
Feature Patterns and Multi-Paradigm Variability

Models

(GIRO Technical Report 2008/01-v0.91)

Miguel A. Laguna, Bruno González-Baixauli, José M. Marqués, Rubén Fernández

Department of Computer Science, University of Valladolid,

Campus M. Delibes, 47011 Valladolid, Spain

{mlaguna, bbaixauli, jmmc, luifern}@infor.uva.es

Abstract: One of the most important issues in the development of software

product lines is the elicitation, management, and representation of the

variability. In this context, feature models are the basic instrument to analyze

and configure the variability and communality of the product line. But a feature

model can be considered as an amalgamation of various different variability

models (structural, behavior, non functional, or platform variability aspects are

combined in a single model). The separation of these different facets can help in

the development of the product line. Features, as core model, can be completed

with other techniques (i.e. goals or some UML models) for expressing diverse

aspects of the variability. The second part of the article explores the

possibilities of identifying patterns in the feature models and relates these

patterns with the correspondent architectural counterparts. If we define a feature

patterns catalog, the automated creation of traceability links between the

product line models is possible and hence the productivity in the development

process of the product line will be enhanced. This approach allows proceeding

in several stages, using the appropriate paradigms (goals, features, package

models, platforms…) in each phase of the process. The global picture is a

sequence of model transformations from goal/requirements to features and from

both to the architecture (a set of UML models). The conclusion is positive as

the combination of paradigms makes more straightforward the development

process of the product line.

1 Introduction

The development of software product lines (PL) faces many technical and

organizational trends, in spite of its success in the reuse field [2, 6]. The development

of a product line involves two main categories of software artifacts: the artifacts

shared by the members of the product line and the product-specific artifacts. The

product line itself is a set of reusable assets, where three abstraction levels can be

clearly identified (requirements, design and implementation assets). In the

requirement level, one of the key activities is the specification of the variability and

communality of the product line. The design of a solution for these requirements

constitutes the domain architecture of the product line. Later, in the application

engineering process, the application architecture must be derived from the domain

architecture. In this process the customer functional and non-functional requirements

for a particular application are used for choosing among alternative features. This

activity is essentially a transformation process where a set of decisions at the

requirements level generates the initial feature product model and, consequently, via

traceability paths, the architecture of the product [2].

Therefore, one of the most critical points is the elicitation and analysis of

variability in the product line requirements. In addition to the information that

expresses the requirements themselves, it is important to know the variability of the

requirements, and the dependencies between them. In this context, feature models are

the basic instrument to analyze and configure the variability and communality of the

software family. But although its effectiveness has been proven in many projects,

these models are oriented to the solution more than to requirements. On the other

hand, not only the functionality but also non-functional or platform specific aspects

must be taken into account. Consequently, the use of the feature diagrams as a

monolithic tool over-simplifies and limits the potential of the technique. We propose

to use additionally techniques of Goal Oriented Requirements Engineering and Model

Driven Engineering (MDE). This proposal assumes that more than a unique view is

needed to express the diverse variability aspects of a product line.

The Goal Oriented Requirements Engineering proposes an explicit modeling of the

intentionality of the system (the “whys”). Intentionality has been widely recognized

as an important point of the system, but it is not usually modeled. The main

advantages of the goal-oriented approach are that it can be used to study alternatives

in software requirements (it uses AND/OR models for the different alternatives) and

that it can easily relate functional and non-functional requirements (NFR). A goal is

an objective that the system under consideration should achieve [32]. There are two

types of goals: (hard) goals and soft-goals: goal satisfaction can be established

through verification techniques, but soft-goal satisfaction cannot be established in a

clear-cut sense (it is usually used to model non-functional characteristics of the

system) [32]. The dependence between goals and soft-goals can be established. The

NFR framework defines these correlations [4].

