
The identification of anomalous code measures with
conditioned interval metrics

Carlos López
1

, Esperanza Manso2, Yania Crespo2,

1

 Área de Lenguajes y Sistemas Informáticos, Universidad de Burgos
EPS Edf. C. C/Francisco de Vitoria S/N 09006 Burgos, Spain.

clopezno@ubu.es

2

 Departamento de Informática, Universidad de Valladolid
ETS de Ingeniería Informática. Campus Miguel Delíbes 47011 Valladolid, Spain.

{manso,yania}@infor.uva.es

Abstract. Anomalous measurements are identified in the software
measurement process using valid metrics intervals. In the particular case of
code measurements, the same intervals are used independently of the nature of
the problem solved by the entity being measured. Our proposal is to condition
the measurement intervals according to the nature of the problem solved by the
said code entity. By ‘nature’ we understand that which is expressed through
standard UML classifier stereotypes. This paper identifies the requirements
needed for a code measurement support tool to be able to take on this new
perspective. Using these requirements as a basis, some existing tools are
reviewed and the difficulty of applying this proposal with its current
functionality is recognized. To this end, we present the adaptation of one of the
reviewed tools (RefactorIt) and, in addition, the measurement process is applied
to ten real projects, obtaining some initial intervals conditioned by the nature of
the code entities.

Key words: Code metrics, Use intervals, Code measurement tools,
Measurement process.

1 Introduction

Since the 1990s, software metrics and their associated measurement process, have
attracted great interest in the software engineering community as a means of
quantifying and controlling software quality [1] [2] [3]. According to [4], measuring
is part of a process (see Figure 1) which consists of obtaining a numerical value for an
attribute of a software product or process.

Figure 1 Measurement process defined by Sommerville [4].

In this process, the detection of anomalous entities is based on the identification of
their anomalous measurements. The identification is performed in a pragmatic way by
checking whether a particular measurement is within the range of recommended
values. In general, the metrics used are those proposed by a quality model such as the
standard ISO 9126 [5]; these metrics measure software products with different levels
of abstraction, from analysis to code.

More precisely, the process can be applied to the code since it is a product in
constant evolution and in need of constant maintenance [6]. This measurement
process, as applied to the code, makes the evaluation of its quality easier. The
evaluation of a code by means of metrics is not new. In fact, in the existing literature,
there are a great many definitions of metrics, grouped according to different criteria,
depending on the author. For instance, in the object-orientated paradigm, some well
known sets of metrics on different code entities are:

• On classes: Chidamber and Kemerer [7], Lorenz and Kid [8].
• On subsystems: Robert Martin [9], Brito and Abreu [10].
• On methods: McCabe [11].
• Others mentioned by Piattini [12].
In the literature, there are also, however, many unfavourable criticisms concerning

the application of metrics [13]. One of them is that the intervals used to identify
anomalous measurements, obtained through empirical experiments, are restricted to
the measuring context, thus limiting their use in other contexts. Even recommended
intervals, taken from past measurements in the same context, cannot be used for code
entities from different categories. This paper, then, aims to add to the knowledge on
dependency that the context of the code entity may have in identifying anomalous
measurement intervals. Upon this premise, and in the field of object orientation, a
selection of categories can be based on the use of some UML classifier stereotypes.
For instance, the analysis class stereotypes [14, 15] are: entity, control and boundary.
In addition, the classification boundary criterium is, in turn, divided into: user
interfaces, system interfaces and device interfaces. Other interesting stereotypes in the
classifiers are those obtained as a result of some tasks performed by the development
process, such as those related to exceptions, tests and utilities. This causes a
subdivision of tasks within the measuring process which results in obtaining different
use intervals for each stereotype considered. In short, the nature of the code entity is
extracted from the following UML stereotypes: exception, boundary (system, user
and device interface), entity, control, test and utility. Figure 2 shows the adaptation of

the classic measurement process when the new tasks, within the rectangle, are
incorporated.

