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Abstract: Feature models are used to represent the variability and commonality 
of software product lines, and permit the configuration of specific applications. 
However, universally accepted definitions of feature and feature diagrams are 
missing. This paper proposes the use of hypergraphs to integrate the different 
versions of these concepts in an extensible characterization. The definition, 
validation and selection of feature configurations are based on hypergraph 
properties and existing algorithms. Once the formalism is stated, the definition 
of a feature meta-model is straightforward and a set of modeling tools, 
compatible with the different flavors of feature diagrams, can be readily built. 
Finally, configuration and transformation of feature diagrams into UML models 
are defined as algebraic and QVT transformations.    
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1 Introduction 

Software product lines constitute a successful reuse paradigm in industrial 
environments in spite of their complexity [3]. Feature models represent the variability 
and commonality of software product lines and permit the configuration of each 
specific application to be selected. However, a universally accepted definition of 
feature and feature diagram (FD) is missing and many of the variants more frequently 
used cannot solve some problems. The original proposal, included in the Feature 
Oriented Domain Analysis (FODA) method [12], defines features as the nodes of a 
tree, related by various types of edges. The tree root or concept is decomposed by 
AND, X-OR and OPTIONAL relationships (see the example of Figure 1a), but 
FODA does not cover disjunction (OR).  

Several extensions have been proposed: incorporating the OR decomposition 
(Figure 1b) [11], changing the visual syntax, or using directed acyclic graphs (DAG) 
instead of simple trees. However, in spite of using graphs, the situation of Figure 1c is 
not possible when the multiplicity is a property of the feature. Riebisch et al. [17], for 
example, proposes moving the multiplicity constraint to arcs instead of nodes. 
Constraints between features (a feature requires another feature or two features are 
mutually exclusive) can be added in textual or graphical formats. Schobbens et al. 



[18] have evaluated the diverse variant of FDs, clarifying the differences and 
establishing a generic semantics. The study classifies the existing proposals using 
several characteristics: the FD is a tree or a DAG, the constraints are textually or 
graphically shown, and the way the decomposition relationships (AND, X-OR, OR, 
multiplicity) are expressed. They propose a new non-redundant variant FD or VFD. 

 

 
(1a) 

 (1b) 

 
(1c) 

Fig.  1 An original FODA feature diagram, alternative and OR decomposition extensions and a 
problem that feature multiplicity cannot solve 

Considering these antecedents, we propose the use of directed hypergraphs as a 
formal structure to define an FD instead of trees or simple graphs. The main reason is 
to substitute the several types of decomposition (Mandatory/Optional and 
Alternative/Or groups) and features (Solitary and Grouped Features) with only two 
elements: features (nodes) and generic decomposition (labeled hyperarcs). An 
additional advantage is that requires or mutex constraints can be reformulated using 
hyperarcs as well, contrary to the current proposals. Most authors (see [7] for 
example) deal with the structural constraints implicit in the features tree (or graph) 
independently from the additional mutex/requires constraints. The configuration, 
therefore, has to solve the problems in two stages. Using hypergraphs, the product 
configuration problem can be reduced to detecting connections and/or 
hyperconnections in the hypergraph.  

The rest of the report is as follows: the next Section introduces hypergraphs and 
formally defines the structure underlying an FD. Section 3 analyzes the configuration 
problem and sketches the hypergraph algorithms used for deriving the configuration, 
starting from a set of features selected by the user. Section 4 uses the formal 
definition to build an extensible meta-model. In Section 5 a previously defined 
transformation into UML models is adapted to the proposed meta-model, generalizing 
tree structures to acyclic graphs. Finally, Section 6 presents related work and Section 
7 concludes the paper and considers future work. 

2 Hypergraphs and Feature Diagrams 

A hypergraph is a generalization of a graph wherein edges can connect more than two 
vertices and are called hyperedges. Directed hypergraphs extend directed graphs, and 
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have been used as a modeling and algorithmic tool in many areas: formal languages, 
relational databases, manufacturing systems, public transportation systems, etc [9]. A 
technical, as well as historical, introduction to directed hypergraphs has been given by 
Gallo et al. [9]. The main reason for introducing this type of graphs is to represent 
Many-to-One relations, for which simple DAG or trees are not well equipped.  

