
Enabling Refactoring with HTN Planning to Improve
the Design Smells Correction Activity

Javier Pérez
jperez@infor.uva.es

www.infor.uva.es/∼jperez

Universidad de Valladolid

BENEVOL 2008
Dec 11-12 2008, Eindhoven

Javier Pérez (UVa) Refactoring Planning 11-12 Dec 2008 1 / 28

Design Smell Correction

Design Smell Correction

Javier Pérez (UVa) Refactoring Planning 11-12 Dec 2008 2 / 28

Design Smell Correction

Object-Oriented Software Design Smells

Design Smells
Problems encountered in the software’s structure (code or design),
that can be detected statically, that do not produce compile or run-time
errors, but negatively affect software quality factors. In fact, this
negative effect on quality factors could lead to real compile and
run-time errors in the future.

In the context of software inconsistencies:
consistency maintenance (keeping models consistent)
inconsistency management (detect and resolve inconsistencies)
co-evolution (manage consistency between different artefacts)

Design smells are corrected with refactorings

Javier Pérez (UVa) Refactoring Planning 11-12 Dec 2008 3 / 28

Design Smell Correction

Object-Oriented Software Design Smells

Design Smells
Problems encountered in the software’s structure (code or design),
that can be detected statically, that do not produce compile or run-time
errors, but negatively affect software quality factors. In fact, this
negative effect on quality factors could lead to real compile and
run-time errors in the future.

In the context of software inconsistencies:
consistency maintenance (keeping models consistent)
inconsistency management (detect and resolve inconsistencies)
co-evolution (manage consistency between different artefacts)

Design smells are corrected with refactorings

Javier Pérez (UVa) Refactoring Planning 11-12 Dec 2008 3 / 28

Design Smell Correction

Object-Oriented Software Design Smells

Design Smells
Problems encountered in the software’s structure (code or design),
that can be detected statically, that do not produce compile or run-time
errors, but negatively affect software quality factors. In fact, this
negative effect on quality factors could lead to real compile and
run-time errors in the future.

In the context of software inconsistencies:
consistency maintenance (keeping models consistent)
inconsistency management (detect and resolve inconsistencies)
co-evolution (manage consistency between different artefacts)

Design smells are corrected with refactorings

Javier Pérez (UVa) Refactoring Planning 11-12 Dec 2008 3 / 28

Design Smell Correction

Object-Oriented Software Design Smells

Design Smells
Problems encountered in the software’s structure (code or design),
that can be detected statically, that do not produce compile or run-time
errors, but negatively affect software quality factors. In fact, this
negative effect on quality factors could lead to real compile and
run-time errors in the future.

In the context of software inconsistencies:
consistency maintenance (keeping models consistent)
inconsistency management (detect and resolve inconsistencies)
co-evolution (manage consistency between different artefacts)

Design smells are corrected with refactorings

Javier Pérez (UVa) Refactoring Planning 11-12 Dec 2008 3 / 28

Design Smell Correction

Object-Oriented Software Design Smells

Design Smells
Problems encountered in the software’s structure (code or design),
that can be detected statically, that do not produce compile or run-time
errors, but negatively affect software quality factors. In fact, this
negative effect on quality factors could lead to real compile and
run-time errors in the future.

In the context of software inconsistencies:
consistency maintenance (keeping models consistent)
inconsistency management (detect and resolve inconsistencies)
co-evolution (manage consistency between different artefacts)

Design smells are corrected with refactorings

Javier Pérez (UVa) Refactoring Planning 11-12 Dec 2008 3 / 28

Design Smell Correction

Object-Oriented Software Design Smells

Design Smells
Problems encountered in the software’s structure (code or design),
that can be detected statically, that do not produce compile or run-time
errors, but negatively affect software quality factors. In fact, this
negative effect on quality factors could lead to real compile and
run-time errors in the future.

