Theidentification of anomalous code measureswith
conditioned interval metrics

1
Carlos Lopez Esperanza Man&oYania Crespg

l -
Area de Lenguajes y Sistemas Informaticos, Unigadsde Burgos
EPS Edf. C. C/Francisco de Vitoria S/N 09006 Bur&psin.

clopezno@ubu.es

2
Departamento de Informatica, Universidad de Valliad
ETS de Ingenieria Informéatica. Campus Miguel Dedih@011 Valladolid, Spain.
{manso,yania}@infor.uva.es

Abstract. Anomalous measurements are identified in the so#w
measurement process using valid metrics interdalghe particular case of
code measurements, the same intervals are usegeimdiently of the nature of
the problem solved by the entity being measured. @oposal is to condition
the measurement intervals according to the natltieeoproblem solved by the
said code entity. By ‘nature’ we understand thatolwhis expressed through
standard UML classifier stereotypes. This papentifles the requirements
needed for a code measurement support tool to leetaltake on this new
perspective. Using these requirements as a basise ®xisting tools are
reviewed and the difficulty of applying this propbswith its current
functionality is recognized. To this end, we prégbe adaptation of one of the
reviewed tools (Refactorlt) and, in addition, theasuwrement process is applied
to ten real projects, obtaining some initial insvconditioned by the nature of
the code entities.

Key words. Code metrics, Use intervals, Code measurement tools,
Measurement process.

1 Introduction

Since the 1990s, software metrics and their aswsatimeasurement process, have
attracted great interest in the software enginge@ommunity as a means of
quantifying and controlling software quality [1]][3]. According to [4], measuring
is part of a process (see Figure 1) which consistdtaining a numerical value for an
attribute of a software product or process.

Choose

measurements to Analyze anomalous
be made components
4 I
Select components Identify anomalous
to be assessed measurements

Measure
D ——— components
characteristics

Figure 1 Measurement process defined by Sommerville [4].

In this process, the detection of anomalous eatiidbased on the identification of
their anomalous measurements. The identificatiggeiformed in a pragmatic way by
checking whether a particular measurement is withim range of recommended
values. In general, the metrics used are thoseopsubby a quality model such as the
standard 1SO 9126 [5]; these metrics measure sodtpanducts with different levels
of abstraction, from analysis to code.

More precisely, the process can be applied to tide csince it is a product in
constant evolution and in need of constant maimesa[6]. This measurement
process, as applied to the code, makes the ewaiuafi its quality easier. The
evaluation of a code by means of metrics is not.nevact, in the existing literature,
there are a great many definitions of metrics, gesliaccording to different criteria,
depending on the author. For instance, in the olgjgentated paradigm, some well
known sets of metrics on different code entities ar

. On classes: Chidamber and Kemerer [7], Lorenzkadd8].

. On subsystems: Robert Martin [9], Brito and AbfQ].

. On methods: McCabe [11].

. Others mentioned by Piattini [12].

In the literature, there are also, however, marfawourable criticisms concerning
the application of metrics [13]. One of them isttiiae intervals used to identify
anomalous measurements, obtained through empe@iqariments, are restricted to
the measuring context, thus limiting their use theo contexts. Even recommended
intervals, taken from past measurements in the samxt, cannot be used for code
entities from different categories. This papernth@ms to add to the knowledge on
dependency that the context of the code entity heye in identifying anomalous
measurement intervals. Upon this premise, and énfigdd of object orientation, a
selection of categories can be based on the usermé UML classifier stereotypes.
For instance, the analysis class stereotypes Hldark: entity, control and boundary.
In addition, the classification boundary criteriuigy in turn, divided into: user
interfaces, system interfaces and device interfa@#ser interesting stereotypes in the
classifiers are those obtained as a result of dasies performed by the development
process, such as those related to exceptions, &estsutilities. This causes a
subdivision of tasks within the measuring procebglvresults in obtaining different
use intervals for each stereotype considered. dnt,sthe nature of the code entity is
extracted from the following UML stereotypeskception boundary (system user
and device interfacegntity, control, testandutility. Figure 2 shows the adaptation of

the classic measurement process when the new tassn the rectangle, are
incorporated.

Choose Analyze anomalous
measurements to components
be made S e N
| Identify category 1 \ Measure category 1

code entities entities

|
|
|
|
| Identify anomalous
Select components | measurements using
to be assessed : specific category
|
|
|
|
I
|

thresholds

Identify category i Measure category i
code entities entities

Figure 2 Measurement and modification process.