A directed hypergrah or simply hypergraph is a pair H = (V, E), where  
• V = {v1, v2,..., vn} is the set of nodes   
• E = { e1, e2,..., em }, with ei ⊆V for i=1,…, m, is the set of hyperarcs  

Where a hyperarc is an ordered pair, e = (t(e),h(e)), with t(e) ∩ h(e) = ∅. t(e)  is 
the tail of e, while h(e) is its head. A Forward hyperarc, or simply F-arc, is a hyperarc 
e = (t(e),h(e)) with |t(e)|=1. An F-graph (or F-hypergraph) is a hypergraph whose 
hyperarcs are F-arcs, that is, all the hyperarcs have only a node as their tail. 

2.1 Feature Diagrams as Hypergraphs 
A Feature Diagram can be modeled as a directed hypergraph, where the features are 
the set of the nodes and there is a hyperarc for each decomposition relationship 
between features. Each hyperarc is assigned a label which corresponds to the 
multiplicity of the decomposition. The obtained hypergraph is an acyclic labeled F-
graph. Each feature decomposition is mapped to an F-arc in the following way: 

• mandatory features to hyperarcs  where |h(e)|=1, and label 1..1  
• optional features to hyperarcs  where |h(e)|=1 and label 0..1 
• pure alternative (X-OR) features to hyperarcs where |h(e)|=q, with q>1 and  

label 1..1 
• OR features to hyperarcs where |h(e)|=q, with q>1 and label 1..q 

 
The first two situations are the original mandatory and optional relationships. The 

third is a pure alternative situation and the last one is the generic OR. Therefore, all 
the possible decomposition variants [18] are covered. To facilitate the validation and 
later configuration of the FD, constraint relationships are considered formally as 
additional hyperarcs. The semantics of requires is that the A requires B constraint 
establishes a compulsory relationship between features A and B, i.e. a hyperarc 
between A and B with label 1..1. In fact, we could generalize to A requires S, S being 
a set of features. The multiplicity minimum and maximum of the hyperarc would be 
equal, in both cases, to the cardinality of S. We would like to point out that 
introducing this kind of arc (hyperarc) cycles may arise in the hypergraph. This is an 
undesired and nonsensical situation; therefore, once all the requires hyperarcs have 
been defined, the acyclicity of the hypergraph could be tested with the F-Acyclic 
procedure described in [8].  

The semantics of mutex is that we cannot select simultaneously more than one of 
the two or more features involved. Then, independently of the implicit constraints 
imposed by the graph structure, a new relationship is imposed. This can be 
reinterpreted as a hyperarc from a common node (the root) to the involved nodes with 
0..1 multiplicity: at most one of the features involved can be selected. 



 
Fig.  2 Graphical constraints reinterpreted as 1..1(requires) and 0..1 (mutex) hyperarcs 

  
Figure 2 is an attempt to graphically express these reinterpretations. While the 

left-hand side of Figure 2 is visually more expressive and tools can continue using 
that representation, the (hidden) hypergraph model (the right-hand side of Figure 2) is 
more easily handled by the validation/configuration algorithms. 

2.2 Formal definition 
A multiplicity value mv is a pair of integers mv=(min,max) with min ≥0, max>0 

and  min≤max. We denote by M the set of all possible multiplicity values, M ⊂  N × 
N *. 

A Feature Diagram is an acyclic F-hypergraph F= (N, E, r, δ) where 
• N is its set of nodes (or features) 
• E={e1, e2,..., em}, with ei ⊆ N for i =1,…, m, is the set of decomposition F-

arcs; q is the cardinality of the head of ei  q=|h(ei)|. 
• r ∈N is the root of the diagram (it is the only node  not contained in the head 

of any hyperarc of the hypergraph, i.e it is the only node whose  Backward 
Star is ∅ [8]):  R is the root set of the hypergraph, R ⊆ N ∧ R={r}. BS(r)=∅   
∧  BS(n) ≠ ∅  ∀   n ∈ N \ R 

• δ: E→M  assigns each F-arc e with a multiplicity (min, max), max ≤ q=|h(e)| 
 

A particular type of Feature Diagram is the Feature Tree. If each node has no more 
than one parent, then the generic graph structure is a hypertree:  

• A Feature Tree FT is a Feature Diagram, such that each node has at most 
one entering hyperarc (root r has none): |BS(n)| = 1  ∀ n ∈N. n ≠ r 

 
Two extensions are possible. We introduce separately typed features and 

constraints, but the integration of the two definitions is straightforward. Constraints 
are introduced as additional hyperarcs with multiplicity 1..n (requires) or 0..1 (mutex).  

