

Goals to Features: a Model Driven Proposal in

I-GANDALF

(GIRO Technical Report 2009/01-v0.4)

Bruno González-Baixauli
1
, Elena Navarro

1
, Miguel A. Laguna

1
, Julio Cesar Sampaio do

Prado Leite
1

1 Department of Computer Science, University of Valladolid, Spain
{bbaixauli, mlaguna}@infor.uva.es

2 Department of Computer Science, University of Castilla La Mancha, Spain
Elena.Navarro@eclm.es

1 Department of Computer Science, University PUC do Rio de Janeiro, Brazil
http://www.inf.puc-rio.br/~julio/

Abstract. Product lines are one of the most successful approaches to

develop quality software in a changing environment. This is achieved by

defining core assets that will be common to several products. In such

environment, the analysis of commonality and variability emerges as key

activity.

The main problem with this approach is that requirements engineering

effort to obtain the features that the system should have is, usually, over-

simplified. These features are organized in Feature Models that are

already focused on the solution domain.

In this paper, we propose to adapt techniques from Requirements

Engineering to Product Line, specifically the Goal Oriented approach, that

models the problem from an intentional viewpoint (the whys). Goal

Models have been selected because: their structure is similar to features,

simplifying the transition between them; and they proved useful in dealing

with non-functional requirements. In addition, they can be used to provide

a way to select the desired product from the problem domain and not from

the solution domain.

The main contribution of this paper is the description of a process that

derives a product line architecture from goals, using features to bridge the

gap between them. We named this process: I-GANDALF (Intentional

Goal ANalysis Directed by Architectural Features), using a Model-Driven

approach. In this article, the overall proposal is presented, but we focus on

the early stages: from goals to features, defining the models, explaining

what the relationships between them are, and providing the definition and

description of the transformation between Goal and Feature models using

QVT.

We use MORPHEUS, a graphical environment for the description of the

different models, to support the approach, and Medini QVT to implement

the QVT transformation. The evaluation of the approach is carried out

using a case study in the domain of e-commerce.

Keywords: software product lines, goal modeling, feature modeling,

model-driven engineering, non-functional requirements, QVT

1

1 Introduction

Different alternatives have been defined up to date in the Software Engineering

field to face the challenge of developing quality software in a changing

environment. Product Line Software Engineering (PLSE) is one which

emphasizes the idea of software reuse. This paradigm guides the software

development process, from the requirements to deployment stage, by defining

and developing the core features that make up the product line, so that products

are developed by reusing them instead of from scratch. A feature is a

“prominent or distinctive user-visible aspect or characteristic in a domain” [12].

Features are organized in a graph called Feature Model: "A Feature Model

represents the standard features of a family of systems in the domain and

relationships between them." [12]. This reuse oriented approach paves the way

for reducing effort and increasing software quality since the shared assets are

specified in detail, and validated accordingly. In order to define these core

assets, PLSE uses two key concepts: commonality and variability, that is, what

parts are common to all products, to someone or even to only one [8].

Requirements Engineering (RE) is the process of discovering system purpose

by identifying stakeholders and their needs, and documenting these in a way that

is amenable to analysis, communication, and subsequent implementation [20].

However, when this process is considered in the context of Product Lines (PL)

development, its complexity and difficulty is much higher since there are

several products to consider, being necessary to find relationships of

commonality and variability. Unfortunately, in PLSE this process is usually

reduced to find a set of features, grouped in a Feature Model, that products of

the PL must or can have, that is, to deal with the early variability or essential

variability [9]. Moreover, in practice these Feature Models go down to

functionality details that are not so user-visible, even proposing a programming

paradigm (Feature Oriented Programming [21]). Therefore, the main difference

between Features and traditional RE approaches is the idea of purpose, while the

former focus on systems capabilities (solution domain), the latter focus on what

the system is and why it is need (problem domain).

Recently, more systematical approaches have appeared that adapt or use RE

techniques such as Use Cases [9], Problem Frames [22] or Ontologies [1], to

deal with the essential variability. In this context our proposal has been defined,

by exploiting Goal Models to specify variability because the advantages they

provide. We understand that these advantages are threefold. First, they have a

similar structure to Feature Models so that a smooth transition can be obtained

from the problem domain to the solution domain. Second, they have

demonstrated to be one of the best choices to deal with non-functional

requirements and the system intentionality from early stages [4]. And third,

Goal Satisfiability Analysis can be used to reason about what product to choose

according to both a set of selected goals and prioritized softgoals [7].

2

In this work, we present a proposal, using ideas from Model Driven

Engineering (MDE) [24], that helps the development of PLs from the very

beginning of their specification until the deployment of the products that make

up them. Several Models have been identified in its description: Goal Models

because they provide a mean to analyze the product line requirements; Feature

Models because they have been proved useful for variability management, but

from a more functional viewpoint, linking with the architecture; Architectural

Models because they provide facilities to generate the final products of the PLs.

Main goal of this document is to define the transformation in the early stages,

between Goal Models to Feature Models. We use the standard Query View

Transformation (QVT) [18] from the Object Management Group (OMG).

The structure of the rest of the paper is: first, we present the case study that

will illustrate the approach, then we introduce the intentional PLSE focusing in

early stages, that is the use of Goal Analysis and Feature Modeling in product

line. Section 4 describes the different models used in the proposal. Section 5

defines the transformation between goals and features using QVT, and Section 6

describes how MORPHEUS provides support to the proposal. Finally, in

Section 7 we discuss other related works, and conclude in Section 8.

2 Case Study: e-commerce systems

The ideas proposed in this paper have been applied at e-commerce systems

domain (see Fig. 1). This domain was selected because of the wide range of

documentation available, such as [15], [3] or [26]. Authors of these works have

highlighted the high variability of these systems and the unquestionable benefit

that the introduction of PLSE in its development means in terms of cost and

quality of the final products. These benefits are convincing enough as to achieve

a seamless transition from academia to industry. In addition, e-commerce

systems form an important part of many business strategies as companies

expand their presence to the Internet; this guaranteed applicability of the

research, which was another reason why the domain was an attractive choice.

We have focused this work on a partial description in order to enhance the

comprehensibility of both the proposal and the domain.

Fig. 1. A sketched view of the e-commerce domain

user

merchant
website

Product Selection

shopping chart

credit card

E-mail to merchant
E-mail to user

ssl encryption

UPS/FedEx Warehouse

3

3 Intentional Product Line Engineering

One of the main problems for the adoption of PLSE is the high complexity and

the effort that it demands. This is where our proposal, called I-GANDALF

(Intentional Goal Analysis Directed by Architectural Features1) comes to

foreground taking into account two objectives: first, providing guidance for its

application throughout the PL development process; second, introducing good

practices from early stages of development, mainly related to Requirements

Engineering and, more specifically, to non-functional requirements (NFR). With

regard to the first goal, we propose a seamless guided process starting from an

initial modeling of the problem until the code development. Concerning the

second objective, we use Goal-Oriented Requirements Engineering (GORE)

[14], a well-known approach that has proven its utility in requirements phase.

GORE propose an explicit modeling of the intentionality of the system (the

whys) so that they model the problem with a more client-focused approach;

taking into account the goals of the clients instead of a possible solutions

to these goals. In addition, it is a useful mechanism to analyze non functional

requirements because they are modeled and analyzed considering their relation

to the functional ones [4].

Fig. 2. A sketched view of I-GANDALF

Fig. 2 shows both the Process View and the Model View of I-GANDALF. It

can be observed that it entails three main activities:

1 The string Gandalf has been used for naming different types of things or characters: in

software engineering it was used by one of the first software environments[10]

Model View Process View

Intentional Modeling

Feature Modeling

• Potential Clients
• Products Documentation
• Market Analysis

• Domain Technology
• Implementation Techniques
• Operating Environments

Architectural Design

• Architectural Patterns
• Product Models
• Open Source Models

Problem
Domain

Solution
Domain

Architecture/
Design

SOFTGOALGOAL

TASK

Means To
Achieve

FEATURE

PACKAGE / CLASSES

supports

implements

4

 Intentional Modeling is in charge of considering the problem domain in

order to determine what the domain goals are. With this aim, the Goal

Model uses two kinds of elements: (hard)goals that are states that the

stakeholders want the system to achieve, and whose satisfaction can be

clearly determinate; and, softgoals that are used to specify NFR and whose

satisfaction cannot be clearly determinate so that it is only possible to state

that they are enough or partially satisfied [4]. Hardgoals represent hard

restrictions in client requirements, meanwhile softgoals can be achieved in

several degrees and decide between different possible solutions for the

selected goals as show in [7]. The use of softgoals is very useful to model

and analyze NFRs since this type of requirement is fuzzy by nature. Goals

and softgoals can be decomposed in sub-goals until tasks, that is, means to

achieve them, are specified. In GORE, alternative goals and tasks are

analyzed to determine the optimal ones to be implemented in the system-to-

be. In PLSE, all the goals and tasks should be taken into account in order to

explore the different alternatives. This allows one to scope properly the PL,

determining what tasks should be supported by the products of the PL, and

to gather domain concepts by studying the goal descriptions. In addition, a

wider scope also implies more constraints on scalability; therefore our

proposal also aims to improve scalability of Goal Models. Section 0

describes the I-GANDALF Goal Model.