The rest of the paper is structured as followsti8e@ introduces a preliminary
evaluation of the functionality of code measurentents and sets out the lack of any
identification of anomalous measurements througiditioned use intervals. Section
3 describes the measurement process carried ot th@Refactorlttool [16] and the
requirements for a code measurements tool to keetatibke on this new perspective
are analyzed. Sectiod proposes some conditioned use intervals obtafnath
measuring the code entities of ten real projectsapplying statistical measurements
to them. Finally, the conclusions and future linésvork are set out in Sectidn

2 Evaluating codetools

The measurement process needs tools to automgatpeafiorm the calculation of the
values of the metrics for a particular code entiBor an easier preliminary
understanding of the current functionalities of teele tools inTable 1, the result of
the evaluation of a set of tools is shown with ez$po the following characteristics:

C1. Programming language on which the work is done.

C2. Input: binary or source files (binary/sourcét)o

C3. Number of metrics calculated (C31 Chidamber lkadherer, C32 Lorenz and
Kid, C33 Robert Martin)

C4. Format for exporting results (html/txt/xml/xIs)

C5. Graphic indicators or grouping and filteringchaiques to analyze results
(Yes/No).

C6. Configuration of metrics profiles.

C7. Automatic classification of code entities.

C8. Evaluation of multiple use intervals in the sa@valuation.

The selection of the tools aims to evaluate a sspr@ative sample of tools
available, according to the characteristics comsileThe aim is to obtain a non-
empty intersection of all the characteristics of thols with all its possible values.

This will guarantee that it has an example of eafhpossible values of the
characteristics.

Table 1 Code tools.

Tools C1 C2 C3C31C32C33C4 C5|C6 C7C8
Dependency java binary| 331 1 0 | html,txt,xml | No YesNo No
Finder

Refactorlt java sourceéd55 2 |5 | htmltxt xml | YesresNo No
JDepend java binary 9 0 0 5 htmltxt,xml Néo No/No
Eclipse Metrics java sourceg54 6 |5 | xml No YesNo No
v1.3.6

NDepend .NET both 66 2 |5 html, txt, Yes YesNo|No

xml, xIs
SourceMonitor java, C#sourcesl4 0 |0 |0 | txt, xml, YesresNo No
C++, VB

Although the definitions of many of the code medrido not depend on the
programming language, in practice, many tools anponents only work on a single
programming language (see column C1 of Table 1).

As for column C3, one of the criticisms made abexperimentation with code
metrics is the lack of any standardization in tkeéndtion of the metrics. This means
that the measurement obtained for a particular eattéy may vary according to
whether it is calculated using one tool or othdrisTmakes the comparison of values
obtained using different tools impossible. Colun@®l, C32, C33 show that none of
the metric tools calculates all metrics of the austconsidered.

The characteristic C6, profiles of metrics, refiershe tool’s capacity to enable the
user to configure the measurement intervals toctiatomalies. The majority of tools
offer this characteristic. The last two characterss C7 and C8, are necessary for
adapting the tools with the measurement procegsogeal in Figure 2. As can be seen
in Table 1, none of the tools considered offer them

The incorporation of the new tasks proposed inpifeeess involves incorporating
two new requirements in the tools: on the one hataksifying the code entities in
categories and, on the other hand, use intervaisetfics associated to each category
considered. The first includes the definition of gpen classification and computer
aided classification mechanisms of the code estifide tool will enable code entities
to be evaluated using the recommended values &br egtegory. The second involves
a data gathering process to allow use intervalietobtained.

3 Adaptation of the Refactorlt tool

The adaptation of the new measurement processresquuols to support these new
activities. In this case, we have chosen to extbrdRefactorlt tool [16]. From the
initial set are discarded they do not measure Jaa@e. Additionally they are
discarded which are not open source and thereforenot be adapted. Moreover, it is

important the number of metrics that implement esehconsidered. These criteria
leave RefactorIT and Eclipse Metrics as two possdandidates. The final selection
criterion is based on the functionality offered &#brIT on the metric profile
management and user interface it offers.

Refactolt is aropen sourcdool that is used to inspect tldavacode using code
metrics and semantic rules. It has several forndigifibution: as a desktop tool or a
plugin of Eclipse In addition,it provides a catalog of refactorings which asgighe
maintenance process.