Given a Feature Diagram F=(N,E,r,δ), a Constrained Feature Diagram is a  
Feature Diagram CF= (N, E’, r, δ’) where 

• E’ = E U E r  U E m  and   δ’= δ U δr U δm 
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• Er ={r1, r2,..., rk}, with ri ⊆ N for i =1,…, k, is the set of requires constraints 
F-arcs; in general |h(ri)| ≥ 1 

• δr: E r  →M assigns each F-arc  r  with a fixed multiplicity min = max = 
|h(r)|. In particular, if the requires constraint involves two nodes, multiplicity 
is 1..1. 

• Em ={m1, m2,..., ml}, with mi ⊆ N for i =1,…, l, is the set of mutex 
constraints F-arcs; in general |h(mi)| ≥ 2 and t(mi) = r is the root.  

• δm: E m  →M assigns each F-arc m  with a fixed multiplicity 0..1. 
 
Finally, typed features allow a type (default type is NONE, others are classical 

predefined types such as INTEGER, BOOLEAN, STRING, etc.) to be assigned to 
each leaf (any feature not contained in the tail of any hyperarc, i.e. whose Forward 
Star is ∅ [8]). As there is no consensus about this concept in the literature, we treat it 
as an optional extension. 

Given a Feature Diagram F=(N,E,r,δ), a Typed Feature Diagram is a Feature 
Diagram TF= (N, E, P, r, δ, τ) where: 

• P is a set of types P={INTEGER, REAL, BOOLEAN, STRING, NONE} 
• τ: L→P assigns each leaf with a type value,  L ⊂ N ∧ |FS(l)| = 0 ∀ l ∈ L. 

2.3 Discussion 
To show the equivalence with previous FD definitions [18], a simple transformation 
of our Feature Diagram into a DAG can be considered:  a) each hyperarc with h(e)=1 
is transformed into an AND or OPTIONAL decomposition (the 1..1 or 0..1 
multiplicity is assigned to the child feature); and b) each hyperarc with h(e) > 1 is 
transformed into a Grouped decomposition, connecting the parent and child nodes 
(the original multiplicity is assigned to the decomposition). The result is a 
constraintless DAG with multiplicity expressions or VFD, using Schobbens 
terminology [18]. As in [18], VFD is proved to be powerful enough to represent the 
rest of the FD variants, and our definition can equally generate any FD variant. As 
pointed out by Schobbens, expressiveness, succinctness and non-redundancy are key 
points. Most variants of Feature Diagram have two ways of expressing multiplicity: 
group multiplicity and feature multiplicity. For instance, feature multiplicity (an 
optional 0..1 or mandatory 1..1 feature) could be combined with an OR group, 
making it clear that some of the grouped features are always selected and the others 
are purely optional (see CreditCard in Figure 3a). This has a meaning: the group 
semantic indicates that the (in fact) mandatory feature is closely related to the rest of 
the optional features. The problem is that this possibility opens the door to 
unnecessary redundancies, or inconsistencies, allowing situations like Registered 
(optional as feature, mandatory as decomposition) in Figure 3a. The normalization of 
the diagrams, using only the decomposition based multiplicity is preferred, as 
inconsistency and redundancy are impossible, maintaining sufficient expressivity.  

 



(a) 
(b) 

Fig.  3 Redundant and normalized versions of the same situation in an e-commerce product line   

3 Configuration of a Feature Diagram 

A (partial) configuration of a Feature Diagram is a sub-set of the original Feature 
Diagram where the variability is (partially) removed. In general, a manual process of 
node selection is carried out, obeying the constraints expressed in the Diagram. Some 
of these constraints are implicitly imposed by the diagram structure. Defining 
mandatory (non-mandatory, respectively) decompositions as decompositions where 
the minimum multiplicity is equal (less, respectively) than the number of its children, 
the following rules apply: 

Rule 1. The root feature and all the features connected with the root feature through 
mandatory decompositions are intrinsically present in any configuration. 

Rule 2. A feature connected with a selected feature through mandatory 
decompositions must be selected. 

Rule 3. A non-mandatory feature can be selected only if at least one of its parents 
is selected. 

Rule 4. A non-mandatory feature is selected if any of its descendants has been 
explicitly selected and it has not been selected through an alternative path. 
For example, the descendant has been directly selected by the user.   