In the context of software inconsistencies:
consistency maintenance (keeping models consistent)
inconsistency management (detect and resolve inconsistencies)
co-evolution (manage consistency between different artefacts)

Design smells are corrected with refactorings

Javier Pérez (UVa) Refactoring Planning 11-12 Dec 2008 3 / 28

Design Smell Correction

Object-Oriented Software Design Smells

Design Smells
Problems encountered in the software’s structure (code or design),
that can be detected statically, that do not produce compile or run-time
errors, but negatively affect software quality factors. In fact, this
negative effect on quality factors could lead to real compile and
run-time errors in the future.

In the context of software inconsistencies:
consistency maintenance (keeping models consistent)
inconsistency management (detect and resolve inconsistencies)
co-evolution (manage consistency between different artefacts)

Design smells are corrected with refactorings

Javier Pérez (UVa) Refactoring Planning 11-12 Dec 2008 3 / 28

Design Smell Correction

Object-Oriented Software Design Smells

Design Smells
Problems encountered in the software’s structure (code or design),
that can be detected statically, that do not produce compile or run-time
errors, but negatively affect software quality factors. In fact, this
negative effect on quality factors could lead to real compile and
run-time errors in the future.

In the context of software inconsistencies:
consistency maintenance (keeping models consistent)
inconsistency management (detect and resolve inconsistencies)
co-evolution (manage consistency between different artefacts)

Design smells are corrected with refactorings

Javier Pérez (UVa) Refactoring Planning 11-12 Dec 2008 3 / 28

Design Smell Correction

Brief History of Design Smell Management

Heuristics for Good OO Design

Bad Smells Catalogs

Precise Smell Specifications

 Automated Smell Detection

Detection

Correction Catalogs

Precise Correction Specifications

Automated Correction

Correction

(1996 Riel) "Object-Oriented Design Heurstics"

(1999 Fowler) "Refactoring; Improving the ..." (2004 Kerievsky) ``Refactoring to Patterns''

(2006 Lanza, Marinescu) "OO Metrics ...'' (2008 Trifu) Towards Automated Restructuring ..."

(2008 Moha) "DECOR: Détection et Correction ..." ???

Javier Pérez (UVa) Refactoring Planning 11-12 Dec 2008 4 / 28

Design Smell Correction

Brief History of Design Smell Management

Detection Correction

Heuristics for Good OO Design

(1996 Riel) "Object-Oriented Design Heurstics"

Bad Smells Catalogs

(1999 Fowler) "Refactoring; Improving the ..."

Correction Catalogs

(2004 Kerievsky) ``Refactoring to Patterns''

Precise Smell Specifications

(2006 Lanza, Marinescu) "OO Metrics ...''

Precise Correction Specifications

(2008 Trifu) Towards Automated Restructuring ..."

 Automated Smell Detection

(2008 Moha) "DECOR: Détection et Correction ..."

Automated Correction

???

Javier Pérez (UVa) Refactoring Planning 11-12 Dec 2008 4 / 28

Smell Example: Feature Envy

Smell Example: Feature Envy

Javier Pérez (UVa) Refactoring Planning 11-12 Dec 2008 5 / 28

Smell Example: Feature Envy

Feature Envy

Feature Envy
“. . . a method that seems more interested in a class other than the one
it actually is in.” (Fowler et al., 1999)

Javier Pérez (UVa) Refactoring Planning 11-12 Dec 2008 6 / 28

Smell Example: Feature Envy

Feature Envy Example

Document

<<create>> Document(name : String,author : String)
formatSummary() : String
toString() : String

_content : String
_name : String
_author : String
_creationDate : Date

Printserver

Printserver(name : String)
Printserver(name : String,nextNode : Node)
setLastDocument(lastDocument : Document) : void
getLastDocument() : Document
formatDocument() : String
formatSummary() : String
print() : void
accept(p : Packet) : void

lastDocument : Document

formatSummary() uses many attributes from Document and
none from its own class.

The strategy is to move the method to Document but a method
with the same signature already exists.