The tool's basic measurement process is currentignaated.Figure 3 shows a
screen with the result of the evaluation of an fi&di project calledRefactorltLaby
which is documented in [17]. The numbered rectangl®w the parts of the graphic
interface which serve as input for the basic aitigi of the measurement process.
Furthermore, the unnumbered rectangles show thit ifsan evaluation with respect
to the WMC Weighted Methods per Clgssnetric and the identification of an
anomalous measurement, in thdetwork class, with respect to the tool's
recommended use interval [1-50].

$Java-RefanodtL;b/jwallanSimh' java - Eclij
File Edit Source Refactor RefactorlT Navigate Search Project Run Window Help

N-EH& $-0-Q4- B&F G- ®s - PO

g :%~-gHl~ R AT R

% Package 23 _fs Hierarch | = O[3 LANSimulationjova (1) Networkijava =08
= & v ®/* This file is part of lanSimulation =
#jeva (1. Select component to be d
& doc \L" =~ T w
2 doc.lanSimulation
£ doc.lanSimulation.internal it
£ docresources n Name: |ChidambreProfies v (Lopen...]
[lanSimulation "
[3) LANSimulation java public cil Metrics Desaription
1) Networkjava o T - FiNawber of 2. — = -
= ey Weighted Methods per Class (WMC): \
lanSimulation.internals []Number of Children in Tree (NOC) - e (WhCY =
[# lanSimulation.tests Number of Concrete Types (NOTc) ‘
compileLAN > Number of Exported Types (NOTe) This calculates the sum of cyclomatic
generatelavaDoc prival Number of Fields (NOF) ‘ 2. Define recommended thresholds
javasmp Number of Types (NOT) So—
AN V|Response for Class (RFC) =
- [Weighted Methods per Class (WMC) Lower preferred limit: 1
75 t;se utput. Number of Attr £ WMC
= JRE System Library [jreS] =)-[7]Quality Metrics Upper preferred limit: 50
= JUnit 3 g [7ICycic Dependd WMC Selected metric recommended
& <pp i e— threshold
COPYRIG T (Lo
= LANSimulationDocu.pdf {
[©) README_es.xt [21 Problems | @ Javadoc | [, Declaration | {8z Metrics &2 =]
13 README e Target WMC RFC LcoM oIT NOC
] SRe2LICRefacLabo_es.doc ge
= SRe2LICRefacLabo_es.pdf f"; iaonishn 3
) SRe2LICRefacLabo.doc #-© LANSimulation 9 25 0,0 1 0
"X SRe2LICRefacLabo.pdf ©-© Network 54 2 S 1 0
toDolist =} lanSimulation.internals N
toDolList_es - Node —A—‘ o 0,0 1 0
O Packet ‘ nomalous 0 0,0 1 0
measurement

-} lanSimulation. tests

‘ 3. Identify anomalous measurement

[

Code entities

EoRIDHMS ¢ X

Figure 3 Measurement process with Refactorlt.

The following subsections analyze the new requimsethat need to be
incorporated in a tool for its adaptation to thevm@roposed measurement method and
the particular adaptation of thRefactorlt tool, which will be referred to as

RefatorltUBU Two videos showing the automization of the newksafor the
measurement process can be found in [18].

3.1. Open classification of code entities

The initial hypothesis is thahe code entities may need different use intert@ls
detect anomalies depending on certain classificetioA priori, the tools must
provide some kind of mechanism, either automaticm@anual, which allows the
inspector to classify the entities in the categoti@t make up the classification.

Although there are classifications which may be sidered standard, it is
preferable that the tools should allow the inspecto define his/her own
classifications. In this paper, we initially useclassification of code entities whose
categories are based on the nature of the enkipressed with standard stereotypes
on UML classifiers: gexception &, interface e; entity, g, control, & test e utility.

The new functionality, which corresponds to theatien of a classification, has
been added to the tool, defining a configuratiole from which the different
categories under consideration are extracted ¢h@ih ubu/estereotipos.csv). This
classification will be used in two later activitiezne, when the use interval of each
metric is defined, and the other, when the measem¢mf the component is carried
out. The following figures show, concretely, the ndtionality added to
RefactorltUBU, supposing the following classificati of categories for the file
content:Unknown, Exception, Interface, Control, Entity, fTasd Utility. Figure 4
shows the new definition of use intervals for eawdtric, and in the lower righthand
corner a panel is added which is labelled with eafkthe stereotypes and the use
intervals recommended for each one. As happened Wit tool's original
functionality, these intervals have to be introdlit®y the user and can be stored in
profile files [19]. Finally, Figure 5 shows the evaluation of entities which allow the
user to define the stereotype of each entity. Fleeninspector’s point of view, it is
interesting to point out that if the classificatio® not closed, a category called
“unknowri should be considered.