Figure 2 Measurement and modification process.

The rest of the paper is structured as follows: Section 2 introduces a preliminary
evaluation of the functionality of code measurement tools and sets out the lack of any
identification of anomalous measurements through conditioned use intervals. Section
 3 describes the measurement process carried out using the RefactorIt tool [16] and the
requirements for a code measurements tool to be able to take on this new perspective
are analyzed. Section 4 proposes some conditioned use intervals obtained from
measuring the code entities of ten real projects and applying statistical measurements
to them. Finally, the conclusions and future lines of work are set out in Section 5.

2 Evaluating code tools

The measurement process needs tools to automatically perform the calculation of the
values of the metrics for a particular code entity. For an easier preliminary
understanding of the current functionalities of the code tools in Table 1, the result of
the evaluation of a set of tools is shown with respect to the following characteristics:

C1. Programming language on which the work is done.
C2. Input: binary or source files (binary/source/both).
C3. Number of metrics calculated (C31 Chidamber and Kemerer, C32 Lorenz and

Kid, C33 Robert Martin)
C4. Format for exporting results (html/txt/xml/xls).
C5. Graphic indicators or grouping and filtering techniques to analyze results

(Yes/No).
C6. Configuration of metrics profiles.
C7. Automatic classification of code entities.
C8. Evaluation of multiple use intervals in the same evaluation.

The selection of the tools aims to evaluate a representative sample of tools

available, according to the characteristics considered. The aim is to obtain a non-
empty intersection of all the characteristics of the tools with all its possible values.

This will guarantee that it has an example of each of possible values of the
characteristics.

Table 1 Code tools.

Tools C1 C2 C3 C31 C32 C33 C4 C5 C6 C7 C8

Dependency
Finder

java binary 33 1 1 0 html,txt,xml No Yes No No

RefactorIt java sources 25 5 2 5 html,txt xml Yes Yes No No
JDepend java binary 9 0 0 5 html,txt,xml No No No No
Eclipse Metrics -
v1.3.6

java sources 25 4 6 5 xml No Yes No No

NDepend .NET both 66 6 2 5 html, txt,
xml, xls

Yes Yes No No

SourceMonitor java, C#,
C++, VB

sources 14 0 0 0 txt, xml, Yes Yes No No

Although the definitions of many of the code metrics do not depend on the

programming language, in practice, many tools or components only work on a single
programming language (see column C1 of Table 1).

As for column C3, one of the criticisms made about experimentation with code
metrics is the lack of any standardization in the definition of the metrics. This means
that the measurement obtained for a particular code entity may vary according to
whether it is calculated using one tool or other. This makes the comparison of values
obtained using different tools impossible. Columns C31, C32, C33 show that none of
the metric tools calculates all metrics of the authors considered.

The characteristic C6, profiles of metrics, refers to the tool’s capacity to enable the
user to configure the measurement intervals to detect anomalies. The majority of tools
offer this characteristic. The last two characteristics, C7 and C8, are necessary for
adapting the tools with the measurement process proposed in Figure 2. As can be seen
in Table 1, none of the tools considered offer them.

The incorporation of the new tasks proposed in the process involves incorporating
two new requirements in the tools: on the one hand, classifying the code entities in
categories and, on the other hand, use intervals of metrics associated to each category
considered. The first includes the definition of an open classification and computer
aided classification mechanisms of the code entities. The tool will enable code entities
to be evaluated using the recommended values for each category. The second involves
a data gathering process to allow use intervals to be obtained.

3 Adaptation of the RefactorIt tool

The adaptation of the new measurement process requires tools to support these new
activities. In this case, we have chosen to extend the RefactorIt tool [16]. From the
initial set are discarded they do not measure Java code. Additionally they are
discarded which are not open source and therefore can not be adapted. Moreover, it is

important the number of metrics that implement each set considered. These criteria
leave RefactorIT and Eclipse Metrics as two possible candidates. The final selection
criterion is based on the functionality offered RefactorIT on the metric profile
management and user interface it offers.