Javier Pérez (UVa) Refactoring Planning 11-12 Dec 2008 7 / 28

Smell Example: Feature Envy

Feature Envy Example

Document

<<create>> Document(name : String,author : String)
formatSummary() : String
toString() : String

_content : String
_name : String
_author : String
_creationDate : Date

Printserver

Printserver(name : String)
Printserver(name : String,nextNode : Node)
setLastDocument(lastDocument : Document) : void
getLastDocument() : Document
formatDocument() : String
formatSummary() : String
print() : void
accept(p : Packet) : void

lastDocument : Document

formatSummary() uses many attributes from Document and
none from its own class.

The strategy is to move the method to Document but a method
with the same signature already exists.

Javier Pérez (UVa) Refactoring Planning 11-12 Dec 2008 7 / 28

Smell Example: Feature Envy

Feature Envy Example

Document

<<create>> Document(name : String,author : String)
formatSummary() : String
toString() : String

_content : String
_name : String
_author : String
_creationDate : Date

Printserver

Printserver(name : String)
Printserver(name : String,nextNode : Node)
setLastDocument(lastDocument : Document) : void
getLastDocument() : Document
formatDocument() : String
formatSummary() : String
print() : void
accept(p : Packet) : void

lastDocument : Document

formatSummary() uses many attributes from Document and
none from its own class.

The strategy is to move the method to Document but a method
with the same signature already exists.

Javier Pérez (UVa) Refactoring Planning 11-12 Dec 2008 7 / 28

Smell Example: Feature Envy

Feature Envy Example

Document

<<create>> Document(name : String,author : String)
formatSummary() : String
toString() : String

_content : String
_name : String
_author : String
_creationDate : Date

Printserver

Printserver(name : String)
Printserver(name : String,nextNode : Node)
setLastDocument(lastDocument : Document) : void
getLastDocument() : Document
formatDocument() : String
formatSummary() : String
print() : void
accept(p : Packet) : void

lastDocument : Document

formatSummary() uses many attributes from Document and
none from its own class.

The strategy is to move the method to Document but a method
with the same signature already exists.

Javier Pérez (UVa) Refactoring Planning 11-12 Dec 2008 7 / 28

Smell Example: Feature Envy

Feature Envy Example

Document

<<create>> Document(name : String,author : String)
formatSummary() : String
toString() : String

_content : String
_name : String
_author : String
_creationDate : Date

Printserver

Printserver(name : String)
Printserver(name : String,nextNode : Node)
setLastDocument(lastDocument : Document) : void
getLastDocument() : Document
formatDocument() : String
formatSummary() : String
print() : void
accept(p : Packet) : void

lastDocument : Document

formatSummary() uses many attributes from Document and
none from its own class.

The strategy is to move the method to Document but a method
with the same signature already exists.

Javier Pérez (UVa) Refactoring Planning 11-12 Dec 2008 7 / 28

Smell Example: Feature Envy

Problems in Automated Correction

Which is the strategy to correct a smell?
Feature Envy (m) ⇒ move method m close to data, from class s to
class t

Which is the precise strategy instance to use?
Feature Envy (formatSummary) ⇒ move method formatSummary
from Printserver to Document

How to apply the strategy instance?
move method formatSummary from Printserver to Document ⇒

1 first remove formatSummary in Document or rename
formatSummary in Document or rename formatSummary in
Printserver

2 then move method formatSummary from Printserver to
Document

Javier Pérez (UVa) Refactoring Planning 11-12 Dec 2008 8 / 28

Refactoring Planning

Refactoring Planning

Javier Pérez (UVa) Refactoring Planning 11-12 Dec 2008 9 / 28

Refactoring Planning

Refactoring Plans

The objective: Instantiate smell correction strategies into a
correction plan which could be effectively applied, or at least could
guide the developer through the process.

Refactoring Plan
Specification of a refactoring sequence which matches a system
redesign proposal, and that can be immediately executed to modify the
system, without changing the system’s behaviour, in order to obtain
that desirable system redesign.

Javier Pérez (UVa) Refactoring Planning 11-12 Dec 2008 10 / 28

Refactoring Planning

Refactoring Plans

The objective: Instantiate smell correction strategies into a
correction plan which could be effectively applied, or at least could
guide the developer through the process.