' Y
|| Metrics lﬂ
E Press F1 for help
Profile
Name: | ChidambreProfies -] | Save As.. | | Open... |
Metrics Description
- [| Abstractness ... - g T -
- [] Afferent Coupling (Ca) (slow) eighted Methods per Class (WMC): F
- [¥]|Depthiin Tree {DIT) |
. ["|Efferent Coupling (Ce) This calculates the sum of cyclomatic complexity |
- [Instability (I = Ce [(Ca + Ce)) (slow) _ | |of methods for a class.)
I [IMumber of Abstract Types (NOTa) -
[¥]Mumber of Children in Tree (NOC) 3
[|Number of Cancrete Types (MOTc) =| FOptens
;iNumber of Exported Types (MOTe) o | | Entity I Test I Utiity |
[Mumber of Fields (NOF) — Unknawn | Exception _l
" |Number of Types (NOT)
Response for Class (RFC) Lower preferred limit: : |
- [T]Number of Attributes (NOA) - Upper preferred limit: 50
ok Cancel || Hebp T
Figure 4 RefactorltUBUDefinition of use intervals for each metric anédrebtype considered.
Target STR WMC RFC DIT NOC LCOM
Metrics iUnknown o | -
- {3 lanSimulation \Unknown |
- - @ LaNSmulation \Unknown o | 9 5 1 0 0,0
- @ Network Unknown o | 54 28 1 0 0,6
~H lanSimulation.internals Unknown |
- Node Unknown o | 2 0 1 0 0,0
O Packet Unknown o | 2 0 1 0 0,0
-3 lanSimulation. bests Test]
(-3 LANTests | Test -

] 0 0,0
] 2 4 0 0,0

Figure 5 RefactorltUBU Inspection of code entities.

=R C) LnNTests$Prec0ndition\u‘iolationTestCasefTest

3.2. Classification of entitiesin the categories consider ed

When working with real systems, the number of cedtties to be classified is very
large. It is desirable that the inspector shouldehassistance to carry out this new
activity efficiently. What is more, we start frorhet hypothesis thahe classification
may be subjective and it is the inspector’s resjimlity to take the final decision on
how to classify the code entitiel this sense, the tool could provide two new
functionalities:

» classification by entity groupings

+ automatic classification

The application’s architecture (layers, componentgans that the code entities

possess some logical groupings that must be idkhtify the inspector. In addition,
this logical organization corresponds to the phgisistructure through the code

entities themselves. The physical grouping strestuare: on the one hand, the
packages, which contain packages and classes; rmkdeoother hand, the classes,
which contain methods. The application of a catggmm a grouping structure is
propagated to the rest of the components. Thuappglication with a logical grouping
marked by a three-layered architecture could bssiflad by indicating the category
of the three packages that contain the superi@ldenf the architecture. Each change
of category requires a new evaluation of the entitth the interval of the new
stereotype chosen.

A code inspector would, in addition, want functibtya with automatic
classification methods that could later be adjudtgdhim/her. In this sense, we
should mention, as an entity identification teclueigthe different name conventions
used by software architects and programmers. Fstarnice, the code entities whose
name contains the literal strings “interface”, “guform”, etc. usually belong to the
category egraphic interface The knowledge, based on name conventions, neteded
identify entities may be generic with respect tosige conventions or the
programming language, or it may be specific knogtedf the project requirements.
For instance, if there is a layer called “metrin”’a metrics calculation project, in a
first inspection, it could belong to the categormsentity or g controllers The
conventions of the libraries and the programminmgyleage itself may help to identify
entities without any doubt, which is the case ef Jbnit test and th#avaexceptions.
Table 2 shows a summary of the identification ddt@resented which depend on the
different categories of code entities considerga@xeeption & interface e entity,
control, & test e utility.

The extension tdRefactorlt performed here includes these functionalities. The
change of category on a code entity grouping ipagated on the other entities it
contains. In order to carry out this change from tise interface (sdeéigure 5), the
new category has to be chosen from the pull-dosin li

The automatic classification algorithm reads thavemtions of names associated
with each category considered from a configurafiide Thus, the inspector can
customize the algorithm, introducing specific cami@ns from the context of the
application being inspected. The specification vii#é made up of a quadruple
<package convention, stereotype package, classentiom, stereotype class>. For
instance, the application of the name conventi@pased by Junit is indicated by the
following quadruple <"test”,"Test”,"Test”,"Test">which means that the packages
containing the literal string “test” will be clafisd in the category oTest and the
classes containing the literal string “Test” wik lelassified in the category d®st
The exceptions are not grouped in packages, stetaify exceptions within the test
package, the quadruple <"test”,"Test”,”"ExceptiolEXteption”> has to be added.
Another example is the quadruple <"ui”,"Interfac@&tener”,”Control”>, in which
all the entities in the package containing therditestring “ui” are classified in the
categoryinterface except those classes that contain the litermlgstlistener”, which
are classified a€ontrol. This algorithm is executed each time the inspetkwough
the user interface, requests a component to beureghOnce the classification of the
code entities has been applied, conditioned intenaf recommended values,
conditioned for each category, are used.