Rule 5. If a feature is present, the final number k of features selected as children of 
its decomposition must be between the minimum and maximum of the 
original hyperarc multiplicity: min  ≤  k  ≤  max. (Clearly, the number of 
children of the decomposition must be identical to the minimum and 
maximum of the hyperarc multiplicity for all the hyperarcs present in the 
configuration, i. e., no multiplicity is needed for the configuration 
hyperarcs.) 

 
Other groups of constraints, when used (in a Constrained Feature Diagram), are 

imposed by the requires and mutex relationships: 
• Requires constraints mean that, for each feature in the configuration, all the 

elements required by it must also be present. In the hypergraph representation, 
this is equivalent to a mandatory decomposition (rules 1 and 2 apply). 
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• Mutex constraints over a set of features mean that, if an involved feature is 
present in the configuration, the others must be absent. In the hypergraph 
representation, this is equivalent to a non-mandatory decomposition with 
maximum multiplicity equal to 1 (rules 3 and 4 apply). 

 
Consequently, the configuration  procedure can be applied uniformly to the 

constrained hypergraph, instead of dividing it into two phases or transforming the 
feature tree (or graph) into a set of propositional formulas, as proposed in the 
literature [15].    

3.1  Formal Definition of Valid Configuration  
A Valid Configuration G = (NG, EG, r) is a sub-hypergraph of a (Constrained) Feature 
Diagram F= (N, E, r, δ)  where  

• NG  is a subset of nodes of  N: NG  ⊆  N  
• EG  is a set of hyperarcs: EG ={eG |  ∃ e ∈ E  ∧  t(eG) =  t(e)  ∧  h(eG) ⊆ h(e)}   
• The root is present: r ∈ NG 
• All the features connected with the root feature through mandatory 

decompositions are intrinsically present in any configuration. These are the 
core features of the product line and are always present. Any feature 
connected with a selected feature through mandatory decompositions must 
be selected (forward paths): 

∀ e ∈ E . (t(e)  ⊂  NG ∧  |h(e)|=min)  => h(e) ⊂ NG 
• All the paths Prn  in h from r to each feature in NG are included in the 

configuration c (backward paths). This implies that a parent feature must  
always be present if a non-mandatory feature is selected: 

∀ n ∈ NG  ej ∈ E  ∀ ej ∈ Prn    => ej ∈  EG  
∀ n ∈ NG  nj ∈ N  ∀ nj ∈ Prn    => nj ∈  NG 
(Alternatively ∀ n ∈ NG  Prn   ⊂  c)    

• Denoting  h’(e) as the head of any hyperarc e ∈ EG  in the configuration G, 
the head of e in G is a subset of the original head of e in F:    

∀ e ∈ EG   |h’(e)| > 0  ∧  h’(e) ⊆ h(e) 
• If the parent feature of a non-mandatory decomposition is present, the 

number of children selected must be equal to or greater than the original 
decomposition minimum (forward paths) and less than or equal to the 
original maximum: 

∀ e ∈ E .(t(e)  ⊂  NG ∧  |h(e)|>min)  =>  max ≥ |h’(e)| ≥ min 



3.2 Configuration Procedure of a Feature Diagram 
The definition of Configuration guides the characterization of the Configure 
procedure. An obvious pre-condition is that the Feature Diagram is correct and has no 
inconsistencies. Many works (see for example, [2]) are devoted to solving that 
question, and therefore, we do not consider it here. Once the application engineer has 
expressed his/her preferences by selecting a set of non-mandatory features, we must 
recognize a usual problem: once the initial set of non-mandatory features has been 
selected, and assuming they are compatible, it is possible that some non-mandatory 
feature groups (hyperarcs with |h(e)|=m and multiplicity 1..n < m) remain undefined. 
There are at least two ways in which the configuration process can be dealt with: a) 
finding the (probably ordered) set of all valid configurations that fulfill the defined 
selection; and b) guiding the engineer until a unique valid configuration is found. The 
first option is a complete but computationally costly solution. The second is more 
realistic, but it remains largely a manual process, accomplished with FD tools. Staged 
configuration [7] is a classical approach for solving this problem in several steps. We 
find using a topological order in the set of features included in the head of each 
hyperarc useful for facilitating the process. For F-graphs, such node preordering can 
be accomplished by the F-Acyclic procedure [8]. This option implies that the domain 
engineer has assigned a preference order to each group of features. An example can 
clarify the idea: in an e-commerce product line credit card payment is more frequent 
than check or phone based payments and, in consequence, if the application engineer 
does not explicitly decide to change the payment method, credit payment will be 
selected by default. 

