
Towards a Framework for Software Design Defects
Correction with Refactoring Plans

Javier Pérez
jperez@infor.uva.es

Universidad de Valladolid
Université de Mons-Hainaut

Fundamental Aspects of Software Evolution
FNRS Contact Group on Fundamental Computer Science

May 22nd 2008, University of Namur

Javier Pérez (UVa, UMH) A Framework for Refactoring Plans May 2008 1 / 31



Introduction

Introduction

Javier Pérez (UVa, UMH) A Framework for Refactoring Plans May 2008 2 / 31



Introduction

Software Design Defects

Definition
Design defects are “bad” solutions to recurring design problems in
object-oriented systems. Design defects are problems resulting from
bad design practices. They include problems ranging from high-level
and design problems, such as antipatterns, to low-level or local
problems, such as code smells. (Moha, 2008)

Why is important to deal with design defects?

Javier Pérez (UVa, UMH) A Framework for Refactoring Plans May 2008 3 / 31



Introduction

Software Design Defects

Definition
Design defects are “bad” solutions to recurring design problems in
object-oriented systems. Design defects are problems resulting from
bad design practices. They include problems ranging from high-level
and design problems, such as antipatterns, to low-level or local
problems, such as code smells. (Moha, 2008)

Why is important to deal with design defects?

Javier Pérez (UVa, UMH) A Framework for Refactoring Plans May 2008 3 / 31



Introduction

Software Design Defects

Definition
Design defects are “bad” solutions to recurring design problems in
object-oriented systems. Design defects are problems resulting from
bad design practices. They include problems ranging from high-level
and design problems, such as antipatterns, to low-level or local
problems, such as code smells. (Moha, 2008)

Why is important to deal with design defects?

Javier Pérez (UVa, UMH) A Framework for Refactoring Plans May 2008 3 / 31



Introduction

Software Design Defects

Definition
Design defects are “bad” solutions to recurring design problems in
object-oriented systems. Design defects are problems resulting from
bad design practices. They include problems ranging from high-level
and design problems, such as antipatterns, to low-level or local
problems, such as code smells. (Moha, 2008)

Why is important to deal with design defects?

Javier Pérez (UVa, UMH) A Framework for Refactoring Plans May 2008 3 / 31



Introduction

Software Design Defects

Definition
Design defects are “bad” solutions to recurring design problems in
object-oriented systems. Design defects are problems resulting from
bad design practices. They include problems ranging from high-level
and design problems, such as antipatterns, to low-level or local
problems, such as code smells. (Moha, 2008)

Why is important to deal with design defects?

Javier Pérez (UVa, UMH) A Framework for Refactoring Plans May 2008 3 / 31



Introduction

Software Design Defects

Definition
Design defects are “bad” solutions to recurring design problems in
object-oriented systems. Design defects are problems resulting from
bad design practices. They include problems ranging from high-level
and design problems, such as antipatterns, to low-level or local
problems, such as code smells. (Moha, 2008)

Why is important to deal with design defects?

Javier Pérez (UVa, UMH) A Framework for Refactoring Plans May 2008 3 / 31



Introduction

Software Design Defects

Definition
Design defects are “bad” solutions to recurring design problems in
object-oriented systems. Design defects are problems resulting from
bad design practices. They include problems ranging from high-level
and design problems, such as antipatterns, to low-level or local
problems, such as code smells. (Moha, 2008)

Why is important to deal with design defects?

Javier Pérez (UVa, UMH) A Framework for Refactoring Plans May 2008 3 / 31



Introduction

Motivation

Software evolution “happens”.
Software design decays:

changes are applied hastily
“design debt” appears (Kerievsky, Refactoring To Patterns)

Design decay can manifest through design defects, which affect
software quality factors:

maintainability
reusability
comprehensibility
. . .

Javier Pérez (UVa, UMH) A Framework for Refactoring Plans May 2008 4 / 31



Introduction

Motivation

Software evolution “happens”.
Software design decays:

changes are applied hastily
“design debt” appears (Kerievsky, Refactoring To Patterns)

Design decay can manifest through design defects, which affect
software quality factors:

maintainability
reusability
comprehensibility
. . .