RefactoIt is an open source tool that is used to inspect the Java code using code
metrics and semantic rules. It has several forms of distribution: as a desktop tool or a
plugin of Eclipse. In addition, it provides a catalog of refactorings which assist in the
maintenance process.

The tool’s basic measurement process is currently automated. Figure 3 shows a
screen with the result of the evaluation of an Eclipse project called “RefactorItLab”
which is documented in [17]. The numbered rectangles show the parts of the graphic
interface which serve as input for the basic activities of the measurement process.
Furthermore, the unnumbered rectangles show the result of an evaluation with respect
to the WMC (Weighted Methods per Class) metric and the identification of an
anomalous measurement, in the Network class, with respect to the tool’s
recommended use interval [1-50].

Figure 3 Measurement process with RefactorIt.

The following subsections analyze the new requirements that need to be
incorporated in a tool for its adaptation to the new proposed measurement method and
the particular adaptation of the RefactorIt tool, which will be referred to as

RefatorItUBU. Two videos showing the automization of the new tasks for the
measurement process can be found in [18].

3.1. Open classification of code entities

The initial hypothesis is that the code entities may need different use intervals to
detect anomalies depending on certain classifications. A priori, the tools must
provide some kind of mechanism, either automatic or manual, which allows the
inspector to classify the entities in the categories that make up the classification.

Although there are classifications which may be considered standard, it is
preferable that the tools should allow the inspector to define his/her own
classifications. In this paper, we initially use a classification of code entities whose
categories are based on the nature of the entity, expressed with standard stereotypes
on UML classifiers: e1 exception, e2 interface, e3 entity, e4 control, e5 test, e6 utility.

The new functionality, which corresponds to the creation of a classification, has
been added to the tool, defining a configuration file from which the different
categories under consideration are extracted (/refactorit_ubu/estereotipos.csv). This
classification will be used in two later activities: one, when the use interval of each
metric is defined, and the other, when the measurement of the component is carried
out. The following figures show, concretely, the functionality added to
RefactorItUBU, supposing the following classification of categories for the file
content: Unknown, Exception, Interface, Control, Entity, Test and Utility. Figure 4
shows the new definition of use intervals for each metric, and in the lower righthand
corner a panel is added which is labelled with each of the stereotypes and the use
intervals recommended for each one. As happened with the tool’s original
functionality, these intervals have to be introduced by the user and can be stored in
profile files [19] . Finally, Figure 5 shows the evaluation of entities which allow the
user to define the stereotype of each entity. From the inspector’s point of view, it is
interesting to point out that if the classification is not closed, a category called
“unknown” should be considered.

Figure 4 RefactorItUBU Definition of use intervals for each metric and stereotype considered.

Figure 5 RefactorItUBU: Inspection of code entities.

3.2. Classification of entities in the categories considered

When working with real systems, the number of code entities to be classified is very
large. It is desirable that the inspector should have assistance to carry out this new
activity efficiently. What is more, we start from the hypothesis that the classification
may be subjective and it is the inspector’s responsibility to take the final decision on
how to classify the code entities. In this sense, the tool could provide two new
functionalities:

• classification by entity groupings
• automatic classification

The application’s architecture (layers, components) means that the code entities
possess some logical groupings that must be identified by the inspector. In addition,
this logical organization corresponds to the physical structure through the code

entities themselves. The physical grouping structures are: on the one hand, the
packages, which contain packages and classes; and on the other hand, the classes,
which contain methods. The application of a category on a grouping structure is
propagated to the rest of the components. Thus, an application with a logical grouping
marked by a three-layered architecture could be classified by indicating the category
of the three packages that contain the superior levels of the architecture. Each change
of category requires a new evaluation of the entity with the interval of the new
stereotype chosen.