Energy Efficiency

Light only

Used Room

Use Natural Light

Energy EfficiencyEnergy Efficiency

Light only

Used Room

Light only

Used Room

Use Natural LightUse Natural Light

Usability

Allow Selection Easy to Use

UsabilityUsability

Allow SelectionAllow Selection Easy to UseEasy to Use

OR

Web Panel

Fixed Panel

OR

Remote Panel

Control Panel

Web PanelWeb Panel

Fixed PanelFixed Panel

OR

Remote PanelRemote Panel

Control PanelControl Panel

Switch ON

Switch OFF

AND

Manually

Switch ONSwitch ON

Switch OFFSwitch OFF

AND

ManuallyManually

Voice InterfaceVoice Interface

No RecognitionNo Recognition

OR

AutomaticallyAutomaticallyAdjust

Lights

Adjust

Lights

User IDUser ID

AND

AND

Energy Efficiency

Use Natural Light Light only

Used Rooms

Usability

Allow Selection Easy to Use

OR

Control Panel

Manually

Automatically

Adjust

Lights

+

++ -
+

-

-- ++ + +

++
-

Energy EfficiencyEnergy Efficiency

Use Natural LightUse Natural Light Light only

Used Rooms

Light only

Used Rooms

UsabilityUsability

Allow SelectionAllow Selection Easy to UseEasy to Use

OR

Control PanelControl Panel

ManuallyManually

AutomaticallyAutomatically

Adjust

Lights

Adjust

Lights

+

++ -
+

-

-- ++ + +

++
-

AND

AND

Fig. 1 Variability in goals and soft-goals: Goals (ellipses) and soft-goal (clouds) model for

a PDA writing methods and correlation between them

Model Driven Engineering (MDE) is a recent paradigm that bases the software

development in models and their transformation to code. The best known approach is

Model Driven Architecture (MDA). MDA was introduced by the Object Management

Group (OMG) and is based on the Platform Independent Model (PIM) concept, a

specification of a system with independence of platforms (e.g. .NET, or J2EE) [27].

The PIM must be transformed into a Platform Specific Model (PSM) [27]. As the

main strength of MDE paradigm is the manipulation of models, it is very convenient

use its techniques to define the transformations between feature, goal, and UML

models of a product line. The aim is to develop the product line (and in parallel each

particular product) in several stages, using the appropriate model (goals, features,

platforms…) in each phase of the process. The global picture is a sequence of model

transformations from goal/requirements to features and from both to the architecture

(a set UML models). This approach requires the establishment of precise rules, using

meta-modeling and transformations techniques. To establish these rules, the recurring

patterns in the goal and feature models must be discovered. All the previous work

done in these fields must serve to improve the productivity in the product line

development process.

 The rest of the paper is as follows: The next discusses the separation of the

variability model in several views, enabling to work in several abstraction levels

(goals, features, platform independent, and platform specific models). Section 3

identifies the basic patterns that can be found in feature models. The result is a catalog

or feature patterns and their corresponding architectural and behavioral UML models.

Section 4 shows the utility of the MDE approach on automate these transformations.

Section 5 describes the feature modeling tool we have developed in order to automate

these transformations.Section 6 presents related work and Section 7 concludes the

paper and proposes additional work.

2 Multi-paradigm Product Line Requirements

Originally the Feature Oriented Domain Analysis (FODA) [20] proposed features

as the basis for analyzing and representing commonality and variability of

applications in a domain. A feature represents a system characteristic realized by a

software component. There are four types of features in feature modeling: Mandatory,

Optional, Alternative, and Or (Figure 2). A Mandatory feature must be included in

every member of a product line family as long as its parent feature is included; an

Optional feature may be included if its parent is included; exactly one feature from a

set of Alternative features must be included if a parent of the set is included; any non-

empty subset of an Or feature set can be included if a parent feature is included. From

this initial version, several improvements have been proposed (see [29, 30] for a

comparison). In particular a (min:max) cardinality can be used for both ends of the

parent/child relations: Mandatory (1:1) and Optional (0:1) are associated with the

child part of the relation; Alternative (1:1) and Or (1:n) are associated with the parent

part of the relation (referring to a group of n sub-features). As a natural extension, the

general cardinality (m, n) can indicate mixed type of feature decompositions. Other

extensions [1] add an atomic kind of feature (some of the leaves of the feature tree)

with attribute value (String, Integer, etc.). This aspect is interesting if we seek to

transform feature diagrams into architectural models. Schobbens et al. [30] have

established a formal semantic that covers all the variants of feature diagrams,

clarifying most of the ambiguities of the different versions.