Javier Pérez (UVa, UMH) A Framework for Refactoring Plans May 2008 4 / 31



Introduction

Motivation

Software evolution “happens”.
Software design decays:

changes are applied hastily
“design debt” appears (Kerievsky, Refactoring To Patterns)

Design decay can manifest through design defects, which affect
software quality factors:

maintainability
reusability
comprehensibility
. . .

Javier Pérez (UVa, UMH) A Framework for Refactoring Plans May 2008 4 / 31



Introduction

Software Design Defect Management

The ideal is to prevent design defects, but

. . . design defects appear, so

systematic ways to detect and correct design defects are needed.

Javier Pérez (UVa, UMH) A Framework for Refactoring Plans May 2008 5 / 31



Introduction

Software Design Defect Management

The ideal is to prevent design defects, but

. . . design defects appear, so

systematic ways to detect and correct design defects are needed.

Javier Pérez (UVa, UMH) A Framework for Refactoring Plans May 2008 5 / 31



Introduction

Software Design Defect Management

The ideal is to prevent design defects, but

. . . design defects appear, so

systematic ways to detect and correct design defects are needed.

Javier Pérez (UVa, UMH) A Framework for Refactoring Plans May 2008 5 / 31



Introduction

Software Design Defect Management

Techniques to detect design defects and to suggest design
changes are maturing:

Structural patterns to find defects (Moha, DECOR project)
Metrics to detect “bad smells” (Marinescu, 2006; Crespo et al.,
2005).
Formal/Relational Concept Analysis to propose reorganisation of
OO entities (Moha et al., 2006; Prieto et al., 2003).
Software inconsistency management (Mens, 2006)

The change suggestions given:
are not directly applicable over a system,
are usually given in terms of refactorings.

Javier Pérez (UVa, UMH) A Framework for Refactoring Plans May 2008 6 / 31



Introduction

Software Design Defect Management

Techniques to detect design defects and to suggest design
changes are maturing:

Structural patterns to find defects (Moha, DECOR project)
Metrics to detect “bad smells” (Marinescu, 2006; Crespo et al.,
2005).
Formal/Relational Concept Analysis to propose reorganisation of
OO entities (Moha et al., 2006; Prieto et al., 2003).
Software inconsistency management (Mens, 2006)

The change suggestions given:
are not directly applicable over a system,
are usually given in terms of refactorings.

Javier Pérez (UVa, UMH) A Framework for Refactoring Plans May 2008 6 / 31



Introduction

Refactorings to Correct Design Defects

Refactorings are structural transformations that can be applied to
a software system to perform design changes without modifying
its behaviour.
Current approaches to improve a system design with
refactorings focus in:

Individual refactoring steps.
Detecting refactoring opportunities.
Assisting the developer in executing the refactoring

Javier Pérez (UVa, UMH) A Framework for Refactoring Plans May 2008 7 / 31



Introduction

Refactorings to Correct Design Defects

Refactorings are structural transformations that can be applied to
a software system to perform design changes without modifying
its behaviour.
Current approaches to improve a system design with
refactorings focus in:

Individual refactoring steps.
Detecting refactoring opportunities.
Assisting the developer in executing the refactoring

Javier Pérez (UVa, UMH) A Framework for Refactoring Plans May 2008 7 / 31



Introduction Goals

Objective of a Defect Correction Framework

1 Instantiate defect removing suggestions into a correction plan
which could be effectively applied.

through refactorings, because systems’ behaviour should be
preserved.

Javier Pérez (UVa, UMH) A Framework for Refactoring Plans May 2008 8 / 31



Introduction Goals

Objective of a Defect Correction Framework

1 Instantiate defect removing suggestions into a correction plan
which could be effectively applied.

through refactorings, because systems’ behaviour should be
preserved.

Javier Pérez (UVa, UMH) A Framework for Refactoring Plans May 2008 8 / 31



Introduction Goals

Refactoring Plans

We pretend to introduce a new concept: Refactoring Plans

Definition
A Refactoring Plan will be a specification of a refactoring sequence
which matches a system redesign proposal, so that it can be
automatically executed to modify the system in order to obtain that
desirable system redesign without changing the system’s behaviour.

