Enabling Refactoring with HTN Planning to
Improve the Design Smells Correction Activity

Javier Pérez

University of Valladolid; Department of Computer Science
jperez@infor.uva.es

Abstract. Refactorings are a key technique to software evolution. They
can be used to improve the structure and quality of a software system.
This paper introduces a proposal for generating refactoring plans with
hierarchical task network planning, to improve the automation of the
bad smells correction activity.

1 Introduction

Over the evolution of a software system, its structure deteriorates because the
maintenance efforts concentrate more on the correction of bugs and on the addi-
tion of new functionalities than on the control and improvement of the software’s
architecture and design [1]. Bad design practices, often due to inexperience, in-
sufficient knowledge or time pressure, are at the origin of design smells. They can
arise at different levels of granularity, ranging from high level design problems,
such as antipatterns [2], to low-level or local problems, such as code smells [3].

Design smells are problems encountered in the software’s structure, that do
not produce compile or run-time errors, but negatively affect software quality
factors. In fact, this negative effect on quality factors could lead to true compi-
lation errors and run-time errors in the future. Design Smell management refers
to the set of techniques, tools and approaches addressed to detect and to correct
or, at least, reduce design smells to improve software quality. Among the activi-
ties involved in design smell management, correction and detection are the most
significant ones.

2 Detection and Correction of Smells

The detection techniques proposed in the literature mainly consist on defining
and applying rules for identifying design smells. Meanwhile, correction tech-
niques often consist on suggesting which transformations could be applied to the
source code of the system in order to restructure it, by correcting or, at least,
reducing its design problems. There has been an increasing number of works
dealing with smell detection, and the most successful ones are those based on
metrics [4], and on the jointed use of metrics and structural patterns analysis [5].

The correction activity has not been explored as much as the detection one.
Most approaches focus on suggesting which are the best redesign changes to

conflict

> —
dependency K 0.*
[I

‘ Definition] ‘ Precondition

1.*

Parameter

Fig. 1. A model for refactoring operations.

perform, and which are the best structures to remedy the smell and reflect the
original design intent. The preferred technique for correction is refactoring [3],
because the objective is not to remove bugs or errors. In terms of observable
behaviour, we aim at leaving the system untouched. The automation of the
correction strategies, based on refactorings, faces the problem of precondition
fulfillment, as mentioned in [6].

It is rare that the preconditions of the desired refactorings could be fulfilled
by the system’s source code at its current state. For example, to allow moving a
method from one class to another, one should probably, first, have to move the
attributes accessed from it. In these cases, the developer has to plan ahead how
to solve this problem. This can be done either by choosing a different refactoring
path or by applying other preparatory refactorings to enable the precondition
which previously failed. Moreover, violation of preconditions is the most com-
mon error developers encounter when trying to apply a refactoring operation [7].
Therefore, suggesting refactorings is not enough to allow for automated correc-
tion of design smells.

3 Anatomy of a Refactoring Operation

A refactoring can be seen as a conditional transformation [8], which is composed
of a precondition and a set of transformations. The precondition establishes the
situations under which the refactoring can be executed, while the transformation
part specifies the changes that are to be applied to the source code. If the pre-
condition of a refactoring is fulfilled when it is performed, the system’s behaviour
is preserved. Figure 1 shows a simplified model for refactoring operations.

Once a smell has been detected and once the refactorings to correct it have
been given out, they can’t be immediately applied if their preconditions fail.
Therefore, refactoring suggestions don’t suffice to automate the activity of bad
smell correction, we need refactoring plans.

We define a refactoring plan as the specification of a refactoring sequence
that matches a system redesign proposal and can actually be executed over the
current system’s source code. To improve the automation of the smell correction
activity, we intend to support the automated generation of refactoring plans.

A variety of techniques can be used to reason about refactorings and assist
the generation of refactoring plans. Analysis of dependencies and conflicts can
be performed to find out which refactorings can enable or disable other refactor-
ing’s preconditions [9]. First-order logic inference can help composing refactoring
sequences [8]. Automated planning [10], can integrate all these techniques.

4 Enabling Refactoring with HTN planning

Automated planning [10] is an artificial intelligence technique to generate se-
quences of actions that will achieve a certain goal when they are performed.
We think that automated planning is a technique suitable to be used in the
generation of refactoring plans.