Table 2 Criteria for identifying stereotypes.

€ € € €4 & €
Grouping No Yes Yes Yes Yes Yes
Generic Yes Yes Yes Yes Yes Yes
Knowledge
Specific No No Yes Yes No No
knowledge
Name exception interface core control test utility
conventions gui model facade debug properties
forms entity manager dummy log
ui handler preference
report action template
swing callback options
visual provider
awt

4 Useintervalsfor entity types

In order to obtain a use interval for each catedergxception e, interface e; entity,

g, control, & test g utility), measurements have been taken on ten plugire dDE

of Eclipse, identifying the entities and selectifgy, each measurement, the following
percentile statistics: 25 (first quartile Q1) a® (third quartile Q3). The
incorporation of this information into the tool d®ne by means of the functionality
related to the specification of the use intervaa gfarticular metric. If the tool has no
multi-interval evaluation, the new measurement esscto identify anomalous
measurements may be excessively tedious, due toetb to repeat it as many times
as there are use intervals under consideration.

4.1. Project selection

To select the projects to be measured and analyzedstudy has focused solely on
plugins for the Eclipse tool, obtained through thyen code software repository
SourceForge(http://sourceforge.net/). Using the informatioroyided by the said
repository, several project selection criteria hbgen followed:

» Percentage of activity, measured using the infaomatoncerning the
activity of continuous modifications and the recewtivity. The criterium
established for %Activity is > 85 %.

e Popularity, measured using the number of downldagishe users. The
criterium established for N° of Downloads is > 7000

+ State of development of the application, measursithguthe following
ordinal scale: 1 Planning, 2 PreBeta, 3 Alpha, taB& Production/Stable, 6
Maturity, 7 Inactive. The criterium established &bate is >= 3

Another characteristic considered in the seleatiostudy projects is that related to
the type of programming language used in the imphation, which will be the
same for all of them: Java.

Finally, it would seem to be of interest to consittee characteristic associated
with the project size. The number of code entifiess each category considered,
depending on the nature of the problem, will beetais a reference. The criterium is
that the minimum number of entities should be gnetitan 400.

Table 3 Information concerning the set of projects measured

Number of entities Sourceforge information
(=3 (=3 e & & unclassifi %Activity N° State
Eclipse Plugins ed Downloads

esFtp 1|90 38 68 8 86 52 94.19 45878 4
AVR 12 |376 125 | 306 | 362 | 789| 310 98.68 1464780 5.4
Jedit 25|1671 | 1657 1548 12 1779 681 99.62 5371956 5
EclEmma 1 | 257 288 | 78 186 35 150 99.93 148801 5
AzSMRC 45 | 511 655 | 272 9 759| 758 99.00 59327 4.
EclipseME 39| 575 951 | 535| 281| 1215 446 97.63 731173
ELBE 26 [1788 | 1561| 121 138| 380 288 85.95 30172 7
OpenReports 17 0 568| 1074 2 159 383 96.80 2357085 4
EclipseCorba 7 | 145 148 | 232| 143 20% 334 94.86 230623
LabelDecorator | 7 | O 116 | 34 52 177 74 85.00 7004 5
Total CodelLines [909(111818 (85911 (83876 (14238 (14797

Table 3 shows the selected projects with the infdimn concerning size and that
provided by the open code software repository. ddlamn “unclassified” shows the
number of entities which could not be included iy af the categories considered. In
addition, in order to get an overall idea of theesdf the experiment, the last row of
the table shows the total number of code linesyaedl of each type of entity
considered.

4.2. Selection of metrics

The tool selected to obtain the measuremenBefgactorlt[16]. Table 4 shows the
metrics provided by the tool and the recommendedl intervals on some of them
(columns MinValue and MaxValue). In addition, thelumn called scope shows
which type of code entity the metric is associatéth: package (P), class (C), method
(M) or all the previous categories together (T).