Javier Pérez (UVa, UMH) A Framework for Refactoring Plans May 2008 9 / 31



Introduction Goals

Refactoring Plans

We pretend to introduce a new concept: Refactoring Plans

Definition
A Refactoring Plan will be a specification of a refactoring sequence
which matches a system redesign proposal, so that it can be
automatically executed to modify the system in order to obtain that
desirable system redesign without changing the system’s behaviour.

Javier Pérez (UVa, UMH) A Framework for Refactoring Plans May 2008 9 / 31



Introduction Goals

Refactoring Plans

We pretend to introduce a new concept: Refactoring Plans

Definition
A Refactoring Plan will be a specification of a refactoring sequence
which matches a system redesign proposal, so that it can be
automatically executed to modify the system in order to obtain that
desirable system redesign without changing the system’s behaviour.

Javier Pérez (UVa, UMH) A Framework for Refactoring Plans May 2008 9 / 31



Introduction Goals

Refactoring Plans

We pretend to introduce a new concept: Refactoring Plans

Definition
A Refactoring Plan will be a specification of a refactoring sequence
which matches a system redesign proposal, so that it can be
automatically executed to modify the system in order to obtain that
desirable system redesign without changing the system’s behaviour.

Javier Pérez (UVa, UMH) A Framework for Refactoring Plans May 2008 9 / 31



Introduction Goals

Refactoring Plans

We pretend to introduce a new concept: Refactoring Plans

Definition
A Refactoring Plan will be a specification of a refactoring sequence
which matches a system redesign proposal, so that it can be
automatically executed to modify the system in order to obtain that
desirable system redesign without changing the system’s behaviour.

Javier Pérez (UVa, UMH) A Framework for Refactoring Plans May 2008 9 / 31



Introduction Goals

Refactoring Plans

We pretend to introduce a new concept: Refactoring Plans

Definition
A Refactoring Plan will be a specification of a refactoring sequence
which matches a system redesign proposal, so that it can be
automatically executed to modify the system in order to obtain that
desirable system redesign without changing the system’s behaviour.

Javier Pérez (UVa, UMH) A Framework for Refactoring Plans May 2008 9 / 31



Introduction Goals

Refactoring Plans

We pretend to introduce a new concept: Refactoring Plans

Definition
A Refactoring Plan will be a specification of a refactoring sequence
which matches a system redesign proposal, so that it can be
automatically executed to modify the system in order to obtain that
desirable system redesign without changing the system’s behaviour.

Javier Pérez (UVa, UMH) A Framework for Refactoring Plans May 2008 9 / 31



Introduction Goals

Goals of a Framework for Refactoring Plans

1 Support to automatic or assisted generation of refactoring
plans

2 To provide very high level (big) refactorings for design
improvement, using refactoring plan generation altogether with the
defect detection techniques that suggest redesign proposals.

Javier Pérez (UVa, UMH) A Framework for Refactoring Plans May 2008 10 / 31



Introduction Goals

Goals of a Framework for Refactoring Plans

1 Support to automatic or assisted generation of refactoring
plans

2 To provide very high level (big) refactorings for design
improvement, using refactoring plan generation altogether with the
defect detection techniques that suggest redesign proposals.

Javier Pérez (UVa, UMH) A Framework for Refactoring Plans May 2008 10 / 31



Design Defect Correction

Design Defect Correction

Javier Pérez (UVa, UMH) A Framework for Refactoring Plans May 2008 11 / 31



Design Defect Correction

General Defect Correction Process

Javier Pérez (UVa, UMH) A Framework for Refactoring Plans May 2008 12 / 31



Design Defect Correction

Goals of a Framework for Refactoring Plans

1 Support to automatic or assisted generation of refactoring
plans

2 To provide very high level (big) refactorings for design
improvement, using refactoring plan generation altogether with the
defect detection techniques that suggest redesign proposals.

Javier Pérez (UVa, UMH) A Framework for Refactoring Plans May 2008 13 / 31



Design Defect Correction

Goals of a Framework for Refactoring Plans

1 Support to automatic or assisted generation of refactoring
plans

2 To provide very high level (big) refactorings for design
improvement, using refactoring plan generation altogether with the
defect detection techniques that suggest redesign proposals.