 Feature Modeling carries out the representation of the solution domain. It

uses as input: the Goal Model specified previously along with information

on domain technology, implementation techniques, and operating

environments. With this aim the Feature Model is specified by determining

the features of the PL. When the Feature Model is specified it must be taken

into account that the high level features must support the tasks identified in

the Goal Model (see Fig. 2), domain concepts relevant to determine points

of variability, and softgoals (NFR) as means to select alternative products

with similar hardgoals but with different qualities. Those high-level features

are refined in more detailed ones, even taking into account implementation

techniques. During this activity, a more complete variability analysis is

performed, determining what features can be at the same time in one

product, which ones require others, or the cardinalities, using cardinalities

in feature decomposition and restrictions. Section 4 describes the I-

GANDALF Feature Model.

 Architectural Design. As features are the basis of PL architecture definition

[2], this activity is oriented to the semi-automatic generation of the

architecture using the features previously specified. This generation is

performed following ideas of MDE so that traceability can be easily

managed. We have presented in [13] how this activity is carried out by

using UML packages as the elements that implements the specified features

(see Fig. 2), and package merge relationship to incrementally add details. In

this sense, packages and merge relationship provide a mechanism to design

5

the features, maintaining the variability information in the Feature Model.

Therefore, goals are related to the architecture, and if the architecture is

linked with the components, even to the code. This is very important to deal

with one key part of PLSE know as Application Engineering, that is, the

derivation of specific products but optimizing them from the client needs

(hardgoals), and desires (softgoals).

In this article, we focus on the Model View of I-GANDALF, that is, on

describing the Goal Model and Feature Model along with guidelines necessary

for their description.

4 Models Supporting I-GANDALF

As was stated above, MDE paradigm has been used to describe the Metamodels

that I-GANDALF entails. One of its cornerstones is the exploitation of Model-

To-Model transformation techniques to generate the Models downstream of the

process development automating a task that could be cumbersome and error

prone. An additional advantage is that as the Models are generated, the

traceability links between the source Model and destination Model are created

automatically as well. These traceability links can be used later to configure the

relation between goals and features, features and architecture, and even between

architecture and code. Therefore we can obtain the configured product from the

needs and desires of the client (goals and softgoals). In the following sections

the Metamodels of I-GANDALF are introduced.

4.1 I-GANDALF Goal Model

Our goal oriented approach is initially based on V-Graph [26], a particular type

of Goal Model as an extension of the NFR Framework [4]. The main problem of

this model is the lack of a complete definition of the different components,

mainly about relationships and their targets/sources. To solve this problem, our

goal model uses the same type of elements, but clarifies the relations by

specifying the Metamodel illustrated in Fig. 3.

Goal, softgoal and task, introduced previously in section 2, are the main

elements of the I-GANDALF Goal Model and are modeled as Metaclasses.

Note the difference between Goal / Task and Softgoal Metaclasses, the formers

have clear-cut and binary values (satisfy or not and isVariantMember or not),

and are grouped in an abstract Metaclass called HardElement. Meanwhile

softgoal has a fuzzy nature with no clear-cut criteria (softsatisfaction). Each one

is described by a type that constitutes its main description, and optionally a

number of topics that give contextual information to the main description. Fig. 3

shows that type and topic are associations from DescribedElement to

DescriptionElement which is inherited by goal, softgoal, task, and aspect. Fig. 4

6

shows some of the identified goals and tasks for e-commerce domain where it

can be appreciated that, for instance, one of the goals is Manage[Order], being

Manage the type and Order the topic.

As Fig. 3 shows, all the goal elements are structured according to the concern

they belong to. With this aim, concern definition must be performed as first step

of the process to find the main goals (hard and soft) that will be the root of the

initial concerns. In the example, Manage[Order] or Secure[Order] are some of

these initial goals. The concerns are defined by these initial goals and their

decomposition into sub-goals, and finally into tasks, as done in traditional Goal

Modeling, but trying to separate as much as possible different concerns. To help

to systematize this separation, a rule is applied to enforce that goals/tasks be

unique to each concern. If the rule can not be enforced, it is then modeled as an

aspect (as will be detailed later on this section) or leads to the creation of a new

concern.

Fig. 3 Metamodel for Goal Models

Regarding relationships, they are grouped in an abstract Metaclass called

GO_Relationship (Fig 4. shows the possible relations used in GANDALF). As

shown in Fig. 3, there are three kinds of GO relationships: Decomposition,

Operationalization and Contribution. Decomposition relationships, that is,

And/Or relationships, are employed to specify the Goal Model hierarchically so

that more abstract goals and softgoals are decomposed into simpler one until

tasks can be identified. When the satisfaction of the Goal Model is analyzed it

must be considered that the root goal is satisfied if every leaf (at least one leaf)

is satisfied when an And(Or) relationship is established among them. Fig. 4

shows how the goal Manage[Order] is decomposed into one goal

Manage[ShoppingChart] and two tasks, Confirmating [Order], Making[Order]

meaning that every one of them must be satisfied to satisfy the root.

GoalModel

+name: String

Concern

1..*
+/root

1

1

+source
1

*

+target 1..**

GO_Relationship

DescriptionElement

+name: String

+type1

*

+topic1..*

*

AspectGO_Element

Pointcut

1..*

Goal

+satisfaction

Task

+isVariantMember

Softgoal

+softSatisfaction

HardElement

+advice
1

+joinpoint

1

Replace Add

Decomposition Contribution

Operationalization

Hierarchy Correlation

DescribedElement
+name: String

+isMandatory: Boolean

+reverse

+forward

+targetpoint

+sourcepoint

+owner+owner
+owner

+owner

7

Fig. 4 A partial view of a I-GANDALF Goal Model for e-commerce. Hardgoals are the

orange shapes, Tasks are green and Softgoals are the blue ones. Diamonds represent

decomposition relationship: filled for And and outlined for Or. Dotted lines are

Contributions.

One of the main differences, regarding the V-Graph, is the introduction of

Contribution relationship (see Fig. 3) unifying correlation and contribution to

simplify the analysis. In PL context, the analysis of the Goal Models focuses on

the selection among alternatives for products without caring if they affect

directly or not, being relevant only the kind and degree. Although it is not

shown in Fig. 3, this relationship is specialized as

Make(++)/Help(+)/Unknown/Hurt(-)/Break(--) in order to denote the

contribution strength. Fig. 4 illustrates an example of this relationship where

tasks Visualizing [ShoppingChart] and Saving [ShoppingChart] are contributing

positively (Help) to achieve the goal Improve [UserExperience].

Another relationship introduced in our Goal Model, taken from the NFR

Framework that does not exist in V-Graph, is Operationalization. It has at the

same time a double nature (see Fig. 3): as decomposition is used to specify a

way to achieve a softgoal; as contribution is employed to specify that a task

helps to or is sufficient to achieve the softgoal it is related with, because of the

not clear-cut satisfaction criteria of the softgoals. Although it has been not

shown in Fig. 3, this relationship is specialized as Strong(++)/Weak(+) to

denote the strength it helps to achieve a determined softgoal. Fig. 4 shows an

example of this relationship where the task Checking [Transaction] is

describing a solution to the goal Secure [Order].

As was stated in section 3, in order to specify PLs, a requirement that any

proposal must satisfy is the ability to deal with large specifications. Although

Goal Models have been defined to manage alternatives for a product, it is

especially relevant when they are used to specify PL because they have also to

manage alternatives between all the products of the PL and relations between

them. This means that scalability is a must of the proposal. With this aim, we

8

have borrowed ideas from Aspect-Oriented Software Development (AOSD),

specifically, the use of aspects to improve the modularity of the specification. In

our proposal, they are employed to improve the Goal Model modularity and,

therefore, their scalability. It is worth noting that this constitutes a difference

with the original use of V-Graph [26], whose aim is to find aspects by means of

the analysis of how tasks contribute to softgoals in a stable Goal Model.

Another difference with [26] is that, since there are several products in a PL,

some products will focus on a set of softgoals, meanwhile others will focus on

another, perhaps hurting them. Therefore, conflicts must be allowed and

maintained in stable PL models.

In our proposal, goals and tasks are specified in different graphs using the

relationships described in Fig. 3 and according the concern they are related to,

as can be observed in Fig. 4. However, using aspects those concerns can be

weaved in order to describe properly the PL. This weaving proceeds by

replacing or adding specific goals or tasks from the source concern on specific

goals or tasks of the target concern. With this aim the Metamodel includes

several concepts: Concern, Aspect, and Pointcut. Goal Models are composed by

Concerns that help to modularize the model by representing the key concepts of

the system. This concept is represented by the root goal of the different trees

that make the Goal Model. Aspects specify the solution that wants to be

achieved which is made up by a set of Pointcuts (see Fig. 3). Every pointcut

specify part of the solution by replacing with (or adding) tasks or goals,

identified by the advice relationship, (to) other goals or tasks identified by

joinpoint relationship (see Fig. 3). Fig. 5 depicts an example of how AOSD

concepts are put into practice, where a task Checking [Transaction], which was

defined in a different tree (see Fig. 4), is added to tasks Making [Order] and

Confirmating [Order]. In the example, Securing [Transaction] is the aspect that

helps to weave the involved concerns describing the solution.