Fig. 2 Basic FODA constructions

But actually the original idea of feature models tries to cover simultaneously

different variability models: it represents structural or domain variability, behavior

variability, non functional variability, platform variability, etc. The differentiation of

these different aspects, keeping them in separate models as complementary views, can

improve the development of the product line. Other techniques apart from feature

diagrams are better at expressing different aspects of variability, while the feature

model acts better as the central piece of the puzzle that connect the rest of the models.

It is as well the best tool for the latter configuration process.

FODA [20] and FORM [19] classify the commonality and variability aspects in:

• The capabilities of applications in a domain from the perspective of the user.

They are user visible characteristics that can be identified as services,

operations, or non-functional characteristics.

• The operating environments (hardware and software platforms, including

operating systems) in which applications are used and operated.

• The application domain technology based on which requirements decisions are

made (including laws, standardization, business rules).

• The implementation techniques (algorithms or data structures).

Jarzabek [17] reorganizes the product line requirements in features and quality

attributes (NFR). The former can be categorized into behavioral requirements and

design decisions:

• Behavioral requirements represent functionality or services. They describe

how the system should react to particular inputs and how the system should

behave in particular situations.

• Design decision can be categorized into domain technology, implementation

techniques and operating environment, in a way similar to FODA.

These different types and sub-types of features can be studied separately. The

proposal is to use the best available technique for each aspect, in order to optimize the

elicitation and representation of the variability. Figure 3 shows how the combination

of techniques and paradigms can serve to this intention.

Fig. 3 Combination of paradigms in variability analysis

The FODA capabilities category of features includes very different aspects: the

structural aspect that can be represented by classical domain models (class diagrams);

the behavior facets that can be expressed by use case models; or the non-functional

characteristics that can be analyzed better with soft-goals models. Soft-goals are

specifically a technique to introduce the non-functional aspects in the elicitation and

analysis of the requirements. The high level features represent in many occasions the

aims of the product line and can be represent better as (hard) goals models, conceived

specifically as a way of introducing intentionality. Consequently, these goals and soft-

goals will allow introduce a rationale basis in the selection of variants during the

product derivation process. Of course, a set of traceability links between soft-goals,

goals, features, and UML models must be carefully established. A tool that can

evaluate these goals and soft-goals models automatically with respect to the customer

preferences has been built to support this approach [13]. In short, we propose to limit

the use of feature models to express structural and functionally variability.

The main function of the feature model is to connect the rest of the techniques and

to allow the derivation from more abstract to more refined models. The features relate

all the views of the product line requirements: pure requirement models (goal, use

cases, constraints and business rules) but also specification models (domain and

architectural design models). An obvious consequence is that the feature category is

valuable information that can be added to the feature diagrams. In fact, nothing

prevents us of assigning several categories to the same feature, associating it with

behavioral o structural models (think in a feature group for payment types: the feature

group can imply simultaneously a specialization class structure and a use case

diagram with extend relationships).

The UML models are conventional diagrams that are organized in packages. Apart

from the base package, each optional feature must have a counterpart in a package

which includes the set of class diagrams, use cases and sequence diagrams that are the

solution that achieve this feature. The packages are related using the UML package

merge mechanism. In [22], we explained the application of this technique to the

organization and configuration of the product line architecture.

The platform variants must be considered in a second stage, as most of the

variation points are independent of the operating environment. In the MDE/MDA

paradigm, the main contribution is the separation of the PIM (platform independent

model) from the PSM (platform specific model). This approach implies that the

operating environment category of features must be analyzed in second term, after the

capabilities features have been considered.