Given a (Constrained) Feature Diagram F=(N, E, r, δ), and U an identified 
(selected manually) subset of compatible nodes of N: U ⊂ N),  a valid configuration 
G=(NG, EG, r)  is obtained based on hypergraphs algorithms. Observe that user 
selected features are of special relevance to determine which features are or not 
included in the configuration, see Rule 4.  Thus, a selected feature may require that 
some optional features, min=0, become a non-optional ones, min=1. Therefore, we 
must to check and replace these multiplicities before the configuration procedure is 
applied.  Obviously, all nodes belonging to U are set to multiplicity min=1. 

 
Taking into account the above considerations and the defined configuration rules, a 

valid configuration is obtained as follows: 
1. For each uk ∈ U a procedure, adapted from ݎ݁݅ݐ݊ݎ݂_ܣሺܨ, ,ᇱܨ ,ݎ   ሻݑ

procedure [16] is applied. Procedure assigns multiplicity 1..1 (1..n) to each 
arc ݁ א  Ԣ with multiplicity 0..1(0..n). This step is performed for all nodes ofܨ
subset U. Procedure transform Feature Diagram F=(N, E, r, δ) in Feature 
Diagram F’=(N, E, r, δ’). 

2. Procedure Visit [8] is applied to root node r and Feature Diagram F’, ݐ݅ݏሺݎ,  Ԣሻ . This procedure finds all nodes connected to r and returns a set ofܨ
paths connecting them to r. Procedure Visit has to be adapted in order to 
limit the number of nodes of h(e) to be examined. Note that for each feature 
group only min features has to be selected, being (min,max) their associated 
multiplicity value. The procedure selects nodes and defines hyperarcs to be 
considered in the final configuration hypergraph G=(NG, EG, r). 



4 Feature Meta-model  

One of the advantages of the definition of Feature Diagrams as F-hypergraphs is that 
we have only two types of elements, features and decompositions, instead of 
introducing an additional element (grouped features) to complete the semantics. In 
consequence, the definition and implementation (as CASE tools) of the meta-model is 
easier. The proposal is modular, allowing several versions, from the simplest Tree 
based meta-model to the complete F-hypergraph/constrained/typed meta-model. The 
definition style uses the package merge mechanism and is the same that the UML2 
meta-model uses extensively in the OMG documentation. This approach allows all 
the variants of the feature diagrams mentioned in Sections 1 and 5 to be covered 
(figure 4). 
 

 
Fig.  4  Extensible Feature Meta-model 

 
As an example, the details of the base package are shown in Figure 5. A 

FeatureDiagram has a Root (feature), a set of zero or more (non-root) Features, and a 
set of HyperArcs (in this case Decompositions). Each Decomposition connects a 
parent Node (Root or Feature) with one or more child Features. As multiplicity of 
children meta-association indicates, a Feature can only be child of one Decompostion 
(and indirectly of a parent feature). This is a constraint that makes the structure into a 
tree with a root that has no parents. Decomposition has an associated 
MultiplicityElement that must conform to the associated OCL constraint: maximum 
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value (upper) must be less than or equal to the number of children of the 
Decomposition. To convert a tree based meta-model into the general F-hypergraph 
version, we need to merge the package DAG. Other possibilities are the Typed or 
Constraints packages.  
 

 
Fig. 5 Detail of the basic package of the proposed extensible Feature Meta-model 

 
The basic meta-model of the Feature Configuration (rarely used) is the same of 

Figure 10 but with the invariant {0<min=max=self.children-> size}, taken into 
account that the possibility of election among children features must be null. 

To convert a tree based meta-model into the general F-hypergrah version, we need 
to merge the package DAG. Other possibilities are the Typed or Constraints packages. 
As an example the combination of the four packages, respecting the UML merge rules 
results in the meta-model of Figure 6. 
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 Fig.  2  Final Constrained Typed DAG version of Feature Meta-model 
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To implement the meta-model, we have used GMF1. The Eclipse Graphical 
Modeling Framework (GMF) provides a generative component and runtime 
infrastructure for developing graphical editors based on EMF and GEF. A plain 
implementation of the meta-model has been defined. The visual syntax of the Features 
and Root are rectangles, while the Decomposition graphical representation is a circle 
with multiplicity details. The Tree/DAG variants require a different multiplicity value 
but visually are similar. The type is easy to add as an attribute of Feature. The 
graphical constraints are simple arrows.   