Fig. 5 An example of aspectual relationship

Using this approach, we understand that it is easier to define separated

concerns, to add or remove Goal Models or even to define them separately,

improving scalability and therefore making Goal Modeling more suitable for PL

9

analysis. Also, it improves V-Graph since it provides a better separation of

concepts defining concerns, but facilitating the relation between functional and

non-functional requirements with aspects.

4.2 I-GANDALF Feature Model

In Goal Models, variability is analyzed, but it is not done in detail, leaving out

concepts such as cardinality or restrictions as important as mutual exclusive or

requires [9]. Goal Models focus on modeling client needs and desires and ways

to achieve them. However, Feature Model have proved being both a suitable

technique to specify the variability of the PL, and an appropriate initial step to

develop the PL architecture. In addition, Feature Models specification

determines a transition to the solution domain from the problem domain

described by the Goal Models, because the analysis of features that the PL must

support is carried out in terms of the tasks defined in the Goal Model. For these

reasons, a Feature Model has been included in the description of I-GANDALF,

facilitating both a deeper analysis of the variability of the PL and the generation

of the software architecture during the activity Architectural Design of I-

GANDALF (see section 0).

Fig. 6 shows the Metamodel for Feature Models that is based on Czarneski et

al [5], but simpler. Features are the main elements that made up Feature

Models, and the I-GANDALF Feature Model in particular. Originally, a feature

was defined as “a prominent and distinctive user-visible characteristic of a

system” [16]. Therefore, according to this definition features can be a tool for

user interaction or product configuration. However, features are widely used to

design PL architecture, so that the most accepted definition includes not only

users nowadays, but stakeholders as well, what includes software architects or

designers (amongst others). In this work, an architectural-oriented view is

applied, since the next activity of I-GANDALF, Architectural Design, takes as

input the Feature Model to generate an initial version of the architecture; the

user-oriented view is offered by the Goal Model.

Fig. 6 Metamodel for Feature Modeling using a cardinality approach

FeatureModel

+name: String

Feature

+name: String

+root
1

0..1

FeatureDecomposition

+cardinalityMin: Int
+cardinalityMax: Int

+parent1

+child 1..*

Constraint

+source

1
+target

1 MutuallyExclusiveRequire

+isDecomposedBy

+decompose
* 0..1

+owner+owner

+owner reverse

forward

10

Fig. 6 depicts the identified relationships in the I-GANDALF Feature Model

as well. As can be observed a Feature Model is built by a progressive

refinement, by decomposing more abstract and complex features until simpler

one can be defined. With this aim, the FeatureDecomposition relationship has

been defined so that a feature (parent) can be decomposed into one or several

(children) features. The Metamodel makes no restriction among Root, Solitary

or Grouped Features as done in [5], but they are implemented using this

relationship. Therefore, an n-ary relationship is used instead of using different

types of features, so that Metaclasses are employed for defining models,

elements and relationships, what help in transformations between models. In

addition, references are not necessary to specify that a feature can have several

parents.

FeatureDecomposition relationship is highly relevant because it helps us to

denote variability points in the specification of the PL by using two attributes,

cardinalityMin and cardinalityMax, as they help us to specify what child

features are mandatory/optional/alternative. Let n be the number of child

features for a FeatureDecomposition relationship:

 Child features will be mandatory whenever cardinalityMin and

cardinalityMax are set to n, what means that all of them must be supported by

all the products of the PL. Fig. 7 shows (by filled rectangles) that confirmate,

make and ShoppingCart are mandatory features for e-commerce domain.

 Child features will be optional whenever cardinalityMin < cardinalityMax ≤

n, determining that depending on the product the features that must be

present in the PL will be variable. Fig. 7 shows (by grey rectangles) that

Manage Item, Visualize and Save are alternative features for e-commerce

domain.

 Child features will be alternative whenever cardinalityMin =

cardinalityMax=1, determining that only one of the child features can be

simultaneously when concrete products of the PL are being specified.

FeatureDecomposition is an abstract relationship that has been specialized as

Grouped or Singled in order to specify when cardinality applies to a group of

features or to several instances of the same feature. This differentiation is

important as stated in [5] to avoid redundant representation and the need for

group normalization. It can be observed in Fig 7, that most of the relationships

are grouped decomposition (shown by rectangles), being only the

decomposition of transition a singled one.

Another important part of Feature Models are the relationships used to

specify constraints between elements as they are key to analyze properly the PL

[9]. In the Metamodel two kinds of constraints can be defined:

MutuallyExclusive is defined among two features if they cannot be

simultaneously in a product; and Require is specified among two features if one

needs the other to be present in case it is selected when configuring a product. It

can be observed in Fig. 7 that this relationship has been established from

Confirmate and Make to Check in order to achieve secure transactions.

11

Fig. 7. Partial view of the Feature Model generated from Fig. 4

4.3 Mapping Goal Model and Feature Models

One of the key characteristics of any proposal called MDE is the ability to deal

with traceability from the requirements models till the architecture and code.

This is due to the fact that traceability assists to reconcile the changes in user’s

models with the software, decrease costs of acquiring critical knowledge, assess

consequences and impact of a change, etc. Taking into account these ideas, the

Metamodel described in Fig. 8 was defined. As can be observed, a new kind of

relationship called Support has been included that links tasks and features. This

relationship is employed to describe what features of the Feature Model are

required to perform what tasks of the Goal Model. Therefore, the analysis of the

Feature Model will proceed by determining that every task in the Goal Model

has at least one feature in the Feature Model in order to be supported by the

products of the PL.

It can be observed also in Fig. 8 that a relationship called Contribution has

been introduced to describe the relation between features and softgoals. This

relationship improves the analysis process of the Feature Model, because NFR

can be considered defining what features will have better behavior in terms of

NFR, and at configuration time be selected for its inclusion in the products of

the PL. In addition, it also facilitates the configuration of these products taking

into account to what extent these features contribute to the satisfaction of the

softgoals. It must be highlighted that as I-GANDALF is a MDE proposal, it can

make good use of Model-to-Model transformation languages, specifically QVT

[18], to not only generate that traceability relationships but also the features in

the Feature Model.

12

Fig. 8 Mapping relationships between Goal Metamodel and Feature Metamodel

One of the key points is how to carry out the transition from the Goal Model

till the Feature Model, that is, how these traceability relationships can be

determinate. In this sense some guidelines have been defined to guide the

analyst in such a task that use feature taxonomies as starting point, specifically,

that presented by Kang et al. [12]. They classify features in four layers:

1. The capabilities, from the user perspective, of the application in a specific

domain. They are characteristics visible by the user that can be identified as

services, operations, or non-functional characteristics. This kind of features is

directly related to tasks of the Goal Models, since services and operations

(product capabilities) need a task as a means to achieve a goal. Services, as

high level features, are concerned with complex tasks, and in a similar way,

operations as parts of these complex tasks. However, features are not

powerful enough to deal with most of the non-functional requirements

because features are not able to describe different degrees of quality for

different products. In our approach, contributions are modeled in Goal

Models, but also in Feature Models, what can be used to analyze how

different features affect to the NFR. Also, softgoal decomposition in Goal

Models provides task to improve them, that is, operationalizations that will

be reflected in the Feature Model.

2. The technology of the application domain. This is based on the made

decisions about requirements, including laws, standardization, and business

rules. This kind of features is specific to the domain, including high level

features, so that they can be linked to tasks to be done, but also to low-level

solutions that focus on solving high-level ones. Therefore they are more

related to architecture than to the user goals. As I-GANDALF starts by

defining goals it provides the high-level features view that will be

decomposed later in the low-level ones. We separate goals and features, more

related to user and architecture respectively avoiding to complicate the user

view with architectural details.

3. The operating environments (hardware and software platforms), in which

applications are going to be used and operated, and the implementation

techniques (algorithms and data structures) layers. This two kind of features,

focus on solution domain, describing, for instance, what kind of operating

FeatureOriented::Feature

+name: String

GoalOriented::Task

+isVariantMember

Support

0..*1

1
0..*

GoalOriented::Softgoal

+softSatisfaction

+contribute0..*
1

+target

1 0..*

+source

+support

+target

+source

Affect

+affect

+support

TraceabilityModel

+name: String

13

environment supports high-level features, or even what implementation

techniques can be used to support them. There is not direct relationship

between these kinds of features and goals but it is only evaluated to what

extent the features affect the NFR.

It is worth noting that these high-level features, which have traceability

relationships with tasks of the Goal Model, are refined into sub-features

according to low level domain technologies, implementation techniques or

operating systems. This is highly relevant as these sub-features bridge the gap

between the Feature Model and the later description of the architecture, that is,

the Architectural Design activity of I-GANDALF. How this process is

performed has been already presented in [13].

5 M2M transformation: generating the feature model

As I-Gandalf has been defined as MDD proposal, one of the advantages is that

Model-To-Model transformations (M2M) can be used to generate new models

from existing ones, as well as to check the consistency between them. With this

aim, a M2M transformation has been defined (see Appendix A for a whole

description) using QVT (Query-View-Transformation) a proposal of the OMG

(Object Management Group). This transformation allows us to generate a first

draft of the feature model from the goal model, having an improved definition.

In addition, one of the advantages of using of QVT is that a trace class is

automatically generated for each relation, facilitating that the traceability

between the elements of the candidate models can be easily maintained.