A code inspector would, in addition, want functionality with automatic
classification methods that could later be adjusted by him/her. In this sense, we
should mention, as an entity identification technique, the different name conventions
used by software architects and programmers. For instance, the code entities whose
name contains the literal strings “interface”, “gui”, “form”, etc. usually belong to the
category e2 graphic interface. The knowledge, based on name conventions, needed to
identify entities may be generic with respect to design conventions or the
programming language, or it may be specific knowledge of the project requirements.
For instance, if there is a layer called “metric” in a metrics calculation project, in a
first inspection, it could belong to the categories e3 entity or e4 controllers. The
conventions of the libraries and the programming language itself may help to identify
entities without any doubt, which is the case of the JUnit test and the Java exceptions.
Table 2 shows a summary of the identification criteria presented which depend on the
different categories of code entities considered: e1 exception, e2 interface, e3 entity, e4
control, e5 test, e6 utility.

The extension to RefactorIt performed here includes these functionalities. The
change of category on a code entity grouping is propagated on the other entities it
contains. In order to carry out this change from the use interface (see Figure 5), the
new category has to be chosen from the pull-down list.

The automatic classification algorithm reads the conventions of names associated
with each category considered from a configuration file. Thus, the inspector can
customize the algorithm, introducing specific conventions from the context of the
application being inspected. The specification will be made up of a quadruple
<package convention, stereotype package, class convention, stereotype class>. For
instance, the application of the name convention proposed by Junit is indicated by the
following quadruple <”test”,”Test”,”Test”,”Test”>, which means that the packages
containing the literal string “test” will be classified in the category of Test, and the
classes containing the literal string “Test” will be classified in the category of Test.
The exceptions are not grouped in packages, so to identify exceptions within the test
package, the quadruple <”test”,”Test”,”Exception”,”Exception”> has to be added.
Another example is the quadruple <”ui”,”Interface”,”listener”,”Control”>, in which
all the entities in the package containing the literal string “ui” are classified in the
category Interface, except those classes that contain the literal string “listener”, which
are classified as Control. This algorithm is executed each time the inspector, through
the user interface, requests a component to be measured. Once the classification of the
code entities has been applied, conditioned intervals of recommended values,
conditioned for each category, are used.

Table 2 Criteria for identifying stereotypes.

 e1 e2 e3 e4 e5 e6
Grouping No Yes Yes Yes Yes Yes
Generic
Knowledge

Yes Yes Yes Yes Yes Yes

Specific
knowledge

No No Yes Yes No No

Name
conventions

exception interface
gui
forms
ui
report
swing
visual
awt

core
model
entity

control
facade
manager
handler
action
callback
provider

test
debug
dummy

utility
properties
log
preference
template
options

4 Use intervals for entity types

In order to obtain a use interval for each category (e1 exception, e2 interface, e3 entity,
e4 control, e5 test, e6 utility), measurements have been taken on ten plugins of the IDE
of Eclipse, identifying the entities and selecting, for each measurement, the following
percentile statistics: 25 (first quartile Q1) and 75 (third quartile Q3). The
incorporation of this information into the tool is done by means of the functionality
related to the specification of the use interval of a particular metric. If the tool has no
multi-interval evaluation, the new measurement process to identify anomalous
measurements may be excessively tedious, due to the need to repeat it as many times
as there are use intervals under consideration.

4.1. Project selection

To select the projects to be measured and analyzed, the study has focused solely on
plugins for the Eclipse tool, obtained through the open code software repository
SourceForge (http://sourceforge.net/). Using the information provided by the said
repository, several project selection criteria have been followed:

• Percentage of activity, measured using the information concerning the
activity of continuous modifications and the recent activity. The criterium
established for %Activity is > 85 %.

• Popularity, measured using the number of downloads by the users. The
criterium established for Nº of Downloads is > 7000.