Javier Pérez (UVa, UMH) A Framework for Refactoring Plans May 2008 13 / 31



Design Defect Correction

A Framework sketch

Software System

Software Entity

1

1..*

Design Defect Definition
1..* 1

Defect Symptom
1..* 1..*

Metric Symptom Lexical/Semantic SmptomStructural Symptom

0..*1..*

Defect Correction Strategy

Behaviour-Preserving Change

Non Behaviour-Preserving

Refactoring Suggestion

Refactoring Plan

1..*

0..*

Automated Refactorings

0..*

1..*

Non-Automated Refactorings

Class Interface

Instance Methods Instance Variables

Detected Defect

1..*

1..*

Change

0..*

0..*

1..*

1..*

Javier Pérez (UVa, UMH) A Framework for Refactoring Plans May 2008 14 / 31



Generating Refactoring Plans

Generating Refactoring Plans

Javier Pérez (UVa, UMH) A Framework for Refactoring Plans May 2008 15 / 31



Generating Refactoring Plans Problem description

Refactoring Plan Questions

Given a software system as the source of the transformation, a
redesign proposal, and a set of refactorings that can be used
as transformation operations:

1 Does a refactoring plan, which transforms the source, according to
the redesign proposal, using the provided refactorings, exist?

additional non-refactoring transformations could be needed
2 When a refactoring plan exists, can it be generated and executed

automatically?
How to deal with a semi-automated solution, with additional user
input?

Javier Pérez (UVa, UMH) A Framework for Refactoring Plans May 2008 16 / 31



Generating Refactoring Plans Problem description

Refactoring Plan Questions

Given a software system as the source of the transformation, a
redesign proposal, and a set of refactorings that can be used
as transformation operations:

1 Does a refactoring plan, which transforms the source, according to
the redesign proposal, using the provided refactorings, exist?

additional non-refactoring transformations could be needed
2 When a refactoring plan exists, can it be generated and executed

automatically?
How to deal with a semi-automated solution, with additional user
input?

Javier Pérez (UVa, UMH) A Framework for Refactoring Plans May 2008 16 / 31



Generating Refactoring Plans Problem description

Refactoring Plan Questions

Given a software system as the source of the transformation, a
redesign proposal, and a set of refactorings that can be used
as transformation operations:

1 Does a refactoring plan, which transforms the source, according to
the redesign proposal, using the provided refactorings, exist?

additional non-refactoring transformations could be needed
2 When a refactoring plan exists, can it be generated and executed

automatically?
How to deal with a semi-automated solution, with additional user
input?

Javier Pérez (UVa, UMH) A Framework for Refactoring Plans May 2008 16 / 31



Generating Refactoring Plans Problem description

Subproblems

We have divided the problem of automatic generation of
refactoring plans in:

Definition and formalization of the “Refactoring Plan” concept
Representation of Software
Formalization of Refactorings
Elaboration of techniques to obtain refactoring plans

Javier Pérez (UVa, UMH) A Framework for Refactoring Plans May 2008 17 / 31



Generating Refactoring Plans Refactoring Representation

Formalising Refactorings

Any refactoring formalization method must allow:
to deal with system structure.
to check behaviour preserving conditions.

We will use Graph Transformations because:
Representing and managing structural information is
straightforward with graphs.
This approach has already been validated (Mens et al., 2005).

With Graph Transformation:
Software is represented as graphs.
Refactorings are represented as graph transformation rules.

Other refactoring formalization approaches:
First Order Logic (Kniessel, Köch, 2002).

Javier Pérez (UVa, UMH) A Framework for Refactoring Plans May 2008 18 / 31



Generating Refactoring Plans Refactoring Representation

Example of a Graph Transformation Rule

C

P
2

4

M
1

p

t

I
3

i*

C

P
2

4

M
1

p t

I
3

i*

Left Hand Side Right Hand Side

Javier Pérez (UVa, UMH) A Framework for Refactoring Plans May 2008 19 / 31



Generating Refactoring Plans Software Representation

Software Representation: Program Graphs

A graph representation for Object-Oriented Software is needed.
We must represent:

elements of OO paradigm (classes, fields, methods, ...)
structural relationships
method bodies

We have chosen the software representation part from the
refactoring formalization of (Mens et al., 2005). This
representation:

uses directed type graphs.
is language independent, lacking specific language constructions.
has been simplified to be as flexible as possible.