Refactoring Plan
Specification of a refactoring sequence which matches a system
redesign proposal, and that can be immediately executed to modify the
system, without changing the system’s behaviour, in order to obtain
that desirable system redesign.

Javier Pérez (UVa) Refactoring Planning 11-12 Dec 2008 10 / 28

Refactoring Planning

Refactoring Plans

The objective: Instantiate smell correction strategies into a
correction plan which could be effectively applied, or at least could
guide the developer through the process.

Refactoring Plan
Specification of a refactoring sequence which matches a system
redesign proposal, and that can be immediately executed to modify the
system, without changing the system’s behaviour, in order to obtain
that desirable system redesign.

Javier Pérez (UVa) Refactoring Planning 11-12 Dec 2008 10 / 28

Refactoring Planning

Refactoring Plans

The objective: Instantiate smell correction strategies into a
correction plan which could be effectively applied, or at least could
guide the developer through the process.

Refactoring Plan
Specification of a refactoring sequence which matches a system
redesign proposal, and that can be immediately executed to modify the
system, without changing the system’s behaviour, in order to obtain
that desirable system redesign.

Javier Pérez (UVa) Refactoring Planning 11-12 Dec 2008 10 / 28

Refactoring Planning

Refactoring Plans

The objective: Instantiate smell correction strategies into a
correction plan which could be effectively applied, or at least could
guide the developer through the process.

Refactoring Plan
Specification of a refactoring sequence which matches a system
redesign proposal, and that can be immediately executed to modify the
system, without changing the system’s behaviour, in order to obtain
that desirable system redesign.

Javier Pérez (UVa) Refactoring Planning 11-12 Dec 2008 10 / 28

Refactoring Planning

Refactoring Plans

The objective: Instantiate smell correction strategies into a
correction plan which could be effectively applied, or at least could
guide the developer through the process.

Refactoring Plan
Specification of a refactoring sequence which matches a system
redesign proposal, and that can be immediately executed to modify the
system, without changing the system’s behaviour, in order to obtain
that desirable system redesign.

Javier Pérez (UVa) Refactoring Planning 11-12 Dec 2008 10 / 28

Refactoring Planning

Refactoring Plans

The objective: Instantiate smell correction strategies into a
correction plan which could be effectively applied, or at least could
guide the developer through the process.

Refactoring Plan
Specification of a refactoring sequence which matches a system
redesign proposal, and that can be immediately executed to modify the
system, without changing the system’s behaviour, in order to obtain
that desirable system redesign.

Javier Pérez (UVa) Refactoring Planning 11-12 Dec 2008 10 / 28

Refactoring Planning

Refactoring Model

Refactoring

conflict
0..*

0..*dependency
0..*

0..*

Simple

Precondition

Composed

AND OR NOT

Definition Transformation

1..*

Parameter

1..*

1..*

Add Delete Replace Entity Relationship

Operation Element

1..* 1..*

Refactoring Plan

0..*

1..*

Refactoring plans can be computed with automated planning

Javier Pérez (UVa) Refactoring Planning 11-12 Dec 2008 11 / 28

Refactoring Planning

Refactoring Model

Refactoring

conflict
0..*

0..*dependency
0..*

0..*

Simple

Precondition

Composed

AND OR NOT

Definition Transformation

1..*

Parameter

1..*

1..*

Add Delete Replace Entity Relationship

Operation Element

1..* 1..*

Refactoring Plan

0..*

1..*

Refactoring plans can be computed with automated planning

Javier Pérez (UVa) Refactoring Planning 11-12 Dec 2008 11 / 28

Refactoring Planning

Automated Planning

Definition
Automated planning is an artificial intelligence technique to generate
sequences of actions that will achieve a certain goal when they are
performed.

Example: Getting apples and a book.