Independently of the particular conventions on tlele metrics, each time the
code of a software system is analyzed, informatimmcerning its size and complexity
is required. Some works express the size of amsystdéerms of lines of code, number
of classes and even quantity of megabytes of theceaode. These numbers are only
values of some basic metric. Unfortunately, aftstaming a set of individual values,
there are still problems in characterizing the esystor entity evaluated. The
characterization through the metrics must serveetiect the goodness of the main
design aspects such as: size (SlZ), documentat®C], coupling (COU),
inheritance (INH), structural complexity (COM), atastion (ABS), cohesion (COH)
or design principles (DP). Another column has bewuded inTable 4, called
characteristic, which shows this subjective classiion. In any case, these metrics

are considered of interest because of their relship with different aspects of the
quality of the software products [20-24].

Table 4 Set of metrics defined in the Refactorlt tool.

| 3 i
S| S |y |8

Description f‘-_’ E % |8 |8

g =| = |& B

o (@)
Cyclomatic Complexity V(G) 1 10 M | COM
Density of Comments DC 0.2 04 T| DOC
Executable Statements EXEC 0 20 T SIZ
Number of Parameters NP 0 4 M |SIZ
Total Lines of Code LOC 5 1000 T | SIZ
Abstractness A 0.0 |0.5 P ABS
Afferent Coupling Ca 0 500 P | CoU
Depth in Tree DIT 0 5 C |INH
Efferent Coupling Ce 0 20 P COuU
Instability | 0.7 |1.0 P | Cou
Number of Abstract Types NOTsg 0 20 P | ABS
Number of Children NOC 0 10 C |INH
Number of Concrete Types NOTc 0 80 P | ABS
Number of Exported Types NOTe 3 50 P | Cou
Number of Fields NOF 0 1 C |[sIz
Number of Types NOT 0 80 P SlIz
Response for Class RFC 0 50 C| COM
Weighted Methods per Class WMC 1 50 C| COM
Number of Attributes NOA 0 5 C |[sIz
Cyclic Dependencies CYC 0 1 P DP
Dependency Inversion Principle DIP 0.8 1.0 g DP
Direct Cyclic Dependencies DCYC 0 1 P| DP
Distance from the Main Sequence D 00 0.1 H DP
Encapsulation Principle EP 0 0.6 P DP
Lack of Cohesion of Methods LCOM 0.0 0.2 C| COH
Limited Size Principle LSP 0 10 P DP
Modularization Quality MQ 0 1000 | P DP
Number of Tramps NT 0 1 M |O

4.3. History of useinterval metrics

From the data obtained in the experiment are catledlintervals of use for metrics
considered. The lower and upper thresholds areuleadsl from Q1 and Q3,

respectively, as indicated at the beginning ofisact. It starts from the premise that
thresholds are calculated on the same domain apiplis, in this case Eclipse
plugins, and are guidelines which do not ensuresttistence anomaly on entity. The
idea to calculate limits based on Q1 and Q3 hawen hused in previous studies that
define rules for detecting design defects [25hl$D corroborates the improvement of
the new measurement process as it is observedth@abehavior of the metric is

different when considering the stereotypes and #isointervals obtained are more
accurate.

The following tables, Table 5, Table 6 and Tableskhpw the use intervals
recommended depending on the classification coreidey exception e interface
€; entity, & control, & test and g utility. The data from the study case corresponding
to all the values of the metrics can be obtainethff18].

These data are from a case study in the area dbfaef engineering, as a phase
prior to the empirical validation based on expenisg26]. Having clarified this fact,
we now summarize the results observed on applyiegnew measurement process
proposed in this paper. In Table 6, the column shgwhe structural complexity
metric WMC [7] is highlighted, as this indicatesthmits of the use intervals for
each of the stereotypes considered2¢t], &[4,16], & [5,25], &[3,16], & [2,8], &
[4,22]. Table 4 shows [1, 50] the recommended otarval, with respect to the tool,
for each metric. Two aspects of this information ba stressed: on the one hand, the
interval proposed by the tool is very wide and udgls all the other intervals. On the
other hand, the intervals vary depending on theestgpes considered: the classes of
exception (@ and test (§ are less complex than the classes of contro{jsand
utility (eg). Analogously, this analysis can be done for #st of the measurements in
the tables.

Table 5 Metrics of packagesecommendethtervals according to the nature of the problem.

