Specifying and Analyzing Program Refactorings
With AGG

Javier Pérez!, Olga Runge?, and Gabriele Taentzer?

! Universidad de Valladoid, Spain, jperez@infor.uva.es
2 Technische Universitét Berlin, Germany, olga@cs.tu-berlin.de
3 Philipps-Universitat Marburg, Germany
taentzer@mathematik.uni-marburg.de

Abstract. AGG is a general development environment for graph trans-
formation systems which we use here to specify and analyze program
refactorings. In this paper, we consider two commonly used refactorings,
namely MoveMethod and EncapsulateField, to show our approach.

1 What is AGG?

The AGG tool environment [2] consists of a graph transformation engine, sev-
eral analysis tools for graph transformations and a graphical user interface for
convenient user interaction. AGG supports the algebraic approach to typed, at-
tributed graph transformation. It provides a typing concept for nodes and arcs
which supports node type inheritance. Its attribution concept is based on Java
expressions. Transformation rules may be equipped with positive and negative
application conditions. Rule applications may be controlled by graph constraints
and explicit control constructs such as layered graph transformation. Analysis
tools offer graph parsing, critical pair analysis and applicability checks for trans-
formation rules, as well as checking of termination criteria for controlled rule
applications.

2 Program Graph

The given program graph is quite large and it is not that easy to overview it. For
a better orientation, the graph can be zoomed out by factor 0.5. All attributes
can be automatically hidden. Zooming in again, the attributes show up again and
we can decide which attributes are interesting to see. Furthermore, orientation
in the program graph is supported by distinguishing different node and edge
types not only by names but also by colors.

3 Specifying Refactorings

3.1 Refactoring Preparation

Before the following refactorings can be performed, the program graph has to
be prepared by computing all transitive closures of class inheritance, update,

Graph of ProgramRefactoring

Fig. 1. The start graph

access and call hierarchies. For each kind of hierarchy we need two rules to be
applied as long as possible to compute the transitive closure. This task has to
be done only once in the beginning of a refactoring phase. Thereafter it has to
be kept consistently with hierarchy modifications, of course. The inverse rules
can be used to delete additional “tgen” edges after a refactoring process.

3.2 Refactoring “MoveMethod”

This refactoring is rather complex such that several rules are needed for speci-
fying it, especially due to complex update actions. As a simple form of control
flow, we use rule layers which means that rules of the lowest layer are applied
first as long as possible, then the next layer is considered, and so on until the
highest layer has been reached. All rules of layer 1 prepare the refactoring and
check all preconditions, rule “moveMethod” of layer 2 perform the proper refac-
toring, rules of layer 3 do all updates, and layer 4 rules are used to clean up
after refactoring. (See the left column of rules in Fig. 2 to get an overview.) If
transitive closures shall be built up and deleted for each refactoring separately,

two additional rule layers come along (see Subsection 3.1).
To perform this refactoring interactively, the trigger rule of the preparing

layer, namely “enableMoveMethod” (see Figure 3), has input parameters to de-
termine where the refactoring shall be applied. All rules following up use a node
of type “InputOption” which stores parameter values and is connected to the
method to be moved and to both classes that participate. Moreover, this rules
checks for necessary pre-conditions of the refactoring, all listed as NACs in Fig-
ure 2. NAC “noCallToSuper” for example, checks that the method to be moved

¢ [L=R][1]enableMoveMethod
l@ noCallToSuper
HEL absentinNewAncestors
l@l’ absentinNewDescendants
l@: absent
AC m1.equals(methodN)
[1]StartMoveV
[1]StartMoveP
[2]MoveMethod
3]UpdateAccessAfterMoveV
[3]UpdateAccessAfterMoveV1
[3]UpdateAccessAfterMoveP
[3]UpdateAccessAfterMoveP 1
3]UpdateMethodBody

[3]UpdateMethodBody1
[3]UpdateMethodBody2
[4]MoveMethodByCopyV

¢ [G=R] [4]MoveMethodByCopyP2
HEY noStubParameter
l@l’ noPassedYetParameter
5]disableMoveV
5]disableMoveP

[[20]enableEncapsulateField
l@‘.‘ absent
? [20]EncapsulateFieldNewGetter
HEY noGetterinAncestors
HEL noGetterinDescendants
l@: noGetter
l@? noGetterinAncestors1
HEL noGetterinDescendants1
AC (vis.equals("public")&&mvis.equals("public
? [20]EncapsulateFieldOldGetter
l@: notUsedGetter
[20]EncapsulateFieldNewSetter
noSetterinAncestors
l@ noSetterinDescendants
HEL noSetter
l@‘.‘ noSetterinAncestors1
l@ noSetterinDescendants1
AC (vis.equals(“public”)&&mvis.equals(“public’
? [20]EncapsulateFieldOldSetter
HEL notUsedSetter
? [21]EncapsulateFieldUpdateGetters
AC !cl.equals(c2)
[21]E: ieldL