Javier Pérez (UVa, UMH) A Framework for Refactoring Plans May 2008 20 / 31



Generating Refactoring Plans Software Representation

Software Representation: Program Graphs

A graph representation for Object-Oriented Software is needed.
We must represent:

elements of OO paradigm (classes, fields, methods, ...)
structural relationships
method bodies

We have chosen the software representation part from the
refactoring formalization of (Mens et al., 2005). This
representation:

uses directed type graphs.
is language independent, lacking specific language constructions.
has been simplified to be as flexible as possible.

Javier Pérez (UVa, UMH) A Framework for Refactoring Plans May 2008 20 / 31



Generating Refactoring Plans Software Representation

Software Representation: Java Program Graphs

C M MD

E

P

VVD

t

p

u a

e

c

1

1

pt

i

m

l

l

m

u

a

e

Javier Pérez (UVa, UMH) A Framework for Refactoring Plans May 2008 21 / 31



Generating Refactoring Plans Software Representation

Software Representation: Java Program Graphs

For real systems, it is necessary to extend the graph format,
adding:

elements for specific languages
more detailed representation of method bodies

We have extended program graphs for Java: Java Program
Graphs.
Our graph representation format adds:

Java concepts such as visibility, interfaces, packages, . . .
More detailed representation of method bodies, with new node
types, attributes and relationships.

Javier Pérez (UVa, UMH) A Framework for Refactoring Plans May 2008 22 / 31



Generating Refactoring Plans Software Representation

Software Representation: Java Program Graphs

For real systems, it is necessary to extend the graph format,
adding:

elements for specific languages
more detailed representation of method bodies

We have extended program graphs for Java: Java Program
Graphs.
Our graph representation format adds:

Java concepts such as visibility, interfaces, packages, . . .
More detailed representation of method bodies, with new node
types, attributes and relationships.

Javier Pérez (UVa, UMH) A Framework for Refactoring Plans May 2008 22 / 31



Generating Refactoring Plans Software Representation

Software Representation: Java Program Graphs

For real systems, it is necessary to extend the graph format,
adding:

elements for specific languages
more detailed representation of method bodies

We have extended program graphs for Java: Java Program
Graphs.
Our graph representation format adds:

Java concepts such as visibility, interfaces, packages, . . .
More detailed representation of method bodies, with new node
types, attributes and relationships.

Javier Pérez (UVa, UMH) A Framework for Refactoring Plans May 2008 22 / 31



Generating Refactoring Plans Software Representation

Software Representation: Java Program Graphs

Package

name : String

Class

isFinal : boolean
Interface

implements
0..* 0..*

Variable

name : String
visibility : String
isAbstract : boolean
isStatic : boolean
isFinal : boolean

Operation

name : String
visibility : String
isAbstract : boolean
isStatic : boolean
isFinal : boolean