Finally the last two groups of features (application domain and implementation

techniques) are too specific to introduce significant differences in the general

variability analysis. Algorithm implementation details or legal constraints are

important information about the common aspects of the product line but not in general

from the point of view of the variability analysis.

Therefore, the image of the Figure 1 emerges, as combination of several

paradigms:

• The goal (hard goals essentially) models represent the intention of the product

line, i.e. the high level objectives the application must solve. The soft-goals of

goal models represent the non-functional characteristics. These can be used

with the hard-goals contribution information to configure the optimal solution

for a concrete application in the product line.

• The feature model represents the end-user functional requirements, connected

with the hard goals of the goal models.

• The UML models organize the architecture specification of the product lines,

connected with the feature model.

• The features that configure the operating environment must be considered in a

later stage, as we adopt the MDE paradigm of separation of the PIM/PSM

models.

• The information about the details of frameworks, platforms, etc. is kept apart

from the platform independent models.

Fig. 4 Combination of paradigms in the application derivation process of a product line

Once the product line is developed, the process of product derivation can be

described. The goals selected in the high level configuration process determine the

features configuration. This configuration leads to the UML models that define the

initial product architecture (class diagrams that represent the concrete domain model

of the configured application and a set of use cases that represents the behavior of the

application from the user viewpoint). The Figure 2 shows the schematic view of the

process of configuration of an application: First, using the tool described in [13] we

find the optimal combination of goals and soft-goals for the satisfaction of the

customer needs. This combination originates the configuration of the feature

application model and this last yield the package configuration for the concrete

application with the basic architecture. These steps can be totally automated. From

here, the two alternative ways are open: manually complete the application o use a

MDA code generation tool. The experiences so far consist of manually adding the

user interface and persistence details to the UML package models. The platform

specific models are based in Microsoft .NET as this platform allows implementing

directly the concept of package merge using C# partial classes. This manual approach

has been successfully applied to the development of several product lines in the Web

and mobile applications domains. An alternative under study is to use code generation

tools as AndroMDA or Bridge Point. In this approach, the selected packages are first

merged (using MDE transformation tools) and the resulting product model is

processed by the generation tool.

But the productivity (and the complexity in non trivial product lines) demands to

automate the construction and configuration of the diverse product line models, as the

MDE paradigm advocates. The transformation from goal to feature model has been

treated by Yu et al. in their work on Goal-Oriented requirement engineering [35, 36].

Basically they use a catalog of goal patterns and their corresponding feature

constructions. The next section deals with the analogous transformation of the feature

models (basically the functional and structural category of features) into architecture

level models, including the package organization and a first cut of the package

contents.

3 Feature Patterns

Once the feature diagram of a product line is established, several design level UML

models must be developed. Our intention is to build a catalog of commonly used

derivations of feature to UML models. A revision of the literature has revealed that it

is naive to pretend a simple and univocal transformation from feature models to UML

diagrams. Therefore, we have adopted a pragmatic and multi-view approach: separate

the different categories of features in a variability model and treat each of these

categories in a different way. Sochos et al. [31] have reviewed recently the

approaches apart from proposing a new one. The classical works of Kang and Lee

[19, 20, 23], Czarnecky [8], Griss et al. [14], or Bosh [2], between others have

allowed to identify a set of feature patterns that potentially can populate the catalog.

We use in this and the next section a selection of examples extracted from a large

case study described in [23], from different points of view, using feature models, class

models and activity diagrams. In particular, it is an electronic commerce product line

and includes a great number of optional features and, in consequence, a large number

of possible derived products. The feature tool used is the fmp eclipse plug-in

developed in the Waterloo University [1] and an adapted version of a conventional

UML CASE tool.

We differentiate two kinds of transformations: the structural information is mapped

to class diagrams and the behavioral features are connected with use case diagrams.

We can annotate the features as structural or behavioral oriented. Many features can

represent both facets and consequently the annotations are not exclusive.