• State of development of the application, measured using the following
ordinal scale: 1 Planning, 2 PreBeta, 3 Alpha, 4 Beta, 5 Production/Stable, 6
Maturity, 7 Inactive. The criterium established for state is >= 3

Another characteristic considered in the selection of study projects is that related to
the type of programming language used in the implementation, which will be the
same for all of them: Java.

Finally, it would seem to be of interest to consider the characteristic associated
with the project size. The number of code entities for each category considered,
depending on the nature of the problem, will be taken as a reference. The criterium is
that the minimum number of entities should be greater than 400.

Table 3 Information concerning the set of projects measured.

 Number of entities Sourceforge information

Eclipse Plugins
e1 e2 e3 e4 e5 e6 unclassifi

ed
%Activity Nº

Downloads
State

esFtp 1 90 38 68 8 86 52 94.19 45878 4
AVR 12 376 125 306 362 789 310 98.68 1464780 5.6
Jedit 25 1671 1657 1548 12 1719 681 99.62 5371954 5.6
EclEmma 1 257 288 78 186 35 150 99.93 1488061 5
AzSMRC 45 511 655 272 9 759 758 99.00 59327 4.5
EclipseME 39 575 951 535 281 1215 446 97.63 731177 5
ELBE 26 1788 1561 1216 138 380 288 85.95 30172 7
OpenReports 17 0 568 1074 2 159 383 96.80 235708 4.5
EclipseCorba 7 145 148 232 143 205 334 94.86 23062 3
LabelDecorator 7 0 116 34 52 177 74 85.00 7004 5
Total Code Lines 909 111818

85911

83876

14238

14797

Table 3 shows the selected projects with the information concerning size and that

provided by the open code software repository. The column “unclassified” shows the
number of entities which could not be included in any of the categories considered. In
addition, in order to get an overall idea of the size of the experiment, the last row of
the table shows the total number of code lines analyzed of each type of entity
considered.

4.2. Selection of metrics

The tool selected to obtain the measurements is RefactorIt [16]. Table 4 shows the
metrics provided by the tool and the recommended use intervals on some of them
(columns MinValue and MaxValue). In addition, the column called scope shows
which type of code entity the metric is associated with: package (P), class (C), method
(M) or all the previous categories together (T).

Independently of the particular conventions on the code metrics, each time the
code of a software system is analyzed, information concerning its size and complexity
is required. Some works express the size of a system in terms of lines of code, number
of classes and even quantity of megabytes of the source code. These numbers are only
values of some basic metric. Unfortunately, after obtaining a set of individual values,
there are still problems in characterizing the system or entity evaluated. The
characterization through the metrics must serve to reflect the goodness of the main
design aspects such as: size (SIZ), documentation (DOC), coupling (COU),
inheritance (INH), structural complexity (COM), abstraction (ABS), cohesion (COH)
or design principles (DP). Another column has been included in Table 4, called
characteristic, which shows this subjective classification. In any case, these metrics

are considered of interest because of their relationship with different aspects of the
quality of the software products [20-24].

Table 4 Set of metrics defined in the RefactorIt tool.