In QVT, a transformation is described by means of a set of relations that

establish how the matching between several candidate models is carried out. A

candidate model is any model that conforms to one of the metamodels identified

when the transformation is specified. In Fig 9 is shown the starting part of

transformations definition. As can be seen, the transformation goalToFeature

identifies three involved metamodels: IGGoal, IGFeature and IGTraceability,

where IG means I-GANDALF. Each one is typing one domain of the

transformation, that is, iggoal, igfeature, and igtraceability.
transformation goalToFeature (iggoal:IGGoal,

igfeature:IGFeature, igtraceability:IGTraceability)

{

key IGFeature::FeatureModel {name};

key IGFeature::Feature{name};

key IGFeature::FeatureDecomposition {parent, child};

key IGFeature::Constraint{source, target};

key IGTraceability::Affect{source, target};

key IGTraceability::Support{source, target};

Fig. 9 Initial part of transformation goalToFeature

14

Every relation is defined by two or more of these domains. For instance, the

relation GoalModelToFeatureModel (look at Appendix for the complete

definition) is defined by three domains: iggoal, igfeature, and igtraceability.

Each domain describes a pattern that the elements of the candidate models must

match by creating, modifying or deleting them in order to satisfy the relation. In

addition, each relation can have the conditional clause when and where. The

former identifies what conditions must be satisfied in order to hold the relation.

The latter specifies what conditions must satisfy the elements of the candidate

models participating in the relation. In addition, every relation is described as

either a top-relation (by using the keyword top before its name) or non-top

relation. Every top-relation must be hold when a transformation is executed,

whereas non-top relations can be hold or not depending if they are invoked or

not from the where clause of another relation.

Second type of elements in Fig 9 are the keys, that set what attributes identify

the elements (Metaclasses). These keys are usually defined for the elements in

the domains where the elements will be created or modified. In our

transformation, the keys for FeatureModel, Feature, FeatureDecomposition and

Constraint are defined for IGFeature domain, and for Affect and Support in

IGTraceability.

 The main element in the transformation is the GoalElement. As explained

above in section 2, Features should support Tasks in Goal Models, but taking

into account the variability described in the Goal Model. Variability can be

specified in Tasks (by means of Or decomposition), but also in Goals and

Softgoals (by using Or decomposition and Operationalization). Also, the

Concerns (that represent concepts of interest in the system and are decomposed

independently) can be mandatory or not. Finally, the Aspects, what relate

elements from different Concerns are inherently optional.

When defining a model transformation, two are the main approaches to

describe them according to the core element: to use elements or to use

relationships being the latter the easier approach. Since features are focused in

variability, to improve scalability, our policy is to group as much GoalElements

as possible in Features. Therefore, rules description should start from

GoalElements viewpoint because there is not a 1-1 relationship and an easy way

to generate features from relationships. Considering this issue we have defined

the following four groups of rules

 Initial rules. They are 3 rules, the first two start the transformation and the

third one groups the rules to apply on each GoalElement. These rules are

shown in Fig. 10:

top relation GoalModelToFeatureModel

// Maps Goal to Feature models, and creates root feature

{

tmn, gmn: String;

 checkonly domain iggoal gm:GoalModel {name=gmn};

15

 enforce domain igfeature fm:FeatureModel { name=gmn,

 root=f:Feature { name=gmn, owner=fm}};

 enforce domain igtraceability tm:TraceabilityModel{name=tmn};

 where {tmn=’Traceability Model of ’ + gmn}

}

top relation ConcernToServiceFeature

// Maps Concerns to main or service features

{

 cn: String;

 minCardinality: Integer;

 checkonly domain iggoal c:Concern {owner=gm:GoalModel {},

name=cn, root=rge:HardElement {} };

 enforce domain igfeature cf:Feature

 {owner=fm:FeatureModel {root=rf:Feature}, name =

cn,

 decompose=fd:FeatureDecomposition { owner=fm,

 target=rf,

 cardinalityMin=minCardinality,

 cardinalityMax=1} };

 enforce domain igtraceability tm:TraceabilityModel{};

 when {

 GoalModelToFeatureModel (gm, fm, tm);

 }

 where {

 minCardinality = if (c.isMandatory) then 1 else 0;

 GoalRelationshipsToFeatureRelationships (rge, cf, tm);

 }

}

relation GoalRelationshipsToFeatureRelationships

// Intermediate relation to group following ones

{

 checkonly domain iggoal ge:GoalElement {};

 enforce domain igfeature f:Feature {}

 enforce domain igtraceability tm:TraceabilityModel{};

 where {

 ORDecompositionToFeatureDecomposition(ge, f, tm);

 ANDDecomposition(ge, f, tm);

 OperationalizationToFeatureDecomposition(ge, f, tm);

 TaskToTraceability(ge, f, tm);

 CorrelationToTraceability(ge, f, tm);

 AdviceToRequireTarget(ge, f, tm);

 }

}

Fig. 10 Initial relations for goalToFeature transformation

 GoalModelToFeatureModel: Creates a new FeatureModel and

TraceabilityModel from the GoalModel. It is a starting rule, and

therefore a top relation. It also creates the root feature of the

16

FeatureModel that represents the complete Product Line. Root feature

will group the set of trees in GoalModel that represents different

Concerns. The names of the models, and the Root Feature are the same

that the source GoalModel, and the name of the traceability model is

similar to the goal model. Note that this must be done with an

intermediate variable (defined in the starting part of the relation

definition).

 ConcernToService: in I-Gandalf, concerns are mapped to higher level

features (Services in feature classification), that is, children of the Root

Feature. Here, we create as new Features and FeatureDecompositions as

Concerns. The cardinality of the FeatureDecompositions will be 1..1

provided Concern is mandatory, or 0..1 otherwise. These

FeatureDecompositions relate the root feature (source) to the new

features. This relation is top, but only is executed when a

GoalModelToFeatureModel has been executed, and invokes

GoalRelationshipToFeatureRelationship to perform the mapping for each

Concern.

 GoalRelationshipsToFeatureRelationships: this rule relates

GoalElements to Features and allows taking into account the different

relationships that have as target or source the GoalElement. This relation

will go through all the GoalElements of the candidate GoalModel since

each GoalElement decompose a Concern, but features will only be

created in some cases. Therefore the relation can have several

GoalElements for the same Feature (but not vice versa).

• Hierarchy rules. These rules go through the Concern decomposition and

creates Features only if there is variability, that is, the Hierarchy is an OR

Decomposition or it is an Operationalization. Note that each Hierarchy

requires two rules, one to create FeatureDecomposition and another to deal

with children elements (create features in OR, do nothing in AND, and

create feature and Affect traceability relationship in Operationalization).

This separation also allows dealing with Aspect as will be seen later. .

Hierarchy rules are shown in Fig. 10.

relation ORDecompositionToFeatureDecomposition

// OR Decomposition -> Create new Feature Decomposition, and

// (in ORDecomposedToFeature) new Features

{

 or_rel: IGGoal::OR;

 maxCardinality: Integer;

 checkonly domain iggoal ge:GoalElement {

 reverse=or_rel:OR {}

 };

 enforce domain igfeature f:Feature {

 owner=fm:FeatureModel {},

 isDecomposedBy=fd:FeatureDecomposition {

 owner=fm,

 cardinalityMin=1,

17

 cardinalityMax=maxCardinality}

 };

 enforce domain igtraceability tm:TraceabilityModel{};

 where {

 maxCardinality = or_rel.target->size();

 ORDecomposedToFeature (or_rel, fd);

 DecomposedWithAddJoinPointToFeature (or_rel, fd);

 DecomposedWithReplaceJoinPointToFeature (or_rel, fd);

 }

}

relation ORDecomposedToFeature

// Creates Features for each OR target

{

 featureName: String;

 tge:IGGoal::GoalElement;

 chf:IGFeature::Feature;

 checkonly domain iggoal or_rel:OR {

 target=target->including(tge)

 }{tge.joinpoint->isEmpty()};

 enforce domain igfeature fd:FeatureDecomposition {

 owner=fm:FeatureModel{},

 child=child->including(chf)};

 enforce domain igtraceability tm:TraceabilityModel{};

 where {

 chf:Feature{owner=fm, name=featureName};

 featureName = DescriptionToFeatureName(tge.type, tge.topic);

 GoalRelationshipsToFeatureRelationships(tge, chf);

 }

}

relation ANDDecomposition

// Integrates the GoalElement with ancestor following in

// decomposition, but without creating new Features, grouping them

// in upper feature (excepting if some And target is the target of

// a joinpoint, where the And target will be created

{

 checkonly domain iggoal ge:GoalElement {

 reverse=and_rel:AND {}

 };

 enforce domain igfeature f:Feature {};

 enforce domain igtraceability tm:TraceabilityModel{};

 where {

 ANDDecomposedToNext (and_rel, f);

 ANDDecomposedWithJoinPointToFeature (and_rel, f);

 }

}

relation ANDDecomposedToNext

// Goes to next GoalElement to analyze if no joinpoints

{

 tge:IGGoal:GoalElement;

18

 checkonly domain iggoal and_rel:AND {

 target=target->including(tge:GoalElement {})