The state of the world: at (grocery) AND not (have (apples))
Actions: buy (apples); moveTo (bookstore)
Goals: have (book) AND have (apples)

Javier Pérez (UVa) Refactoring Planning 11-12 Dec 2008 12 / 28

Refactoring Planning

Plan

S0 S1 S2 SG

O1

Sn

O2 On OG

Javier Pérez (UVa) Refactoring Planning 11-12 Dec 2008 13 / 28

Refactoring Planning

Classical Planning Operators (STRIPS)

World’s state: list of terms

Operators:
definition: name + arguments
precondition
effect list (add): terms to add to the state
effect list (deletes): terms to remove from the state

Problem:
initial state
goal: list of terms

General planning approach: chain operators by matching their
effects and preconditions

Javier Pérez (UVa) Refactoring Planning 11-12 Dec 2008 14 / 28

Refactoring Planning

Some Types of Planners

Depending on the planning space:
state space planning
plan space planning

Depending on the search direction:
forward searching
backwards searching

Depending on when the operator ordering is comitted:
total-order planning
partial-order planning

I’m using Hierarchical Task Network (HTN) planning.

Javier Pérez (UVa) Refactoring Planning 11-12 Dec 2008 15 / 28

Refactoring Planning

Some Types of Planners

Depending on the planning space:
state space planning
plan space planning

Depending on the search direction:
forward searching
backwards searching

Depending on when the operator ordering is comitted:
total-order planning
partial-order planning

I’m using Hierarchical Task Network (HTN) planning.

Javier Pérez (UVa) Refactoring Planning 11-12 Dec 2008 15 / 28

Refactoring Planning

Hierarchical Task Network (HTN) Planning

method1

 precondition1

task1

task2 task3

...method2

 precondition2

task4 operator1

 precondition3

ADD DEL

Javier Pérez (UVa) Refactoring Planning 11-12 Dec 2008 16 / 28

Refactoring Planning

Hierarchical Task Network (HTN) Planning

method1

 precondition1

task1

task2 task3

...method2

 precondition2

task4 operator1

 precondition3

ADD DEL

Javier Pérez (UVa) Refactoring Planning 11-12 Dec 2008 16 / 28

Refactoring Planning

Hierarchical Task Network (HTN) Planning

method1

 precondition1

task1

task2 task3

...method2

 precondition2

task4 operator1

 precondition3

ADD DEL

Javier Pérez (UVa) Refactoring Planning 11-12 Dec 2008 16 / 28

Refactoring Planning

Hierarchical Task Network (HTN) Planning

method1

 precondition1

task1

task2 task3

...method2

 precondition2

task4 operator1

 precondition3

ADD DEL

Javier Pérez (UVa) Refactoring Planning 11-12 Dec 2008 16 / 28

Refactoring Planning

Hierarchical Task Network (HTN) Planning

method1

 precondition1

task1

task2 task3

...method2

 precondition2

task4 operator1

 precondition3

ADD DEL

Javier Pérez (UVa) Refactoring Planning 11-12 Dec 2008 16 / 28

Refactoring Planning

Hierarchical Task Network (HTN) Planning

method1

 precondition1

task1

task2 task3

...method2

 precondition2

task4 operator1

 precondition3

ADD DEL

Goal

Javier Pérez (UVa) Refactoring Planning 11-12 Dec 2008 16 / 28

Refactoring Planning

Hierarchical Task Network (HTN) Planning

method1

 precondition1

task1

task2 task3

...method2

 precondition2

task4 operator1

 precondition3

ADD DEL

Goal

Execute a task

Javier Pérez (UVa) Refactoring Planning 11-12 Dec 2008 16 / 28

Refactoring Planning

Smell Correction with HTN Planning

World’s state: AST represented by first order logic formulas

Operators: refactoring substeps

Tasks:
refactorings strategies
smell correction strategies

Goals: Execute a smell correction strategy

Planning Problem: Execute a particular smell correction strategy
over a particular version of a system

Javier Pérez (UVa) Refactoring Planning 11-12 Dec 2008 17 / 28

Planning for “Feature Envy”

Planning for “Feature Envy”