 
 
 

 
 

Fig.  7  Using GMF to implement the proposed meta-model  
 

5 Transformation of Feature Models 

Feature Diagrams have associated design models (generally expressed by UML 
models, including class, use case, and interaction diagrams). We use the UML 
package merge mechanism to preserve the traceability form feature to UML models, 
as explained in [13]. The proposed meta-model (and the consequent tool availability) 
opens the door to the definition of enhanced versions of the feature model to UML 
transformation presented in [13]. We propose to refine the original version (based on 
feature trees) into a more general version. We face the problem in two phases:  

• The simplest situation occurs when the hypergrah is a hypertree (and then 
the transformation is trivial)   

• The general case when a F-hypergrah is considered 

                                                           
1 http://www.eclipse.org/modeling/gmf/ 



Feature Tree transformation  

If the Feature Diagram is a Feature Tree, the strategy consist of that each 
variability point detected in the feature model must originate a package that will be 
combined, or not, in product development time, according to the selected 
configuration [13].   

If we define a UML Tree Package Model TPM pm = (P, M), where P is the a set of 
packages and M the set of ordered pairs of packages (representing merge 
dependencies between them, p1 requires p2):  m(p1, p2)  ∈ M. p1, p2 ∈ P ∧  p1 => 
p2. 

Definition of Feature Tree Transformation Operation:  FT  →   TPM  
Given a Feature Tree h = (N, E, r, δ), a UML Package Model  pm = (P, M)  is 

created applying the following rules: 
 

•  The root r generate the Base package  P={Base}∧  pp=Base 

• Each feature (recursively) connected by an optional hyperarc decomposition 

to a previous considered feature of N (including root) generates a new 

package and a new merge dependency from the new package to the previous. 

   ∀ n ∈ N   ∀ e ∈ E . (T(e) = {n} ∧  |H(e)| > min(e))  =>  

p1 is new P = P  ∪ {p1} ∧  m1 is new m1(p1, pp). M = M ∪ {m1} ∧  pp=p1 

 
In this type of transformation, where different meta-models are implied, the MDE 

approach is a better approach. We have previously implemented this transformation 
using the Czarnecki meta-model. Using the new meta-model, the transformation is 
easier. Figure 8 shows the QTV based definition of the transformation.  

In practical terms we must consider the multiplicity of the parent decomposition. 
If the minimum is equal to the number of children of the decomposition (1..1, for 
instance, when the number of children is exactly one) the features are non optional 
and the related design elements must be incorporated to the existing package. If the 
minimum is less to the number of children (1..1, when the number of children is more 
than one; 0..1; 0..2; 1..2; etc.) the feature is optional and the design elements are 
described in a new package, merged with the existing package. 

Being a tree, the transformation can be implemented by a XML style sheet and 
involves: 

a) Transform the Feature model into a UML model. 
b) Transform the RootFeature into a root Package  
c) Transform each optional Feature (i.e., with multiplicity minimum less 

than the number of children of the decomposition from which it is part) 
into a package merged with the previous package. 

d) Ignore the mandatory Features (i.e., with minimum multiplicity equal to 
the number of children), simply passing to nodes in the next level. 

 
An example of simple application is shown in Figure 9.  
 



 

 
 

 

 

 
Fig.  8  Using QVT to define the proposed transformation 
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Fig.  3  Application of the proposed transformation to a simple Tree Feature Diagram 

Feature Diagram transformation  

If the Feature Diagram is a general hypergraph the transformation is more 
complex as a feature can have contradictory properties. The chosen strategy implies 
that each package with more than one parent in the feature model originates always a 
package. An optional decomposition is treated as previously and generates a package 
(if not created before) and a merge dependency. A non optional feature generates a 
package (if not created before) and one import dependency with the base package that 
in this case is the source of the relationship, while the new package is the target. 
Figure 10 shows an example of this strategy. The cost we assume is that the structure 
is in general not optimized. Considering the CreditCard package, we can argue that if 
is included in Payment, the Guest package always has access to the content of 
CreditCard and we could remove it, getting exactly the same model of Figure 9. 