 } {tge.joinpoint->isEmpty()};

 enforce domain igfeature f:Feature {};

 enforce domain igtraceability tm:TraceabilityModel{};

 where {

 GoalRelationshipsToFeatureRelationships(tge, f);

 }

}

relation OperationalizationToFeatureDecomposition

// Maps Operationalizations to Feature Decomposition,

// creating new Feature, and traceability (contribution)

{

 featureName: String;

 sgt:IGGoal::Softgoal;

 tf:IGFeature::Feature;

 fd:IGFeature::FeatureDecomposition;

 checkonly domain iggoal sg:Softgoal {

 reverse=op:Operationalization {}

 };

 enforce domain igfeature f:Feature {

 owner=fm:FeatureModel{},

 isDecomposedBy=isDecomposedBy->(fd:FeatureDecomposition{

 cardinalityMin=0,

 cardinalityMax=1

 })

 };

 enforce domain igtraceability tm:TraceabilityModel{};

 where {

 OperationalizationToFeature(op, fd);

 DecomposedWithAddJoinPointToFeature (or_rel, fd);

 DecomposedWithReplaceJoinPointToFeature (or_rel, fd);

 }

}

relation OperationalizationTaskToFeature

// Maps Operationalizations to Feature Decomposition,

// creating new Feature, and traceability (contribution)

{

 featureName: String;

 checkonly domain iggoal op:Operationalization {

 source=sgt:Softgoal{},

 target=tt:Task{}

 } {tt.joinpoint->isEmpty()};

 enforce domain igfeature fd:FeatureDecomposition {

 owner=fm:FeatureModel{},

 target=tf:Feature {name=featureName,

 owner=fm

 }

 };

 enforce domain igtraceability tm:TraceabilityModel{};

19

 where {

 featureName = DescriptionToFeatureName(tt.type, tt.topic);

 GoalRelationshipsToFeatureRelationships(tt, tf);

 }

}

Fig. 10 Hierarchy relations for goalToFeature transformation

 ORDecompositionToFeatureDecomposition: creates a new

FeatureDecompostion with cardinality 1 to number of GoalElements

decomposing the initial GoalElement. To calculate this number we use

size() function.

 ORDecomposedToFeature: creates, for each decomposed GoalElement,

a new Feature related to the FeatureDecomposition created in previous

relation. Finally, it goes to GoalRelationshipsToFeatureRelationships

with the decomposed GoalElement, and the new Feature.

 ANDDecomposition: this rule deals with AND decomposition where, as

it does not create new variability, no new feature is created. In this

relation just go through the Decomposition to execute

ANDDecomposedToNext

 ANDDecomposedToNext: as said before, in AND Decomposition there is

no creation of Features / FeatureDecomposition, so this relation only go

to GoalRelationshipsToFeatureRelationships with the decomposed

GoalElement and the previous Feature. In this way, AND decomposed

GoalElements are integrated in previous features. Traceability

relationships will be created later in TaskToTraceability relation.

 OperationalizationToFeatureDecomposition: Operationalization also

provides some variability, since as they solve a Softgoal in certain degree

and Softgoal fuzzy nature, they can appear or not. Main differences

respecting ORDecomposition is that it is a 1-1 relationship (one Softgoal

to one Task), that they are optional (can appear or not) and that an Affect

traceability must be created. In this relationship, the

FeatureDecomposition is created with cardinality 0..1, and following rule

is executed.

 OperationalizationTaskToFeature: here, a new Feature is created with

the name generated from the Operationalizated Task, and the process

follows by going back to the rule

GoalRelationshipsToFeatureRelationships. Note that the traceability

relationship Affect will be created later in CorrelationToTraceability.

Note that we do not talk about the other rules on the where clausule of the

first relations that deals with each relationship type. Thos rules are used to

deal with Aspects. Also, second relations has a constraint in iggoal domain,

this contraint is used to limit the execution only when the target GoalElement

is not the target of a Joinpoint. This will also explaned in Aspect rules.

20

• Traceability. These rules deal with the creation of traceability

relationships. They are very simple, but to fulfill with QVT specification, it

is necessary to define intermediate variables for the elements to relate. Note

that these rules are executed in GoalRelationshipsToFeatureRelationships,

that is executed each time that either GoalElement or Feature to be analyzed

change. . Relations are shown in Fig. 11.

relation TaskToTraceability

// Creates traceability relationships between Feature and Tasks

{

 tt:IGGoal::Task;

 sf:IGFeature::Feature ;

 checkonly domain iggoal t:Task { };

 checkonly domain igfeature f:Feature { };

 enforce domain igtraceability s:Support {target=tt,

 source=sf};

 where {

 tt=t;

 sf=f;

 }

}

relation CorrelationToTraceability

// Creates affect traceability links between features and softgoals

// using the GoalElement correlations (Contributions and

// Correlations)

{

 tsg:IGGoal::Softgoal;

 sf:IGFeature::Feature;

 checkonly domain iggoal ge:GoalElement {

 reverse=reverse->including(c:Correlation {

 target=sg:Softgoal})

 };

 checkonly domain igfeature f:Feature {};

 enforce domain igtraceability c:Affect { target=tsg; source=sf };

 where {

 tsg=sg;

 sf=f;

 }

}

Fig. 11 Traceability relations for goalToFeature transformation

 TaskToTraceability: this relation creates a new Support relationship

between a Feature and a Task. Note that since the same Feature can

group several Task, Support relationship will be created for each Task.

 CorrelationToTraceability: here, we create the Affect relationship

between a Feature that deal with a GoalElement that has a Correlation

(Contribution or Operationalization) with a Softgoal.

21

• Aspect rules. These rules are the most complex ones. In our approach,

Aspect relates HardElements in different concerns by adding (with Pointcut

type Add) an Advice to a Joinpoint (both HardElements), or by replacing

(with Pointcut type Replace) the Joinpoint with the Advice. Aspects are

considered by default as optional, therefore they create new variability

since Features must to consider when the Aspect is applied or when it is

not. Also, since feature models are trees, these adding or replacing cannot

be done by adding or replacing the feature related to the Advice because

that feature will have several parents. To solve this problem, we create a

new Feature with a Require constraint to the Advice Feature. Therefore

always this new feature is selected, the advice also will selected. Fig. 12

shows these relations. More details are given for each rule.

relation DecomposedWithReplaceJoinPointToFeature

// Creates Features for each Decomposition target that is target of

// a Replace Pointcut

{

 featureName, aspectualFeatureName, abstractFeatureName: String;

 maxCardinality: Integer;

 sf, af: IGFeature::Feature;

 checkonly domain iggoal dec:Decomposition {

 target=tge:GoalElement {

 joinpoint=p:Replace {

 advice=sge:GoalElement{}

 }

 }{tge.oclIsTypeOf(HardElement) and

 tge.joinpoint->notEmpty()};

 enforce domain igfeature fd:FeatureDecomposition {

 owner=fm:FeatureModel{},

 child=chf:Feature{owner=fm,

 name=abstractFeatureName,

 source=nfd:FeatureDecomposition {owner=fm,

 cardinalityMin=1,

 cardinalityMax=1,

 target=target->including(sf)->including(af)

 }

 };

 enforce domain igtraceability tm:TraceabilityModel{};

 where {

 featureName = DescriptionToFeatureName(tge.type, tge.topic);

 aspectualFeatureName = DescriptionToFeatureName(tge.type,

 tge.topic) + '-' + DescriptionToFeatureName(a.type, a.topic);

 abstractFeatureName = DescriptionToFeatureName(tge.type,

 tge.topic) + '_aspectual';

 adviceName=DescriptionToFeatureName(sge.type, sge.topic);

 sf= sff:Feature {owner=fm, name=featureName };

 af=aff:Feature {owner=fm, name=aspectualFeatureName,

 reverse=r:Require{

 target=tarF:Feature{owner=fm,

 name=adviceName

 }

22

 }

 };

 GoalRelationshipsToFeatureRelationships(tge, sf);

 //Continue descompostion from sf (corresponding feature to tge)

 }

}

relation DecomposedWithAddJoinPointToFeature

// Creates Features for each Decompositon target that is target of

// an Add Pointcut

{

 featureName, aspectualFeatureName, adviceName: String;

 chf:IGFeature::Feature;

 checkonly domain iggoal dec:Decomposition {

 target=tge:GoalElement {

 joinpoint=p:Pointcut {

 advice=sge:GoalElement{}

 }

 }{tge.oclIsTypeOf(HardElement) and

 tge.joinpoint->notEmpty() and

 p.oclIsTypeOf(Add)};

 enforce domain igfeature fd:FeatureDecomposition {

 owner=fm:FeatureModel{},

 child=chf:Feature{owner=fm,

 name=featureName,

 source=nfd:FeatureDecomposition {

 owner=fm,

 cardinalityMin=0,

 cardinalityMax=1,

 target=sf:Feature {

 owner=fm,

 name=aspectualFeatureName,

 reverse=r:Require{

 target=tarF:Feature{

 owner=fm,

 name=adviceName

 }

 }

 },

 }

 };

 enforce domain igtraceability tm:TraceabilityModel{};

 where {

 featureName = DescriptionToFeatureName(tge.type, tge.topic);

 aspectualFeatureName =

 DescriptionToFeatureName(tge.type, tge.topic) + '-' +

 DescriptionToFeatureName(a.type, a.topic);

 adviceName=DescriptionToFeatureName(sge.type, sge.topic);