Description

Id
en

ti
fi

er

M
in

V
al

ue

M
ax

V
al

ue

Sc
op

e

C
ha

ra
ct

er
is

ti
c

Cyclomatic Complexity V(G) 1 10 M COM
Density of Comments DC 0.2 0.4 T DOC
Executable Statements EXEC 0 20 T SIZ
Number of Parameters NP 0 4 M SIZ
Total Lines of Code LOC 5 1000 T SIZ
Abstractness A 0.0 0.5 P ABS
Afferent Coupling Ca 0 500 P COU
Depth in Tree DIT 0 5 C INH
Efferent Coupling Ce 0 20 P COU
Instability I 0.7 1.0 P COU
Number of Abstract Types NOTa 0 20 P ABS
Number of Children NOC 0 10 C INH
Number of Concrete Types NOTc 0 80 P ABS
Number of Exported Types NOTe 3 50 P COU
Number of Fields NOF 0 1 C SIZ
Number of Types NOT 0 80 P SIZ
Response for Class RFC 0 50 C COM
Weighted Methods per Class WMC 1 50 C COM
Number of Attributes NOA 0 5 C SIZ
Cyclic Dependencies CYC 0 1 P DP
Dependency Inversion Principle DIP 0.3 1.0 C DP
Direct Cyclic Dependencies DCYC 0 1 P DP
Distance from the Main Sequence D 0.0 0.1 P DP
Encapsulation Principle EP 0 0.6 P DP
Lack of Cohesion of Methods LCOM 0.0 0.2 C COH
Limited Size Principle LSP 0 10 P DP
Modularization Quality MQ 0 1000 P DP
Number of Tramps NT 0 1 M O

4.3. History of use interval metrics

From the data obtained in the experiment are calculated intervals of use for metrics
considered. The lower and upper thresholds are calculated from Q1 and Q3,
respectively, as indicated at the beginning of section 4. It starts from the premise that
thresholds are calculated on the same domain applications, in this case Eclipse
plugins, and are guidelines which do not ensure the existence anomaly on entity. The
idea to calculate limits based on Q1 and Q3 have been used in previous studies that
define rules for detecting design defects [25]. It also corroborates the improvement of
the new measurement process as it is observed that the behavior of the metric is

different when considering the stereotypes and also the intervals obtained are more
accurate.

The following tables, Table 5, Table 6 and Table 7, show the use intervals
recommended depending on the classification considered: e1 exception, e2 interface,
e3 entity, e4 control, e5 test, and e6 utility. The data from the study case corresponding
to all the values of the metrics can be obtained from [18].

These data are from a case study in the area of software engineering, as a phase
prior to the empirical validation based on experiments [26]. Having clarified this fact,
we now summarize the results observed on applying the new measurement process
proposed in this paper. In Table 6, the column showing the structural complexity
metric WMC [7] is highlighted, as this indicates the limits of the use intervals for
each of the stereotypes considered: e1 [2,4], e2[4,16], e3 [5,25], e4 [3,16], e5 [2,8], e6

[4,22]. Table 4 shows [1, 50] the recommended use interval, with respect to the tool,
for each metric. Two aspects of this information can be stressed: on the one hand, the
interval proposed by the tool is very wide and includes all the other intervals. On the
other hand, the intervals vary depending on the stereotypes considered: the classes of
exception (e1) and test (e5) are less complex than the classes of controllers (e4) and
utility (e6). Analogously, this analysis can be done for the rest of the measurements in
the tables.

Table 5 Metrics of packages: Recommended intervals according to the nature of the problem.

 EXEC Ca Ce I A D NOTc CYC EP

Q1 --- --- --- --- --- --- --- --- --- Exception

e1 Q3 --- --- --- --- --- --- --- --- ---

Q1 15.00 0.0 5.00 0.60 0.00 0.00 4 0 0.071 Interface

e2 Q3 134.00 7.0 18.00 1.000 0.07 0.36 18 3.0 0.80

Q1 11.75 2.0 3.00 0.25 0.00 0.10 2 0 0.52 Entity

e3 Q3 194.50 35.5 14.00 0.68 0.26 0.50 12 4.5 1

Q1 7.50 0.0 2.00 0.31 0.00 0.00 1 0 0.00 Control

e4 Q3 93.00 8.5 11.00 1.00 0.29 0.25 11 1.5 1

Q1 2.00 0.0 2.00 0.93 0.000 0.00 1 0 0.00 Test

e5 Q3 28.00 1.0 7.75 1.0 0.39 0.34 7 0 0.19

Q1 12.75 0.0 2.00 0.45 0.00 0.00 2 0 0.000 Utility

e6 Q3 127.25 6.0 14.00 1.00 0.17 0.40 13 1.0 0.81

Table 6 Metrics of classes: Recommended intervals according to the nature of the problem.