Javier Pérez (UVa) Refactoring Planning 11-12 Dec 2008 18 / 28

Planning for “Feature Envy”

HTN for “move method”

everything_ok

 not (isStatic (m))

 isReachable(target, m)

 not (callsSuper (m))

 not (isNameConflict (m, target)

move_method (Class source, Mehod m, Class target)

name_conflict

move_method_definition (Class source, Mehod m, Class target)

update_method_calls (Class source, Mehod m, Class target)

 not (isStatic (m))

 isReachable(target, m)

 not (callsSuper (m))

 isNameConflict (m, target)

move_method (Class source, Mehod m, Class target)

solve_name_conflict (Class source, Mehod m, Class target)

...

Javier Pérez (UVa) Refactoring Planning 11-12 Dec 2008 19 / 28

Planning for “Feature Envy”

HTN for “solve conflict”

solve_name_conflict (Class source, Mehod m, Class target)

rename_source

rename_target

remove_target

rename_method (Class source, Mehod m)

rename_method (Class target, Mehod m)

remove_unreferenced_method (Class target, Mehod m)

Javier Pérez (UVa) Refactoring Planning 11-12 Dec 2008 20 / 28

Planning for “Feature Envy”

HTN for “feature envy”

correct_feature_envy (Class c, Method m)

 Class target = whereToMove (c, m)

move_method_close_to_data

move_method (Class c, Mehod m, Class target)

Javier Pérez (UVa) Refactoring Planning 11-12 Dec 2008 21 / 28

Planning for “Feature Envy”

Planning for “feature envy”

correct_feature_envy (Printserver, formatSummary)

 whereToMove (Printserver, formatSummary) -> Document

move_method_close_to_data

move_method (Printserver, formatSummary, Document)

Javier Pérez (UVa) Refactoring Planning 11-12 Dec 2008 22 / 28

Planning for “Feature Envy”

Planning for “move method” 1

move_method (Printserver, formatSummary, Document)

everything_ok

 not (isStatic (formatSummary))

 isReachable(Document,formatSummary)

 not (callsSuper (formatSummary))

 not (isNameConflict (formatSummary, Document)

name_conflict

move_method (Printserver, formatSummary, Document)

solve_name_conflict (Printserver, formatSummary, Document)

 not (isStatic (formatSummary))

 isReachable(Document,formatSummary)

 not (callsSuper (formatSummary))

 isNameConflict (formatSummary, Document)

Javier Pérez (UVa) Refactoring Planning 11-12 Dec 2008 23 / 28

Planning for “Feature Envy”

Planning for “move method” 2

move_method (Printserver, formatSummary, Document)

solve_name_conflict (Printserver, formatSummary, Document)

remove_target

remove_unreferenced_method (Document, formatSummary)

move_method_definition (Class source, Mehod m, Class target)

update_method_calls (Class source, Mehod m, Class target)

 not (isStatic (formatSummary))

 isReachable(Document,formatSummary)

 not (callsSuper (formatSummary))

 not (isNameConflict (formatSummary, Document)

everything_ok

Javier Pérez (UVa) Refactoring Planning 11-12 Dec 2008 24 / 28

Planning for “Feature Envy”

Planning for “move method” 2

move_method (Printserver, formatSummary, Document)

solve_name_conflict (Printserver, formatSummary, Document)

remove_target

remove_unreferenced_method (Document, formatSummary)

move_method_definition (Class source, Mehod m, Class target)

update_method_calls (Class source, Mehod m, Class target)

 not (isStatic (formatSummary))

 isReachable(Document,formatSummary)

 not (callsSuper (formatSummary))

 not (isNameConflict (formatSummary, Document)

everything_ok

Javier Pérez (UVa) Refactoring Planning 11-12 Dec 2008 24 / 28

Conclusions and Future Work

Conclusions and Future Work

Javier Pérez (UVa) Refactoring Planning 11-12 Dec 2008 25 / 28

Conclusions and Future Work

Conclusions

Design smell management can keep being improved, working on
specification and automation of the correction activity.