 //Continue decompostion from chf (corresponding feature to tge)

 GoalRelationshipsToFeatureRelationships(tge, chf);

 }

}

23

relation AdviceToRequireTarget

// Creates advice part of a Pointcut To Require Constraint

{

 p:IGGoal::Poinctcut;

 checkonly domain iggoal hg:GoalElement {

 targetpoint=pc:Pointcut{

 jointpoint=sge:GoalElement{}

 }

 } {hg.oclIsTypeOf(HardElement) and

 hg.advice->size()>0 };

 enforce domain igfeature fd:FeatureDecomposition {

 owner=fm:FeatureModel{},

 child=chf:Feature{owner=fm,

 name=adviceName,

 reverse=r:Require{

 target=tf:Feature{

 name=jointpointname

 }

 }

 }

 };

 enforce domain igtraceability tm:TraceabilityModel{};

 where{

 adviceName=DescriptionToFeatureName(hg.type, hg.topic);

 jointpointname=DescriptionToFeatureName(tf.type, tf.topic);

 }

}

relation ANDDecomposedWithJoinPointToFeature

// Creates a new FeatureDecomposition for each AND target that is

// target of a Pointcut and goes to

// DecomposedWithAddJoinPointToFeature

{

 featureName, aspectualFeatureName: String;

 tge:IGGoal:GoalElement;

 fd:IGFeature::FeatureDecomposition;

 checkonly domain iggoal and_rel:AND {

 target=target->including(tge:GoalElement {

 joinpoint=p:Pointcut {

 owner= a:Aspect})

 } {tge.oclIsTypeOf(HardElement) and

 tge.joinpoint->notEmpty()};

 enforce domain igfeature f:Feature {

 isDecomposed=isDecomposed->including (fd)

 };

 enforce domain igtraceability tm:TraceabilityModel{};

 where {

 DecomposedWithAddJoinPointToFeature (and_rel, fd);

 DecomposedWithReplaceJoinPointToFeature (and_rel, fd);

 }

}

Fig. 12 Aspect relations for goalToFeature transformation

24

 DecomposedWithAddJoinpointToFeature: this relation is executed when

a decomposed Feature is going to be created, but it is target of an Add.

Since we have not created the decomposed Feature, it is created, but also

a new Feature (sf) and a FeatureDecomposition to relate them. Since sf is

optional, the cardinality is 0..1. Finally, a Require relationship is defined

with sf feature as source.

 DecomposedWithReplaceJoinpointToFeature: this relation is a bit more

complex. In this case, we must allow choosing between the decomposed

Feature, and the new Feature. So, we need to create another Feature to

represent this new variability point. Relation creates that new Feature

(chf) that links with the previous FeatureDecomposition. Also, a new

FeatureDecomposition is created (nfd) with cardinality 1..1 (alternative)

that links with the decomposed Feature (sf) and a new Feature (af) that is

the source of a new Require.

 AdviceToRequireTarget: this relation create the relationship between the

Require created because of the Joinpoint and the Advice. The advice is

also created if not previously done. To do this, when the

FeatureDecomposition is analyzed, it is checked if it is target of a Advice

relationship, and then the reverse relation (inverse to Require.target as

shown in Fig.4) to Require created.

 ANDDecomposedWithJoinPointToFeature: first rules are used when the

decomposed Feature is going to be created, but in AND Decomposition,

a priori, the Feature is not created. This rule is an intermediate step that

creates a FeatureDecomposition with cardinality 1..1 (mandatory since it

has just one target). Once this step is done, previous rules can be

performed.

Last element is a Query (DescriptionToFeatureName), that allows us to

generate Feature names from the GoalElement type and topics. This simple

version just concatenates Type and the set of Topics, but could be adapted for

each domain.

6 MORPHEUS: Tool Support

In order to deal with the complexity brought by the I-GANDALF modelling,

automation is a must. With this aim MORPHEUS2 was selected to provide

support to the early stages of I-GANDALF process.

MORPHEUS is structured in three different environments. Specifically, the

Requirement Environment [19] was used for our proposal. It provides analysts

with a requirements metamodelling work context, shown in Fig. 9, for

2Interested readers can download some demos of MORPHEUS from

http://www.dsi.uclm.es/personal/elenanavarro/research_atrium.htm.

http://www.dsi.uclm.es/personal/elenanavarro/research_atrium.htm

25

describing metamodels customized according to the project’s semantic needs.

This environment automatically provides another work context for the

description and analysis of Requirement Models according to the active

metamodel. Fig. 7 shows what MORPHEUS looks like whenever this context is

active. It can be observed that it has a browser that allows the user navigates

throughout the active model, and some stencils on the right that makes available

the active metamodel for modelling purposes, so that the model is defined only

by dragging and dropping the necessary metaelements on the drawing surface.

Fig. XXX MORPHEUS Metamodelling context

MORPHEUS is able to execute QVT transformations by using external

engines. For this work, we use Medini QVT3 that uses the Eclipse framework4 to

implement QVT Relations over e-core models, but also can be integrated in

other applications. E-core models are a UML subset defined in Eclipse.

MORPHEUS generates these e-core models for each meta-model. Therefore,

integration is easy.

In addition, to the metamodelling and modelling facilities, MORPHEUS was

used because of it has a powerful analysis module that can be customized

according to the active metamodel and the specific needs [19].

7 Related Work

There are several proposals that link Goal Models with aspects ideas, but they

are intended to find aspects in early stages instead of improving modularity as is

3 http://projects.ikv.de/qvt
4 http://www.eclipse.org/

http://projects.ikv.de/qvt
http://www.eclipse.org/

26

presented in this work. In [26] authors define V-Graph model for the description

of intentional nodes, goals and softgoals, and operational ones, tasks. This

proposal describes a “manual” process to systematically guide the analyst in the

refinement of the Goal Model but having as main aim the early detection of

aspects and not its exploitation to improve the modularity.

An extension of V-Graph is presented in [17] where the language Q7 is

defined using a BNF grammar. Although BNF grammars have the advantage of

being easily parseable, their understandability is quite limited. In this sense, the

MDE approach, as it is used in this work, makes the relationships more explicit

by using a Meta-model.

Silva developed in [23] an interesting proposal to add aspectual concepts and

composition mechanism to V-Graph. Although it is very powerful, it adds too

much complexity during the early modeling of the domain. This complexity

results in problems to graphically display the models as only the existing

crosscutting is represented, hiding how the aspectual relationship is.

Yu et al. [25] propose a technique to perform a smooth transition from Goal

Models to design view (Feature Models, state-charts or even architectural

ADLs). Specifically, the transition from goal to features is performed by

annotations that set if a goal is non-system or if an OR-decomposition

relationship is exclusive. By analyzing the combinations of annotations and

traditional relationships, they determine mappings to feature relationships,

meanwhile goals are directly mapped to features (except non-system ones). We

understand that this transformation leaves out the differentiated characteristics

of features and cardinalities, which usually depends more on feature nature than

on the goal/task it supports.

Another work that relates features to goals, specifically softgoals, is [11],

where the authors extend FODA with NFR Framework [4] concepts. They use

SIG (Softgoal Interdependency Graph) using features as functional elements,

and apply the satisfaction propagation algorithm to study how NFRs are

affected. Note that this is also supported by our approach since features can

contribute to softgoals, but based on V-Graph, using more recent research in

satisfaction propagation ([6],[7]), and exploiting a deeper integration of goal-

oriented ideas.

8 Conclusions and ongoing work

We have presented in this work a process called I-GANDALF to perform the

transition from goal models to feature models and architecture. This process has

been defined by following the ideas of MDE, establishing clearly the different

models involved in each stage of the process along with their traceability links.

The explicit modeling of these models improves understanding of previous

results.

27

We also exploit one of the main advantages of MDE, that is, transformation

model-to-model, providing the definition of the transformation in QVT. Using

QVT, we get a initial Feature Model form the Goal Model, with the advantage

that traceability links are automatically generated enhancing the quality of the

final specification.

Another advantage of the proposal is that a clear separation is established

between two different viewpoints: client-oriented view provided by the goal

model that can be used to configure specific products; and, architecture-oriented

view, that is provided by the feature model.

Other advantage is related to the description of V-Graph elements using types

and topics that helps to identify domain concepts, limiting ambiguity of the

specification, and even using more generic concepts. In addition, these

characteristics assist in finding features, so it is important to analyze what types

and topics are the best for each element.

Also, it must be pointed out how the introduction of AOSD ideas in the

proposal helps to modularize goal models. Aspect relationships are added to the

model as solutions from one concern to another so that they can be specified in a

separated way simplifying their comprehension and specification. QVT

transformation solves the step between aspectual goal models to non-aspectual

feature models.

The different metamodels have been implemented with MORPHEUS giving

support to the proposal as seen in Fig. 6. Currently, we are working to

implement the transformation rules in the tool, using its analysis module. With

the tool completed, next step is to conduct a complete Case Study.

Finally, we intend to integrate the tools already developed for the second

stage (from features to architecture) with Morpheus, and therefore to take full

advantage of the MDE approach.

