Towards a Framework of Software Design Defects
Correction with Refactoring Plans

Javier Pérez

May 12, 2008

Abstract

Software evolution is a fundamental part of the software develop-
ment process, which usually results in an increase of software entropy
and, as a consequence, in the decay of software structure. The most de-
sirable approach would be to prevent this, but a systematic technique
to detect and correct software design defects once they have appeared
is still obviously needed.

Much work is being done to develop techniques for detection of
software design defects, using metrics, structure analysis, etc., which
have been proved to be very useful in revealing defects and in suggest-
ing changes to reduce or to remove them. A convenient way to present
these suggestions is through proposals of transformations which pre-
serve the observable behaviour of the system, well known as refactor-
ings. The problem is that it is rare that the preconditions of the desired
transformations could be fulfilled by the system’s source code at its
current state, this means that additional transformations are needed
in order to “prepare” the system for the desired evolution. Therefore,
suggesting refactorings is not enough to allow systematic correction of
design defects.

We define refactoring plans as the specification of a refactoring
sequence that matches a system redesign proposal and that can be
executed over the current system’s source code. Formal theories, such
as graph transformation, can be used to analyse a set of available
refactorings, within a context defined by the current system’s source
code and a redesign proposal, in order to obtain the refactoring plan.