-

? [21]EncapsulateFieldUpdateSetters

AC Ict.equals(c2)
i

[2

[22]disableEncapsulateField

Fig. 2. Overview on rules for Refactorings “MoveMethod” and “Encapsulated Field”

does not call its super method. All other NACs prohibit the existence of a method
with the same name in the new class and all its super and subclasses.

noCallToSuper ' : of ing
gen [~ - :
belongsTo \1 Class | IZ Class \
[name=classiN| [name=class2N |
K
6:bplongsTo = 6ibplongsTo
belongsTo r 4:Operation 4:Operation

7:binding 7:binding
3:MethodBody name=methodN 3:MethodBody name=methodN

visibility="public" visibility="public"

|Operation
name=methodN

Fig. 3. Rule “EnableMoveMethod”

After checking all preconditions, rule “MoveMethod” (see Figure 4) is ap-
plied. If there is a variable in the source class which references the target class,
this variable shall be used to update the call access to the moved method. After
updating, the access is performed over this variable (see Figure 5).

3.3 Refactoring “EncapsulatedField”

Refactoring “EncapsulatedField” is specified similarly by first enabling this refac-
toring, then producing or adapting getter and setter methods independently,
updating getters and setters, and last but not least finalizing the encapsulation
refactoring.

U of Pr

1:.Class
: :

belpngsTo

7:bindin b—
3:MethodBody g 4:Operation

4:Operation

l18:belongsTo

9:Variable

4:Operation

21:link

10:belongsTo 10:belongsTo

3:MethodBody 7:Access}

3:MethodBody|

Fig. 5. Rule “UpdateAccessAfterMoveV”

In the following, we consider Rule “EncapsulateFieldNewGetter” which is
depicted in figure 6. After having checked that there is not already a getter
method in the hierarchy of the current class, a new getter method is created.
Its visibility kind has to be larger or equal to the visibility of the encapsulated

variable.

belongsTo
N 6:type
= - 3:.Class
. | (b Haciass]

binding

2Variable

B:belongsTo
visibility="private"

binding Operation

=g
visibility=mvis

Fig. 6. Rule “EncapsulateFieldNewGetter”

4 Analyzing Refactorings

Having specified the refactorings, we can start to analyze them. Since both
refactorings are quite complex and have to be specified by a number of rules
which are applied in a controlled manner, we are interested in the applicabil-
ity of a complete refactoring. As a prerequiste we check for dependencies of
later rules from former ones. One example is a produce-use dependency of rule

“MoveMethod” from Rule “EnableMoveMethod”. Of course, the input options
have to be captured before they are further used. (See the left graph of Figure 7
for this dependency.) Furthermore, rule should not have impeding predecessor
rules in the layered execution. Rule “enableMoveMethod” for example does not
cause a conflict with rules following up.

&D7) (1) produce forbid (NAC: noGetterinAncestors)-conflict - o &'
@’j':] (1) produce-use-dependency o] =

2:0peration
visibility="public"
A

belongsTo

7:binding

64elongsTo
Class

[

Fig. 7. A dependency and a conflict graph

Furthermore, we are interested in performing refactorings in parallel by dif-
ferent developers. (See [1] for more details.) In this case, we have to analyze
conflicts between rules of one refactoring with rules of another. Checking for
example refactorings “MoveMethod” and “EncapsulateField”, we find e.g. con-
flicts between rule “MoveMethod” and rule “EncapsualteFieldNewGetter”. The
right graph in Figure 7 shows a produce-forbid conflict between these two rules.
Rule “MoveMethod” produces a new “belongsTo” edge which is forbidden by
Rule “EncapsulateFieldNewGetter”, since a method can be moved to a super-
class with the same name as the getter method to be newly created. Please keep
in mind that AGG computes all potential conflicts between rules. Considering a
concrete transformation sequence, such a conflict does not have to show up.

References

1. T. Mens, G. Taentzer, and O. Runge. Analysing refactoring dependencies using
graph transformation. Software and System Modeling, 6(3), Sept. 2007. 269-285.

2. G. Taentzer. AGG: A Graph Transformation Environment for Modeling and Val-
idation of Software. In J. Pfaltz, M. Nagl, and B. Boehlen, editors, Application
of Graph Transformations with Industrial Relevance (AGTIVE’08), volume 3062 of
Lecture Notes in Computer Science, pages 446 — 456. Springer, 2004.