Acknowledgements

This work has been funded by the Spanish Ministry of Education and Science

under the National R&D&I Program, META Project TIN2006-15175-C05-01

and by Junta de Castilla y Leon (VA-018A07 project). Further funding comes

from Research Network ELEPES (TIN2006-27690-E)

References

[1] T. Asikainen, T. Männistöa and T. Soininena, Kumbang: A domain ontology for

modelling variability in software product families, Adv. Eng. Inf. 21(1), 23-40,

(2007).

28

[2] H. de Bruin and H. van Vliet, Quality-driven software architecture composition,

Journal of System and Software, vol. 66(3), 269-284, Elsevier Science, New York

(2003).

[3] J. Castro, M. Kolp and John Mylopoulos, Towards requirements-driven information

systems engineering: the Tropos project, Inf. Syst. 27(6), 365-389, (2003).

[4] L. Chung, B. A. Nixon, E. Yu and J. Mylopoulos, Non-Functional Requirements in

Software Engineering, Kluwer Academic Publishing, (2000).

[5] K. Czarnecki, S. Helsen and U. W. Eisenecker, Staged configuration through

specialization and multilevel configuration of Feature Models, Software Process:

Improvement and Practice 10(2), 2005, pp. 143 – 169.

[6] P. Giorgini, J. Mylopoulos, E. Nicchiarelli and R. Sebastiani, Formal Reasoning

Techniques for Goal Models, Journal of Data Semantics 1, 2003.

[7] B. González-Baixauli, J. C. S. P. Leite, J. Mylopoulos, Visual Variability Analysis

for Goal Models, 12th IEEE Int. Conf. on Requirements Engineering (RE 04), 198-

207 (2004).

[8] J. van Gurp, J. Bosch, and M. Svahnberg, On the notion of variability in software

product lines, 45-54, IEEE/IFIP Conf. on Software Architecture, IEEE Computer

Society, (2001).

[9] G. Halmans, K. Pohl, Communicating the Variability of a Software-Product Family

to Customers. Software and System Modeling vol. 2(1), 15-36 (2003).

[10] A. N.Habermann, D. Notkin, Gandalf: software development environments. IEEE

Trans. Softw. Eng. 12, 1117-1127 (1986).

[11] S. Jarzabek, B. Yang, and S. Yoeun, Addressing quality attributes in domain

analysis for product lines, Software, IEE Proceedings 153(2), 61-73, (2006).

[12] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, A. Spencer Peterson, Feature-

Oriented Domain Analysis (FODA) Feasibility Study, CMU/SEI-90-TR-21, (1990).

[13] M. A. Laguna, B. González-Baixauli, J. M. Marqués: Seamless development of

software product lines, 6th Int. Conf. Generative Prog. and Component Eng., 85-94,

ACM (2007).

[14] A. van Lamsweerde, Goal-Oriented Requirements Enginering: A Roundtrip from

Research to Practice, 12th IEEE Int. Req. Eng. Conf. (RE'04), 4-7, (2004).

[15] S. Lau, Domain Analysis of E-Commerce Systems Using Feature-Based Model

Template, PhD Thesis, University of Waterloo, ECE Department, Canada, 2006.

[16] K. Lee, K. C. Kang and J. Lee, Concepts and Guidelines of Feature Modeling for

Product Line Software Engineering, Software Reuse: Methods, Techniques, and

Tools: Proceedings of the Seventh Reuse Conference (ICSR7), 62—77, Springer,

Berlin, (2002).

[17] J. C. S. P. Leite, Y. Yu, L. Liu, E. S. K. Yu and J. Mylopoulos, Quality-Based

Software Reuse, 17th Int. Conf. on Adv. Inf. Syst. Eng., LNCS vol. 3520, Springer,

Berlin, (2005).

[18] MOF Query/Views/Transformations final adopted specification. OMG document

ptc/05-11-01, (2005).

[19] E. Navarro and P. Letelier and D. Reolid and I. Ramos, Configurable Satisfiability

Propagation for Goal Models using Dynamic Compilation Techniques, Advances in

Information System Development, Springer, Berlin, (2007).

[20] B. Nuseibeh, S. Easterbrook, Requirements Engineering: A Roadmap, The Future of

Software Engineering, 22nd Int. Conf. on Soft. Eng., 37-46, ACM, Washington

(2000).

29

[21] C. Prehofer, Feature-oriented programming: A fresh look at objects, ECOOP'97 —

Object-Oriented Programming, 419-443, Springer, Berlin, (1997).

[22] M. Salifu, B. Nuseibeh, L. Rapanotti T. Than Tun, Using Problem Descriptions to

Represent Variability For Context-Aware Applications, First International

Workshop on Variability Modelling of Software-intensive Systems, Lero Tech.

Report 2007-01, (2007).

[23] L. F. Silva, An Aspect-Oriented Approach to Model Requirements, Doctoral

Consortium, Part of 13th IEEE Int. Req. Eng. Conf., IEEE Computer Society,

Washington, (2005).

[24] D. C. Schmidt, Guest Editor's Introduction: Model-Driven Engineering, IEEE

Computer, 39(2), 25-31 (2006).

[25] Y. Yu, A. Lapouchnian, S. Liaskos J. Mylopoulos and J.C.S.P. Leite, From Goals to

High-Variability Software Design, 17th Int. Symp. on Methodologies for Intelligent

Systems, 1-16, LNCS 4994, Berlin, Springer (2008).

[26] Y. Yu and J. C. Sampaio do Prado Leite and J. Mylopoulos, From Goals to Aspects:

Discovering Aspects from Requirements Goal Models, 12th IEEE Int. Requirements

Engineering Conf., 38-47, IEEE Computer Society, Washington, (2004).

30

A Appendix: Transformation Rules (QVT)

transformation goalToFeature (iggoal:IGGoal, igfeature:IGFeature,

igtraceability:IGTraceability)

{

key IGFeature::FeatureModel {name};

key IGFeature::Feature{name};

key IGFeature::FeatureDecomposition {parent, child};

key IGFeature::Constraint{source, target};

key IGTraceability::Affect{source, target};

key IGTraceability::Support{source, target};

top relation GoalModelToFeatureModel

// Maps Goal to Feature models, and creates root feature

{

 gmn: String;

 checkonly domain iggoal gm:GoalModel { name=gmn};

 enforce domain igfeature fm:FeatureModel { name=gmn,

 root=f:Feature { name=gmn, owner=fm};

 enforce domain igtraceability tm:TraceabilityModel{};

}

top relation ConcernToServiceFeature

// Maps Concerns to main or service features

{

 cn: String;

 minCardinality: Integer;

 checkonly domain iggoal c:Concern {owner=gm:GoalModel {},
 name=cn,
 root=rge:GoalElement {}

 };

 enforce domain igfeature cf:Feature

 {owner=fm:FeatureModel {root=rf:Feature},

 name = cn,

 decompose=fd:FeatureDecomposition

 {owner=fm,

 target=rf,

 cardinalityMin=minCardinality,

 cardinalityMax=1}

 };

 enforce domain igtraceability tm:TraceabilityModel{};

 when {

 GoalModelToFeatureModel (gm, fm);

 }

 where {

 minCardinality = if (c.isMandatory) then 1 else 0 endif;

 GoalRelationshipsToFeatureRelationships (rge, cf);

 }

}

relation GoalRelationshipsToFeatureRelationships

31

// Intermediate relation to group following ones

{

 checkonly domain iggoal ge:GoalElement {};

 enforce domain igfeature f:Feature {};

 enforce domain igtraceability tm:TraceabilityModel{};

 where {

 ORDecompositionToFeatureDecomposition(ge, f);

 ANDDecomposition(ge, f);

 OperationalizationToFeatureDecomposition(ge, f);

 TaskToTraceability(ge, f);

 CorrelationToTraceability(ge, f);

 AdviceToRequireTarget(ge, f);

 }

}

//

// HIERARCHY RELATIONS

//

relation ORDecompositionToFeatureDecomposition

// OR Decomposition -> Create new Feature Decomposition, and

// (in ORDecomposedToFeature) new Features

{

 or_rel: IGGoal::OR;

 maxCardinality: Integer;

 checkonly domain iggoal ge:GoalElement {

 reverse=or_rel:OR {}

 };

 enforce domain igfeature f:Feature {

 owner=fm:FeatureModel {},

 isDecomposedBy=fd:FeatureDecomposition {

 owner=fm,

 cardinalityMin=1,

 cardinalityMax=maxCardinality}

 };

 enforce domain igtraceability tm:TraceabilityModel{};

 where {

 maxCardinality = or_rel.target->size();

 ORDecomposedToFeature (or_rel, fd);

 DecomposedWithAddJoinPointToFeature (or_rel, fd);

 DecomposedWithReplaceJoinPointToFeature (or_rel, fd);

 }

}

relation ORDecomposedToFeature

// Creates Features for each OR target

{

 featureName: String;

 tge:IGGoal::GoalElement;

 chf:IGFeature::Feature;

 checkonly domain iggoal or_rel:OR {

 target=target->including(tge)

 }{tge.joinpoint->isEmpty()};

32

 enforce domain igfeature fd:FeatureDecomposition {

 owner=fm:FeatureModel{},

 child=child->including(chf)};

 enforce domain igtraceability tm:TraceabilityModel{};

 where {

 chf:Feature{owner=fm, name=featureName};

 featureName = DescriptionToFeatureName(tge.type, tge.topic);