 DC LOC EXEC WMC DIT RFC LCOM NOA

Q1 0.00 10.25 0 1.75 3 1.75 0 0 Exception

e1 Q3 0.14 29.25 1.75 4.00 4 3.25 0.00 2

Q1 0.00 35.00 2 4.00 1 2.00 0 1 Interface

e2 Q3 0.20 179.25 14.00 16.00 2 19.00 0.95 7

Q1 0.00 40.00 2 5.00 1 2.00 0 1 Entity

e3 Q3 0.27 169.50 17.00 25.00 2 21.00 0.96 6

Q1 0.00 18.00 1 3.00 1 2.00 0 0 Control

e4 Q3 0.21 115.25 12.00 16.25 2 17.00 0.75 3

Q1 0.00 19.00 0 2.00 1 2.00 0 0 Test

e5 Q3 0.28 105.00 8.00 8.25 2 9.00 0.81 2

Q1 0.02 33.00 2 4.00 1 3.00 0 1 Utility

e6 Q3 0.31 202.75 23.00 22.00 2 23.00 0.92 6

Table 7 Metrics of methods: Recommended intervals according to the nature of the problem.

 LOC EXEC NP V(G) NT

Q1 1 0 0 1 0 Exception

e1 Q3 8 1 2 2 0.75

Q1 1 0 0 1 0 Interface

e2 Q3 14 2 1 2 0

Q1 1 0 0 1 0 Entity

e3 Q3 9 2 1 2 0

Q1 1 0 0 1 0 Control

e4 Q3 11 2 1 3 0

Q1 1 0 0 1 0 Test

e5 Q3 10 1 1 1 0

Q1 1 0 0 1 0 Utility

e6 Q3 14 3 1 3 0

5 Conclusions and Future Lines of Work

In this paper, we have carried out a case study to prove our measurement process
proposal. In this proposal, the measurement process [4] is modified by incorporating
the inspector’s/evaluator’s knowledge of the code entity classification depending on
its nature: e1 exception, e2 interface, e3 entity, e4 control, e5 test, e6 utility. As a result
of the said code entity classification, a use interval has been proposed for each metric
and category of the classification. In addition, the modifications of the process and the
relationship with the code measurement tools have been analyzed. In particular, the
result of adapting the new code entity measurement process to the RecfactorIt tool is
presented.

This paper presents a collection of recommended intervals to identify anomalies,
obtained as a result of measuring the code entities of a set of real projects. Our
conclusion is that it is necessary to pursue research into the field opened up by this
case study, and to this end, we make the following proposals for future work:

• It is necessary to replicate the case study with other sets of projects defined
using the external factors and functionality. The aim of this is to refine and
compare the proposed use intervals. In addition, it would be possible to
evaluate whether our measurement process proposal depends on the context
of the application to be measured or not.

• It is necessary to validate the proposed measurement process, and to this end
we aim to study whether the use intervals of anomalous measurements are
more accurate in the new scenario.

• Furthermore, we believe that, in order to validate our measurement process
proposal, it would be interesting to incorporate new sets of metrics which
would be useful from the point of view of software engineers [24].

• One of the problems found in practice has been the labelling of code entities,
as they sometimes do not belong to only one stereotype. Thus, we propose
elaborating a new fuzzy classification of code entities, in which each code

entity would have a tuple of weights corresponding to the degree of
belonging to each stereotype.

• The improvements achieved in this work depend on the new task of
classification of entities according to the stereotypes code considered. In this
sense, it is necessary to carry out experiments that help to validate the
consistency of classification by experts.

Acknowledgements. This paper has been funded by the Spanish ‘Ministerio de
Ciencia e Innovación’ through the research project ROADMAP (TIN2008-05675).