EXEC | Ca Ce 1 A D |[NOTc|CYC| EP
Exception | Q1 -—- -—- -—- -—- --—- -—- -—- -—- -—-
e Q3| -
Interface | Q1| 15.00 | 0.0 | 5.00 | 0.60 | 0.00 | 0.00 4 0 |0.071
€ Q3| 134.00] 7.0 | 18.00) 1.000| 0.07 | 0.36| 18 3.0 | 0.80
Entity Q1| 11.75 | 2.0 | 3.00 | 0.25 | 0.00 | 0.10 2 0 | 0.52
€3 Q3] 194.50| 35.5|14.00| 0.68 | 0.26 [0.50| 12 4.5 1
Control Q1| 7.50 | 0.0 [2.00 | 0.31 | 0.00 |0.00 1 0 | 0.00
€ Q3| 93.00 | 8.5 [11.00] 1.00 | 0.29 [0.25] 11 1.5 1
Test Ql| 2.00 | 0.0 | 2.00 | 0.93 | 0.000 | 0.00 1 0 | 0.00
& Q3| 28.00 | 1.0 | 775] 1.0 | 0.39 |0.34 7 0 | 0.19
Utility Q1| 12.75 | 0.0 | 2.00 | 0.45 | 0.00 | 0.00 2 0 |0.000
€ Q3| 127.25| 6.0 | 14.00| 1.00 | 0.17 | 0.40| 13 1.0 | 0.81

Table 6 Metrics of classesfRecommended intervals according to the nature obtbielem.

DC LOC | EXEC | WMC | DIT| RFC | LCOM | NOA
Exception | Q1 | 0.00 | 10.25 0 1.75 3 1.75 0 0
€1 Q3|0.14| 29.25 | 1.75 | 4.00 | 4 | 3.25 | 0.00 2
Interface | Q1| 0.00| 35.00 2 4.00 1 2.00 0 1
€ Q3]0.20]179.25|14.00| 16.00| 2 |19.00| 0.95 7
Entity Q1| 0.00| 40.00 2 500 | 1 | 2.00 0 1
€ Q3]0.27]169.50| 17.00 | 25.00 | 2 |21.00| 0.96 6
Control Q1] 0.00] 18.00 1 3.00 | 1 | 2.00 0 0
€ Q3|0.21|115.25]12.00|16.25| 2 |17.00| 0.75 3
Test Ql|0.00| 19.00 0 2.00 | 1 | 2.00 0 0
=3 Q3|0.28|105.00| 800 | 825 | 2 | 9.00 | 0.81 2
Utility Ql|0.02| 33.00 2 400 | 1 | 3.00 0 1
€ Q3]0.31]202.75]23.00|22.00| 2 |23.00]| 0.92 6

Table 7 Metrics of methodsRecommended intervals according to the nature gbtblelem.

LOC | EXEC | NP | V(G) | NT

Exception |Q1| 1 0 0 1 0
=1 Q3| 8 1 2 2 |0.75
Interface |Q1| 1 0 0 1 0
€ Q3| 14 2 1 2 0
Entity Q| 1 0 0 1 0
€ Q3| 9 2 1 2 0
Control Ql| 1 0 0 1 0
€ Q3| 11 2 1 3 0
Test Ql| 1 0 0 1 0
& Q3| 10 1 1 1 0
Utility Q| 1 0 0 1 0
€ Q3| 14 3 1 3 0

5 Conclusions and Future Lines of Work

In this paper, we have carried out a case studyréwe our measurement process
proposal. In this proposal, the measurement prdééss modified by incorporating
the inspector's/evaluator’'s knowledge of the cod#ty classification depending on
its nature: gexception e, interface e; entity, e, control, e test e utility. As a result
of the said code entity classification, a use wrdehas been proposed for each metric
and category of the classification. In additiore thodifications of the process and the
relationship with the code measurement tools haentanalyzed. In particular, the
result of adapting the new code entity measurempartess to th&ecfactorlttool is
presented.

This paper presents a collection of recommendeshials to identify anomalies,
obtained as a result of measuring the code entitfea set of real projects. Our
conclusion is that it is necessary to pursue rebemto the field opened up by this
case study, and to this end, we make the followimgosals for future work:

* It is necessary to replicate the case study witlerosets of projects defined
using the external factors and functionality. T af this is to refine and
compare the proposed use intervals. In additiorwduld be possible to
evaluate whether our measurement process propepahds on the context
of the application to be measured or not.

e Itis necessary to validate the proposed measurepnecess, and to this end
we aim to study whether the use intervals of anomsmimeasurements are
more accurate in the new scenario.

e Furthermore, we believe that, in order to validatie measurement process
proposal, it would be interesting to incorporatevreets of metrics which
would be useful from the point of view of softwamegineers [24].