 

 
 

Fig. 10 Application of the hypergraph based proposed transformation to a general Feature 
Diagram 
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If we define a UML Package Model pm = (P, M, I), where P is the a set of 
packages, M the set of ordered pairs of packages (representing merge dependencies 
between them, p1 requires p2):  m(p1, p2)  ∈ M. p1, p2 ∈ P ∧  p1 => p2 and I the set 
of ordered pairs of packages (representing import dependencies between them, p1 
requires p2):  i(p1, p2)  ∈ M. p1, p2 ∈ P ∧  p1 => p2 

Definition of Feature Diagram Transformation Operation:  FD  →   PM  
Given a Feature Diagram FD h = (N, E, r, δ), a UML Package Model  pm = (P, 

M,I)  is created applying the following rules: 
 

•  The root r generate the Base package  P={Base} ∧ pp=Base 

• Each feature (recursively) connected by an optional hyperarc decomposition 

to a previous considered feature of N (including root) generates a new 

package and a new merge dependency from the new package to the previous. 

   ∀ n ∈ N   ∀ e ∈ E . (T(e)={n} ∧  |H(e)|>min(e))  =>  

p1 is new P = P  ∪ {p1} ∧  m is new m(p1, pp). M = M ∪ {m} ∧  pp=p1 

• Each feature connected by a non optional hyperarc decomposition to a 

previous considered feature of N (including root) and with more than one 

parent decomposition generates a new package and a new import 

dependency from the previous package to the new. 

   ∀ n ∈ N   ∀ e ∈ E . (T(e)={n} ∧  |H(e)|=min(e) ∧  |BS(n)| > 1)  =>  

p2 is new P = P  ∪ {p2} ∧  i is new i(pp, p2). I = I ∪ {i} ∧  pp=p2 

 
The general hypergraph based meta-model transformation is described with QVT 

in Figure 11. As in the previous transformation, we consider multiplicity but also the 
number of parents. If the feature is optional, the design elements are described in a 
new package, merged with the existing package. If the features are non optional and 
the number of parents is exactly one, the related design elements must be incorporated 
to the existing package. But if the features are non optional and the number of parents 
is greater than one, the design elements are described in a new package, imported by 
the existing package. A minor problem to manage is the fact that the new package can 
exist as result of a previous feature transformation. Therefore we have defined a total 
of eight QVT transformations. 



 
 

 
 

Fig.  11  Using QVT to define the proposed transformation 
 

Being a single rooted graph, the transformation can be implemented by a XML 
style sheet and involves: 

e) Transform the Feature model into a UML model. 
f) Transform the RootFeature into a root Package  
g) Transform each optional Feature (i.e., with multiplicity minimum less 

than the number of children of the decomposition from which it is part) 
into a package merged with the previous package. 

h) If the number of parents of the feature are exactly one, ignore the non 
optional Features (i.e., with minimum multiplicity equal to the number of 
children), simply passing to nodes in the next level. 

i) If the number of parents of the feature are greater than one, transform 
each non optional feature into a package imported by the previous 
package. 

 

6 Related work 

Starting with the original FODA proposal [12], several variants of feature diagrams 
have been proposed: FORM [11] is an extension where feature diagrams are single-
rooted directed acyclic graphs (DAG) instead of simple trees. FeatureRSEB [10] also 
uses DAGs and changes the visual syntax, including a graphical representation for the 
constraints requires and mutex. Other authors, such as Czarnecki et al. [5,6] and 
Batory [1], continue to use trees as the main structure (however Czarnecki et al. add 
OR decomposition, graphical constraints, and distinguish between group and feature 
cardinalities). Riebisch et al. [17] replace AND, X-OR, and OR by multiplicities 
combined with mandatory and optional edges. Cechticky et al. proposed a notation 

When
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p:Package

pp:Package
name=sn

pm:PackageMerge
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name=sn

childOf

children
and  ff.childOf->size>1



without solitary features in an attempt to reduce the number of redundant 
representations: a group with one grouped feature is used instead [4].   

A detailed comparison of all these variants has been done by Schobbens et al. in 
[18]. The authors use a parameterized formal definition of the feature diagram, 
obtaining a framework useful for comparing and classifying all the variants, proving 
how the diverse options can be equivalent. Some recent works are devoted to the 
validation of feature models, mainly based on propositional formulas [1] or constraint 
solvers [2].  Mendoça et al. use a two stage analysis to validate the models [15]. The 
advantage of using hypergraphs is the remarkable simplification of the supporting 
model. Instead of transforming FDs into a set of formulas to find inconsistencies or 
configure the final product, the algorithms can be used directly on the constrained 
hypergraphs, using a unique formalism. Modeling and transformation tools are easier 
to define and implement as a coherent and extensible set.   

