouped by some criteria

H Goal

B Refactoring
Characterization

B How to use the
characterization

B Conclusions and future
work

s

® | ack of guidelines:

@.‘

Sevilla, July 2011

e.g. Functionality (aim) [Fowler,00]

Composing methods

« Moving features between objects
* Organizing data

 Etc.

Design defects / smells can suggest refactorings

Grouped by taxonomies of design defects

e 2

How to face their implementation order
How to group refactorings on the basis of common

implementation issues
Reuse previous efforts %

B Introduction
B Context

® Problem
B Goal

B Refactoring
Characterization

B How to use the
characterization

B Conclusions and future

work

Sevilla, July 2011

= Subjective problem
Same refactorings but different points of view

Common agreement?

HContext
B Problem

® Goal

B Refactoring
Characterization

B How to use the
characterization

B Conclusions and future
work

e @ L ow/medium number of features

Sevilla, July 2011

@Simple criteria
@ Avoid subjective criteria
@ From basic observation

® Selected features

Design and language issues
Scope

Inputs

Actions

H(Context
B Problem
H Goal

® Refactoring
Characterization

® How to use the
characterization

B Conclusions and future
work

e

Sevilla, July 2011

= Design and language issues (DLI): programmers applying the
refactoring should know

Basic (B)
* Basic programming concepts

— e.g. In OOP: classes, inheritance,
generics, etc.

Advanced (A)
« Advanced programming concepts
— e.g. In OOP: exceptions, Design by
contract, annotations/attributes,
delegates, etc.
Design patterns (DP)
* Well-known patterns

— e.g. In OOP: Factory Method,
Adapter, Command, etc.

Refactoring Characterization %’

HContext

B Problem

H Goal

® Refactoring
Characterization

® How to use the
characterization

B Scope: elements affected

— Intraclass (1)
* Do not affect other classes

B Conclusions and future
work
— Clients (C)
« Client classes suffer its effects

— Inheritance (H)

* Ancestors or descendants are affected@

%

Sevilla, July 2011

=

EContext
B Problem [| .
" prot Inputs:
® Refactoring _ i
Characterization ROOt |nput
® How to use the « Selected item in current code
characterization
" Conclusions and future — e.g. Class, method, attribute, etc.

« It determines the available refactoring set:

— e.g. Method -~ Rename Method, Move
Method, etc.

E Additional inputs

« Extra information provided by the refactoring
user to drive the refactoring execution

« The greater size of inputs, the more
complicated GUI is

Sevilla, July 2011

H(Context
B Problem
H Goal

® Refactoring
Characterization

® How to use the
characterization

B Conclusions and future
work

e

Sevilla, July 2011

® Action:

Select one and just one action that characterizes the
refactoring in terms of the changes to the current
state of the code

Small set (from lower to higher complexity):

Add - +

Rename - n - n'

Remove - -

Replace - — & + to the same element
Move - - & + to different elements

Although more actions can be identified the main goal
is to select the most representative action

HContext
B Problem
H Goal

" Refactoring — Main features ordered:

“characterization DLI - Scope - Inputs — Action
B Conclusions and future

work | 2nd Step

— Sub-features are also ordered as
—‘ decreasing complexity:
* e.qg. DLI: DP —» Advanced — Basic
= 3d gtep

— Order the refactorings in descending
complexity using main features as first
criteria and subfeatures as second

Sevilla, July 2011

H(Context
B Problem
H Goal

B Refactoring
Characterization

® How to use the
characterization

B Conclusions and future
work

13 0of 17

Sevilla, July 2011

= Example:

Remove
Middle Man

Extract Class

Move Method

Grouped by Fowler as Move features between objects

+ 8 refactorings in this group

Design Pattern

Basic

Basic

ICH

ICH

ICH

Order to face the implementation?

1 Class

1 Class

1 Method

N Classes

N Attributes

1 Class

Remove

Move

Move

Introduce
Foreign
Method

Basic

IC

1 Class

N Instructions

Add

HContext

® Problem [| Exa m ple -

H Goal

e o — Fowler defines a “use” relationship that can be
" llow touse the depicted as a graph [Fowler, 2000]
Sk e ena e — Graph extracted for this refactoring group:

@uchucﬂ]Eﬂmslﬂn b}

— More fine grained partial order, while in the
Sevilla, July 2011 graph this decision is more subjective...

HContext

B Problem

B Goal

B Refactoring
Characterization

® How to use the
characterization

B Conclusions and future
work

e

Sevilla, July 201

= Building tools with GUI

— Root inputs
 Allow to filter the set of available refactorings
» Help to the user
* Provide dynamic menus Method root input

¢ e.q. /

[J] Clientjava 52 _[J] Managerjava 1 / =8

1 puoblic class Client { -
2
3 Manager m;

public boolean 1

retorn m.ishvailable(); v|
3

. Ts Refactoring Catalog Bmwser} =0

Refactorings with
same root input

e.g. Method

@ AddCverrideAnnotation
'< - Migrate)Unit3ToJUni4 TestException

-5 Rename Method
— Same GUI [

« Reuse same graphical interface in case of
common additional inputs

B Context .
= Prolen ® Conclusions
= Refactoring — Characterization easy to use
" fow to use the - Helpful to take decisions before beginning refactoring
® Conclusions and implementation
Future Work

® Future work

- Validate the characterization with different

programmers

« How each programmer understands one
concrete refactoring?

— Check the characterization with more refactorings
— Apply this idea to other contexts L
* e.g. Refactoring databases catalog =&

Sevilla, July 2011

Authors:

Thank you very much

(55

Raul Marticorena
Carlos Lépez
Javier Pérez

Yania Crespo

mailto:rmartico@ubu.es
mailto:clopezno@ubu.es
mailto:jperez@infor.uva.es
mailto:yania@infor.uva.es

	Página 1
	Página 2
	Página 3
	Página 4
	Página 5
	Página 6
	Página 7
	Página 8
	Página 9
	Página 10
	Página 11
	Página 12
	Página 13
	Página 14
	Página 15
	Página 16
	Página 17