 GoalRelationshipsToFeatureRelationships(tge, chf);

 }

}

relation ANDDecomposition

// Integrates the GoalElement with ancestor following in

// decomposition, but without creating new Features, grouping them

// in upper feature (excepting if some And target is the target of

// a joinpoint, where the And target will be created

{

 checkonly domain iggoal ge:GoalElement {

 reverse=and_rel:AND {}

 };

 enforce domain igfeature f:Feature {};

 enforce domain igtraceability tm:TraceabilityModel{};

 where {
 ANDDecomposedToNext (and_rel, f);

 ANDDecomposedWithJoinPointToFeature (and_rel, f);

 }

}

relation ANDDecomposedToNext

// Goes to next GoalElement to analyze if no joinpoints

{

 tge:IGGoal:GoalElement;

 checkonly domain iggoal and_rel:AND {
 target=target->including(tge:GoalElement {})

 } {tge.joinpoint->isEmpty()};

 enforce domain igfeature f:Feature {};

 enforce domain igtraceability tm:TraceabilityModel{};

 where {

 GoalRelationshipsToFeatureRelationships(tge, f);

 }

}

relation OperationalizationToFeatureDecomposition

// Maps Operationalizations to Feature Decomposition,

// creating new Feature, and traceability (contribution)

{

 featureName: String;

 sgt:IGGoal::Softgoal;

 tf:IGFeature::Feature;

 fd:IGFeature::FeatureDecomposition;

 checkonly domain iggoal sg:Softgoal {

 reverse=op:Operationalization {}

33

 };

 enforce domain igfeature f:Feature {

 owner=fm:FeatureModel{},

 isDecomposedBy=isDecomposedBy->(fd:FeatureDecomposition{

 cardinalityMin=0,

 cardinalityMax=1

 })

 };

 enforce domain igtraceability tm:TraceabilityModel{};

 where {

 OperationalizationToFeature(op, fd);

 DecomposedWithAddJoinPointToFeature (or_rel, fd);

 DecomposedWithReplaceJoinPointToFeature (or_rel, fd);

 }

}

relation OperationalizationTaskToFeature

// Maps Operationalizations to Feature Decomposition,

// creating new Feature, and traceability (contribution)

{

 featureName: String;

 checkonly domain iggoal op:Operationalization {

 source=sgt:Softgoal{},

 target=tt:Task{}

 } {tt.joinpoint->isEmpty()};

 enforce domain igfeature fd:FeatureDecomposition {

 owner=fm:FeatureModel{},

 target=tf:Feature {name=featureName,

 owner=fm

 }

 };

 enforce domain igtraceability tm:TraceabilityModel{};

 where {

 featureName = DescriptionToFeatureName(tt.type, tt.topic);

 GoalRelationshipsToFeatureRelationships(tt, tf);

 }

}

//

// TRACEABILITY RELATIONS

//

relation TaskToTraceability

// Creates traceability relationships between Feature and Tasks

{

 tt:IGGoal::Task;

 sf:IGFeature::Feature ;

 checkonly domain iggoal t:Task { };

 checkonly domain igfeature f:Feature { };

 enforce domain igtraceability s:Support {target=tt,

 source=sf};

34

 where {
 tt=t;

 sf=f;

 }

}

relation CorrelationToTraceability

// Creates affect traceability links between features and softgoals

// using the GoalElement correlations (Contributions and

// Correlations)

{

 tsg:IGGoal::Softgoal;

 sf:IGFeature::Feature;

 checkonly domain iggoal ge:GoalElement {

 reverse=reverse->including(c:Correlation {

 target=sg:Softgoal})

 };

 checkonly domain igfeature f:Feature {};

 enforce domain igtraceability c:Affect { target=tsg; source=sf };

 where {

 tsg=sg;

 sf=f;

 }

}

//

// ASPECT RELATIONS

//

relation DecomposedWithReplaceJoinPointToFeature

// Creates Features for each Decomposition target that is target of

// a Replace Pointcut

{

 featureName, aspectualFeatureName, abstractFeatureName: String;

 maxCardinality: Integer;

 sf, af: IGFeature::Feature;

 checkonly domain iggoal dec:Decomposition {

 target=tge:GoalElement {

 joinpoint=p:Replace {

 advice=sge:GoalElement{}

 }

 }{tge.oclIsTypeOf(HardElement) and

 tge.joinpoint->notEmpty()};

 enforce domain igfeature fd:FeatureDecomposition {

 owner=fm:FeatureModel{},

 child=chf:Feature{owner=fm,

 name=abstractFeatureName,

 source=nfd:FeatureDecomposition {owner=fm,

 cardinalityMin=1,

 cardinalityMax=1,

 target=target->including(sf)->including(af)

 }

 };

35

 enforce domain igtraceability tm:TraceabilityModel{};

 where {

 featureName = DescriptionToFeatureName(tge.type, tge.topic);

 aspectualFeatureName = DescriptionToFeatureName(tge.type,

 tge.topic) + '-' + DescriptionToFeatureName(a.type, a.topic);

 abstractFeatureName = DescriptionToFeatureName(tge.type,

 tge.topic) + '_aspectual';

 adviceName=DescriptionToFeatureName(sge.type, sge.topic);

 sf= sff:Feature {owner=fm, name=featureName };

 af=aff:Feature {owner=fm, name=aspectualFeatureName,

 reverse=r:Require{

 target=tarF:Feature{owner=fm,

 name=adviceName

 }

 }

 };

 GoalRelationshipsToFeatureRelationships(tge, sf);

 //Continue descompostion from sf (corresponding feature to tge)

 }

}

relation DecomposedWithAddJoinPointToFeature

// Creates Features for each Decompositon target that is target of

// an Add Pointcut

{

 featureName, aspectualFeatureName, adviceName: String;

 chf:IGFeature::Feature;

 checkonly domain iggoal dec:Decomposition {

 target=tge:GoalElement {

 joinpoint=p:Pointcut {

 advice=sge:GoalElement{}

 }

 }{tge.oclIsTypeOf(HardElement) and

 tge.joinpoint->notEmpty() and

 p.oclIsTypeOf(Add)};

 enforce domain igfeature fd:FeatureDecomposition {

 owner=fm:FeatureModel{},

 child=chf:Feature{owner=fm,

 name=featureName,

 source=nfd:FeatureDecomposition {

 owner=fm,

 cardinalityMin=0,

 cardinalityMax=1,

 target=sf:Feature {

 owner=fm,

 name=aspectualFeatureName,

 reverse=r:Require{

 target=tarF:Feature{

 owner=fm,

 name=adviceName

 }

 }

 },

36

 }

 };

 enforce domain igtraceability tm:TraceabilityModel{};

 where {

 featureName = DescriptionToFeatureName(tge.type, tge.topic);

 aspectualFeatureName =

 DescriptionToFeatureName(tge.type, tge.topic) + '-' +

 DescriptionToFeatureName(a.type, a.topic);

 adviceName=DescriptionToFeatureName(sge.type, sge.topic);

 //Continue decompostion from chf (corresponding feature to tge)

 GoalRelationshipsToFeatureRelationships(tge, chf);

 }

}

relation AdviceToRequireTarget

// Creates advice part of a Pointcut To Require Constraint

{

 p:IGGoal::Poinctcut;

 checkonly domain iggoal hg:GoalElement {

 targetpoint=pc:Pointcut{

 jointpoint=sge:GoalElement{}

 }

 } {hg.oclIsTypeOf(HardElement) and

 hg.advice->size()>0 };

 enforce domain igfeature fd:FeatureDecomposition {

 owner=fm:FeatureModel{},

 child=chf:Feature{owner=fm,

 name=adviceName,

 reverse=r:Require{

 target=tf:Feature{

 name=jointpointname

 }

 }

 }

 };

 enforce domain igtraceability tm:TraceabilityModel{};

 where{

 adviceName=DescriptionToFeatureName(hg.type, hg.topic);

 jointpointname=DescriptionToFeatureName(tf.type, tf.topic);

 }

}

relation ANDDecomposedWithJoinPointToFeature

// Creates a new FeatureDecomposition for each AND target that is

// target of a Pointcut and goes to

// DecomposedWithAddJoinPointToFeature

{

 featureName, aspectualFeatureName: String;

 tge:IGGoal:GoalElement;

 fd:IGFeature::FeatureDecomposition;

 checkonly domain iggoal and_rel:AND {

 target=target->including(tge:GoalElement {

37

 joinpoint=p:Pointcut {

 owner= a:Aspect})

 } {tge.oclIsTypeOf(HardElement) and

 tge.joinpoint->notEmpty()};

 enforce domain igfeature f:Feature {

 isDecomposed=isDecomposed->including (fd)

 };

 enforce domain igtraceability tm:TraceabilityModel{};

 where {

 DecomposedWithAddJoinPointToFeature (and_rel, fd);

 DecomposedWithReplaceJoinPointToFeature (and_rel, fd);

 }

}

//

// QUERIES

//

query DescriptionToFeatureName (type:IGGoal::DescriptionElement,

topic:Set(IGGoal::DescriptionElement)):String

{

 if (topic->isEmpty()) then type.name

 else topic->first().oclAsType(DescriptionElement).name + ' ' +

DescriptionToFeatureName (type, topic->excludes(topic->first()))

}

} // END Transformation