Parameter

MethodBody

binding
0..* 1belongsTo

0..* 0..1

belongsTo

1
0..*belongsTo

0..*

1
belongsTo

0..*

0..1

Literal

value : String

type

0..*

1

Expression

belongsTo
0..*

0..1

expression

0..*

{ordered}

0..*

Access

this : boolean

Call

this : boolean
super : boolean

Operator

name : String

Update

this : boolean

Instantiation

{incomplete}

Return Block

belongsTo

1

1

ActualParameters

expression
1

0..1

Classifier

name : String
visibility : String
isAbstract : boolean

belongsTo
1 1..*

imports

0..*

0..*

extends

0..*

0..*

type

0..*

1 type
0..1

0..*

type
1

0..*

parameter
1

0..*
{ordered}

link

0..1

0..*

link

0..*

0..1

link

0..*

0..1

link

0..*

0..1

link

0..*

0..1

belongsTo

0..1

0..*

link

1

0..1

{ordered}

expression

1

1..*

{ordered}

Javier Pérez (UVa, UMH) A Framework for Refactoring Plans May 2008 23 / 31



Generating Refactoring Plans Software Representation

Possible Approaches to Obtain Refactoring Plans

We are exploring two aproaches:
Searching forwards
Searching backwards

Javier Pérez (UVa, UMH) A Framework for Refactoring Plans May 2008 24 / 31



Generating Refactoring Plans Software Representation

Searching forwards

approach
Suggested changes are turned into a simplified version of the
sstem’s desirable design.
Available refactorings are applied in a state space search way.
Refactoring pre and postconditions guide the search.

Advantages
Every possible path is being explored
Relatively easy to implement

Problems
Size of the state space
Possible infinite process

Javier Pérez (UVa, UMH) A Framework for Refactoring Plans May 2008 25 / 31



Generating Refactoring Plans Software Representation

Searching Backwards

approach
Dependencies between refactorings are computed
Iteratively, refactorings which enable the application of the desired
change are added to the plan.

Advantages
More efficient than searching backwards

Problems
More difficult to implement with current Graph Transformation tools

Javier Pérez (UVa, UMH) A Framework for Refactoring Plans May 2008 26 / 31



Generating Refactoring Plans Software Representation

Open questions

Can complex refactorings be represented and analysed with
current GT tools?

Can searching be reduced to finite process?

Javier Pérez (UVa, UMH) A Framework for Refactoring Plans May 2008 27 / 31



Conclusions and Future Work

Conclusions and Future Work

Javier Pérez (UVa, UMH) A Framework for Refactoring Plans May 2008 28 / 31



Conclusions and Future Work

Conclusions

Automatic generation of refactoring plans will provide very high
level refactorings to improve the design of existing code.

The Main subproblems and the research strategy have been
introduced.
Graph transformation can be used as the underlying formalism,
specifically the programmed graph rewriting approach.

Representing Java programs with Java Program Graphs.
The graph transformation formalism could provide support to
refactorings formal analysis, enabling searching for refactoring
plans.

Javier Pérez (UVa, UMH) A Framework for Refactoring Plans May 2008 29 / 31



Conclusions and Future Work

Conclusions

Automatic generation of refactoring plans will provide very high
level refactorings to improve the design of existing code.

The Main subproblems and the research strategy have been
introduced.
Graph transformation can be used as the underlying formalism,
specifically the programmed graph rewriting approach.

Representing Java programs with Java Program Graphs.
The graph transformation formalism could provide support to
refactorings formal analysis, enabling searching for refactoring
plans.

Javier Pérez (UVa, UMH) A Framework for Refactoring Plans May 2008 29 / 31



Conclusions and Future Work

Conclusions

Automatic generation of refactoring plans will provide very high
level refactorings to improve the design of existing code.

The Main subproblems and the research strategy have been
introduced.
Graph transformation can be used as the underlying formalism,
specifically the programmed graph rewriting approach.

Representing Java programs with Java Program Graphs.
The graph transformation formalism could provide support to
refactorings formal analysis, enabling searching for refactoring
plans.

Javier Pérez (UVa, UMH) A Framework for Refactoring Plans May 2008 29 / 31



Conclusions and Future Work

Future Work

Main future tasks will be directed to:
Further definition of the “Refactoring Plan” concept.
Explore the expressivenss of GT tools
Analyse termination and correctness conditions of the searching
approaches.

Javier Pérez (UVa, UMH) A Framework for Refactoring Plans May 2008 30 / 31



Conclusions and Future Work

Towards a Framework for Software Design Defects
Correction with Refactoring Plans

Javier Pérez
jperez@infor.uva.es

Universidad de Valladolid
Université de Mons-Hainaut

Fundamental Aspects of Software Evolution
FNRS Contact Group on Fundamental Computer Science

May 22nd 2008, University of Namur

Javier Pérez (UVa, UMH) A Framework for Refactoring Plans May 2008 31 / 31


	Introduction
	Goals

	Design Defect Correction
	Generating Refactoring Plans
	Problem description
	Refactoring Representation
	Software Representation

	Conclusions and Future Work