» One of the problems found in practice has beetathelling of code entities,
as they sometimes do not belong to only one stgpeofThus, we propose
elaborating a new fuzzy classification of code te&¥j in which each code

entity would have a tuple of weights correspondtiog the degree of
belonging to each stereotype.

The improvements achieved in this work depend om tiew task of
classification of entities according to the steypes code considered. In this
sense, it is necessary to carry out experiments Hbalp to validate the
consistency of classification by experts.

Acknowledgements. This paper has been funded by the Spanish ‘Ministde
Ciencia e Innovacion’ through the research prdR@ADMAP (TIN2008-05675)

References

1. Fenton, N.E. and S.L. PfleegeBoftware Metrics: A Rigorous and Practical
Approach 2nd ed. 1998: Course Technology. 656.

2. IEEE, C.S.Guide to the Software Engineering Body of Knowle@§®4 Edition -
SWEBOK 2005.

3. Pressman, R.SSoftware Engineering: A Practitioner's Approacé® ed. 2005:
McGraw-Hill. 958 p.

4, Sommerville, I.Software Engineering8th ed. 2005: Addison-Wesley. 864.

5. ISO/IEC,Software engineering -- Product quality Part 1:ality model] 2001.

6. Marin, B., N. Condori-Fernandez, and O. Pasfatjdad en modelos conceptuales.
Un andlisis multdimensional de modelos cuantitatilzasados en ISO 9126n
Revista de Procesos y MEtric&907.

7. Chidamber, S.R. and C.F. Kemerar,Metrics Suite for Object Oriented Design.
IEEE Transactions on Software Engineering, 1204p. 476-493.

8. Lorenz, M. and J. KiddDbject-oriented software metrics: a practical guids. 1.
Prentice-Hall. 1994, Upper Saddle River, NJ, USA.

9. Martin, R.,00 Design Quality Metrics. An Analysis of Dependend 994.

10. Brito e Abreu, F. and R. Carapu€andidate metrics for object-oriented software
within a taxonomy frameworlournal of Systems and Software, 1988{1): p. 10.

11. McCabe, T.A Complexity MeasurdEEE Transactions on Software Engineering,
1976.2: p. 308-320.

12. Piattini, M.G.,Calidad en el desarrollo y mantenimiento del softwaed. F.O.
Garcia. 2002: Ra-Ma. 310 p. ; 24 cm.

13. Marinescu, R.Measurement and quality in Object-Oriented DesignAutomatics
and Computer Scienc2002, Timgoara: Timoara.

14. Arlow, J. and I. Neustadt eddml 2 And The Unified Process: Practical Object-
oriented Analysis And DesigR005, Addison-Wesley Object Technology Series.

15. Jacobson, I., G. Booch, and J. Rumbadufe Unified Software Development
Process 1999: Addisson-Wesley.

16. Agris-SoftwareRefactorlt 2001.

17. Demeyer, S., S.e. Ducasse, and O. Nierstr@yect-Oriented Reengineering
Patterns 2002: Morgan Kaufmann and DPunkt.

18. Carlos, L.QAOOSE2010 Measurements and metric tool vide2010 [cited;
Available from:http://pisuerga.inf.ubu.es/clopez/QAOOSE2010/

19. Crespo, Y., et alQObject-Oriented Design Knowledge: Principles, Hetics and
Best Practices2006, Idea Group Publishing. p. 193-249.

20. Dromey, R.G.A Model for Software Product Qualjtin Transactions on Software

Engineering 1995. p. 146-162.

21.
22.

23.

24.

25.

26.

Dromey, R.G.Cornering the Chimeral996. p. 33-43.

Briand, L.C., J. Wiist, and H. LouniRgplicated Case Studies for Investigating
Quality Factors in Object-Oriented Desigrismpirical Software Engineering, 2001.
6(1): p. 11-58.

Moody, D.L.,Theoretical and practical issues in evaluating thality of conceptual
models: current state and future directioi3ata & Knowledge Engineering, 2005.
55(3): p. 243-276.

Manso, E.Estudio empirico para la validaciéon de indicadodssla reusabilidad de
diagramas de clases UMPR009, Valladolid.

Marinescu, R.Detection Strategies: Metrics-Based Rules for Diatgc Design
Flaws. in Proc. ICSM 20042004.

Juristo, N. and A. Moren®asics of Software Engineering Experimentati®®01:
Kluwer Academic Publishers.