6 Conclusions and future work 

In this article, we have used F-hypergraphs to define the semantics of feature 
diagrams and their configuration. Once the formal definition is stated, the 
construction of an extensible feature meta-model has been dealt with. The algebraic 
definition directly yields the invariants of the meta-model, establishing a firm 
foundation. The advantages of simplicity and extensibility have made it possible to 
build a set of modeling tools compatible with the different flavors of FDs.  

As part of our industrial oriented work, we implemented a Feature Modeling Tool 
(FMT) as a template integrated with the Microsoft Visual Studio IDE. The meta-
model we used was based on constrained trees, validation is external, and 
configuration uses a staged approach. Work in progress on FMT includes the 
incorporation of the extensible meta-model and the implementation of the algorithms. 
As the tool was originally built using DSL tools and C#, the meta-model enhancement 
and the implementation of the algorithms are straightforward.  

References 

1. Batory, D.S. Feature Models, Grammars, and Propositional Formulas, in SPLC, 2005. 
2. Benavides, D., Trinidad, P., and Ruiz-Cortes, A. “Automated Reasoning on Feature 

Models”, Conference on Advanced Information Systems Engineering (CAISE), July 2005. 
3. Bosch, J. “Design & Use of Software Architectures. Adopting and Evolving a Product-

Line Approach”. Addison-Wesley. 2000. 
4. Cechticky, V., Pasetti, A., Rohlik, O. and Schaufelberger, W. XML-based feature 

modelling, in ICSR 2004, LCNS 3107, pp. 101–114. 2004. 
5. Czarnecki, K., and Eisenecker, “Generative Programming: Methods, Tools, and 

Applications”, Addison-Wesley, 2000 
6. Czarnecki, K., Helsen, S. and Eisenecker, cardinality-based feature models and their 

specialization, Software Process: Improvement and Practice 10 (1):7–29. 2005. 



7. Czarnecki, K., Helsen, S. and Eisenecker, U. Staged Configuration Through Specialization 
and Multi-Level Configuration of Feature Models. Software Process Improvement and 
Practice, 10(2):143 – 169, 2005. 

8. Gallo, G., Longo, G., Pallottino, S., Nguyen, S.“Directed hypergraphs and applications,” 
Discrete Applied Mathematics, vol. 42, Abr. 1993, pp. 177-201.   

9. Gallo, G., Scutella, M.G. Directed hypergraphs as a modelling paradigm, AMASES 21: 
97-123, 1999. 

10. Griss, M.L., Favaro, J., d'Alessandro, M. Integrating feature modeling with the RSEB, 
Proceedings of the Fifth International Conference on Software Reuse, pp.76-85, 1998. 

11. Kang, K. C., Kim, S., Lee, J. y Kim, K. FORM: A Feature-Oriented Reuse Method with 
Domain-Specific Reference Architectures. Annals of Software Engineering, 5:143-168. 
1998. 

12. Kang, K., Cohen, S., Hess, J., Nowak, W., and. Peterson, S. Feature-Oriented Domain 
Analysis (FODA) Feasibility Study. Technical Report, CMU/SEI-90-TR-21, 1990. 

13. Laguna, M.A., González-Baixauli, B., and Marqués, J.M. Seamless Development of 
Software Product Lines: Feature Models to UML Traceability. GPCE 07, 2007. 

14. Lee, K., Kang, K. C., Chae, W., Choi, B. W. “Feature-Based Approach to Object-Oriented 
Engineering of Applications for Reuse”. Software: Practice and Experience, 30(9):1025-
1046. 2000. 

15. Mendonça, M., Cowan, D., Malyk, W., Oliveira, T. Collaborative Product Configuration: 
Formalization and Efficient Algorithms for Dependency Analysis, Journal of Software, 
3(2):69-82, 2008. 

16. Nguyen, S., Pretolani, D., Markenzon, L. On some path problems on oriented 
hypergraphs. Informatique Théorique et Applications/Theoretical Informatics and 
Applications, vol. 32, no 1-3, 1–20, 1998 

17. Riebisch, M., Boellert, K., Streitferdt, D., Philippow, I. Extending feature diagrams with 
UML multiplicities, in: Proceedings of IDPT2002, June 2002. 

18. Schobbens, P., Heymans, P., Trigaux, J., and Bontemps, Y. 2007. Generic semantics of 
feature diagrams. Comput. Netw. 51, 2:456-479. Feb. 2007. 

 