For a typical automated planner, the current state of the world is represented
as a set of logical terms which are changed through application of operators.
Operators are composed of a precondition which specifies the conditions under
which they can be applied, and two separate sets of actions which specify how
the operator modifies the state of the world. These lists enumerate the terms
the operator will add to and delete from the current state. A goal is a list of
terms which represents a certain state of the world we want to achieve. A planner
computes a plan as a sequence of operator instances that changes the world to
achieve the desired goals in the final state.

Among all the existing planning approaches, we think that hierarchical task
network (HTN) planning provides the best balance between search-based and
procedural-based strategies, for the problem of refactoring planning. We have
explored other approaches, such as partial-order backwards planning, only to
discover that combinatorial explosion and lack of expressivity disallow their ap-
plication in the refactoring planning domain.

HTN planning [10], introduces the concept of “task”, which models actions
composed by simple operators or by other tasks. Task networks allow to include
domain knowledge describing which subtasks should be performed to accomplish
another one. HTN planning and forward search allows very expressive domain
definitions which lead to very detailed domains with a lot of domain knowledge
which can guide the planning process in a very efficient way.

Starting from a set of refactorings, the refactoring dependencies, and the
system’s source code and a redesign proposal, an HTN planner can obtain a
refactoring plan matching the redesign proposal, while solving the problem of
failing preconditions.

To search for refactoring plans we use the representation from [8], which turns
the system’s AST into a set of logical terms. This set builds up the planner’s
state of the world. Refactorings are modeled with tasks and operators. Tasks
hierarchies allow to specify the algorithm of a refactoring along with the depen-
dencies with other refactorings. Thus, using tasks and subtasks dependencies,
we model which refactorings should be executed in order to enable the precondi-
tion of another one. An HTN planner can be tailored to search for plans which

achieve a certain design structure, or which enable application of a desired set
of refactorings.

5 Conclusions

This paper introduces a proposal to enable refactoring application through au-
tomated planning, more precisely HTN planning. Automation support for refac-
toring planning can improve any practice which uses them and many software
evolution techniques, particularly the correction of design smells. We are cur-
rently preparing experiments to show the feasibility of this approach.

Aknowledgements

I want to thank Tom Mens, Naouel Moha and Carlos Lépez who have helped
me reviewing the state of the art in design smells management.

This work has been partially funded by the regional government of Castilla
y Leén (project VA-018A07).

References

1. Frederick P. Brooks, J.: The Mythical Man-Month: Essays on Software Engineer-
ing. Addison-Wesley Publishing Company, Reading, MA , USA (1975)

2. Brown, W.H., Malveau, R.C., Mowbray, T.J.: AntiPatterns: Refactoring Software,
Architectures, and Projects in Crisis. Wiley (March 1998)

3. Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring: Improving
the Design of Existing Code. Object Technology Series. Addison-Wesley (1999)

4. Lanza, M., Marinescu, R.: Object-Oriented Metrics in Practice - Using Software
Metrics to Characterize, Evaluate, and Improve the Design of Object-Oriented
Systems. Springer (2006)

5. Moha, N.: DECOR : Détection et correction des défauts dans les systémes orientés
objet. PhD thesis, Université des Sciences et Technologies de Lille; Université de
Montréal (August 2008)

6. Trifu, A., Reupke, U.: Towards automated restructuring of object oriented sys-
tems. Software Maintenance and Reengineering, 2007. CSMR ’07. 11th European
Conference on (March 2007) 39-48

7. Murphy-Hill, E., Black, A.P.: Breaking the barriers to successful refactoring: ob-
servations and tools for extract method. In: ICSE ’08: Proceedings of the 30th in-
ternational conference on Software engineering, New York, NY, USA;, ACM (2008)
421-430

8. Kniesel, G.: A logic foundation for conditional program transformations. Techni-
cal Report IAI-TR-2006-1, Computer Science Department III, University of Bonn
(January 2006)

9. Mens, T., Taentzer, G., Runge, O.: Analysing refactoring dependencies using graph
transformation. Software and Systems Modeling 6(3) (September 2007) 269-285

10. Ghallab, M., Nau, D., Traverso, P.: Automated Planning; Theory and Practice.
Morgan Kaufmann (2004)