References

1. Fenton, N.E. and S.L. Pfleeger, Software Metrics: A Rigorous and Practical
Approach. 2nd ed. 1998: Course Technology. 656.

2. IEEE, C.S., Guide to the Software Engineering Body of Knowledge: 2004 Edition -
SWEBOK. 2005.

3. Pressman, R.S., Software Engineering: A Practitioner's Approach. 6ª ed. 2005:
McGraw-Hill. 958 p.

4. Sommerville, I., Software Engineering. 8th ed. 2005: Addison-Wesley. 864.
5. ISO/IEC, Software engineering -- Product quality Part 1: Quality model. 2001.
6. Marín, B., N. Condori-Fernández, and O. Pastor, Calidad en modelos conceptuales.

Un análisis multdimensional de modelos cuantitativos basados en ISO 9126., in
Revista de Procesos y MÉtricas. 2007.

7. Chidamber, S.R. and C.F. Kemerer, A Metrics Suite for Object Oriented Design.
IEEE Transactions on Software Engineering, 1994. 20: p. 476-493.

8. Lorenz, M. and J. Kidd, Object-oriented software metrics: a practical guide, ed. I.
Prentice-Hall. 1994, Upper Saddle River, NJ, USA.

9. Martin, R., OO Design Quality Metrics. An Analysis of Dependencies. 1994.
10. Brito e Abreu, F. and R. Carapuça, Candidate metrics for object-oriented software

within a taxonomy framework. Journal of Systems and Software, 1994. 26(1): p. 10.
11. McCabe, T., A Complexity Measure. IEEE Transactions on Software Engineering,

1976. 2: p. 308-320.
12. Piattini, M.G., Calidad en el desarrollo y mantenimiento del software, ed. F.O.

García. 2002: Ra-Ma. 310 p. ; 24 cm.
13. Marinescu, R., Measurement and quality in Object-Oriented Design, in Automatics

and Computer Science. 2002, Timişoara: Timişoara.
14. Arlow, J. and I. Neustadt eds. Uml 2 And The Unified Process: Practical Object-

oriented Analysis And Design. 2005, Addison-Wesley Object Technology Series.
15. Jacobson, I., G. Booch, and J. Rumbaugh, The Unified Software Development

Process. 1999: Addisson-Wesley.
16. Aqris-Software, RefactorIt. 2001.
17. Demeyer, S., S.e. Ducasse, and O. Nierstrasz, Object-Oriented Reengineering

Patterns. 2002: Morgan Kaufmann and DPunkt.
18. Carlos, L. QAOOSE2010 Measurements and metric tool video. 2010 [cited;

Available from: http://pisuerga.inf.ubu.es/clopez/QAOOSE2010/
19. Crespo, Y., et al., Object-Oriented Design Knowledge: Principles, Heuristics and

Best Practices. 2006, Idea Group Publishing. p. 193-249.
20. Dromey, R.G., A Model for Software Product Quality, in Transactions on Software

Engineering. 1995. p. 146-162.

21. Dromey, R.G., Cornering the Chimera. 1996. p. 33-43.
22. Briand, L.C., J. Wüst, and H. Lounis, Replicated Case Studies for Investigating

Quality Factors in Object-Oriented Designs. Empirical Software Engineering, 2001.
6(1): p. 11-58.

23. Moody, D.L., Theoretical and practical issues in evaluating the quality of conceptual
models: current state and future directions. Data & Knowledge Engineering, 2005.
55(3): p. 243-276.

24. Manso, E., Estudio empírico para la validación de indicadores de la reusabilidad de
diagramas de clases UML. 2009, Valladolid.

25. Marinescu, R. Detection Strategies: Metrics-Based Rules for Detecting Design
Flaws. in Proc. ICSM 2004. 2004.

26. Juristo, N. and A. Moreno, Basics of Software Engineering Experimentation. 2001:
Kluwer Academic Publishers.