To do that, correction strategies must be planned ahead for each
specific case.
This can be done with automated planning and specifically with
HTN planning:

HT networks can accommodate correction strategies, combining
procedural and non-deterministic searching.
HTN planning offers good balance between procedural execution
and non-determinism.
The planner can be incrementally extended, adding new methods
and improving the existing ones.

Javier Pérez (UVa) Refactoring Planning 11-12 Dec 2008 26 / 28

Conclusions and Future Work

Conclusions

Design smell management can keep being improved, working on
specification and automation of the correction activity.

To do that, correction strategies must be planned ahead for each
specific case.
This can be done with automated planning and specifically with
HTN planning:

HT networks can accommodate correction strategies, combining
procedural and non-deterministic searching.
HTN planning offers good balance between procedural execution
and non-determinism.
The planner can be incrementally extended, adding new methods
and improving the existing ones.

Javier Pérez (UVa) Refactoring Planning 11-12 Dec 2008 26 / 28

Conclusions and Future Work

Conclusions

Design smell management can keep being improved, working on
specification and automation of the correction activity.

To do that, correction strategies must be planned ahead for each
specific case.
This can be done with automated planning and specifically with
HTN planning:

HT networks can accommodate correction strategies, combining
procedural and non-deterministic searching.
HTN planning offers good balance between procedural execution
and non-determinism.
The planner can be incrementally extended, adding new methods
and improving the existing ones.

Javier Pérez (UVa) Refactoring Planning 11-12 Dec 2008 26 / 28

Conclusions and Future Work

Conclusions

Design smell management can keep being improved, working on
specification and automation of the correction activity.

To do that, correction strategies must be planned ahead for each
specific case.
This can be done with automated planning and specifically with
HTN planning:

HT networks can accommodate correction strategies, combining
procedural and non-deterministic searching.
HTN planning offers good balance between procedural execution
and non-determinism.
The planner can be incrementally extended, adding new methods
and improving the existing ones.

Javier Pérez (UVa) Refactoring Planning 11-12 Dec 2008 26 / 28

Conclusions and Future Work

Conclusions

Design smell management can keep being improved, working on
specification and automation of the correction activity.

To do that, correction strategies must be planned ahead for each
specific case.
This can be done with automated planning and specifically with
HTN planning:

HT networks can accommodate correction strategies, combining
procedural and non-deterministic searching.
HTN planning offers good balance between procedural execution
and non-determinism.
The planner can be incrementally extended, adding new methods
and improving the existing ones.

Javier Pérez (UVa) Refactoring Planning 11-12 Dec 2008 26 / 28

Conclusions and Future Work

Conclusions

Design smell management can keep being improved, working on
specification and automation of the correction activity.

To do that, correction strategies must be planned ahead for each
specific case.
This can be done with automated planning and specifically with
HTN planning:

HT networks can accommodate correction strategies, combining
procedural and non-deterministic searching.
HTN planning offers good balance between procedural execution
and non-determinism.
The planner can be incrementally extended, adding new methods
and improving the existing ones.

Javier Pérez (UVa) Refactoring Planning 11-12 Dec 2008 26 / 28

Conclusions and Future Work

Future Work

Implement refactoring specifications

Implement design smell correction strategies

Run experiments on real systems

Integrate the planer with other tools for:
refactoring dependencies computation
metrics computation
. . .

Javier Pérez (UVa) Refactoring Planning 11-12 Dec 2008 27 / 28

Conclusions and Future Work

Enabling Refactoring with HTN Planning to Improve
the Design Smells Correction Activity

Javier Pérez
jperez@infor.uva.es

www.infor.uva.es/∼jperez

Universidad de Valladolid

BENEVOL 2008
Dec 11-12 2008, Eindhoven

Javier Pérez (UVa) Refactoring Planning 11-12 Dec 2008 28 / 28

	Design Smell Correction
	Smell Example: Feature Envy
	Refactoring Planning
	Planning for ``Feature Envy''
	Conclusions and Future Work