Consider the simplest situation. A feature AND construction that represents

structural information can be directly transformed into classes and attributes (Figure

5). In the Czarnecki meta-model approach we base our models [10], the features are

typed. The type can be a simple type or a FEATURE type itself. The key aspect is that

the leaves of the tree can be features with information about simple types (Czarnecki

uses String, Integer, etc.; we use some more elemental types as Date, Time, Money,

directly translatable to conventional programming languages) and in these cases a

simple typed feature is mapped into an attribute of a parent class.

RegistrationInfo

Login (String)

CreditCardInfo

LoginCredentials

ShippingAdress (String)

CardNumber (String)

Password (String)

CardName (String)

0..1

0..1

1..1

0..1

BillingAdress (String)

ExpiryDate(Date)

SecurityInfo (String)

0..1

RegistrationInfo

+ShippingAdress: String[0..1]
+BillingAdress: String[0..1]

LoginCredentials

+login: String
+password: String

CreditCardInfo

+CardName: String
+CardNumber: String

+ExpiryDate: Date
+SecurityInfo: String[0..1]

0..1

Fig. 5 Structural feature model fragment and the corresponding mapped design equivalent

The situation where the leaf is not an atomic feature (or simply is an intermediate

node in the tree) requires a little more complicate solution. The general mapping is to

create a class that represents the feature (more details will be added during the

posterior refinement of the domain model). The mandatory features imply a 1..1

composition relationship and the optional features imply a 0..1 composition

relationship. The Figure 5 includes some examples of both circumstances: CreditCard

is a class that represents optional information in the class model; LoginCredentials

represents compulsory information of the sale.

This supposes the identification of several simple patterns in feature models:

• The presence of a mandatory feature of default FEATURE type originates a

class that is associated (with a 1..1 multiplicity) with another class that

represents the parent feature.

• The presence of an optional feature of default FEATURE type originates a

class that is associated (with a 0..1 multiplicity) with another class that

represents the parent feature.

• The presence of a mandatory feature of a simple type, (INTEGER, STRING,

DATE…, i.e. any type different of default FEATURE type) originates an

attribute in a class that represents the parent feature.

• The presence of an optional feature defined by a simple type originates an

optional attribute (represented by the UML attribute multiplicity information)

in a class that represents the parent feature.

Summing up, the structure of classes/attributes connected by a 1..1 or 0..1

multiplicity association or composition relationships reflects the original structure of

features. Examples of these patterns can be observed in Figured 5.

The most common architectural equivalence of the grouped features (alternative

and OR groups) is based in inheritance. Really, a combination of generalization and

composition relationships is needed to differentiate alternative from OR patterns.

Both variants have initially a common treatment in the correspondent class diagram

structure: A composition relationship indicates if the selection of one o several sub-

features is compulsory (minimum multiplicity equal or greater than one) or optional

(minimum multiplicity equal to zero). The composition maximum multiplicity

differentiates the OR relation (maximum multiplicity greater than one) from the pure

alternative relation (maximum multiplicity exactly equal to one).

CheckOut

Registered

ShippingOptions

CheckOutType

TaxationOptions

PaymentGateways

CreditCard

0..1

1..1

0..1

ElectronicCheque
FraudDetection

PaymentTypes

1..1 PaymentOptions

DebitCard

PurchaseOrder

1..4

1..1

Guest

CustomPGVerisign

0..2

Fig. 6 Structural feature model fragment with examples of alternative and OR feature

constructions

The Figure 6 shows an example of both variants. The CheckOut feature has always

a CheckOutType, but this must be (in a concrete application) a Registered CheckOut

or, alternatively, a Guest CheckOut. The two variants can’t be implemented

simultaneously in a concrete application. This is reflected in the composition

relationship shown in Figure 7: only one instance of type CheckOutType can be

connected to a CheckOut instance. This is a polymorphic composition, frequent in

object oriented models. However the variant of the PaymentTypes feature implies that

more than one feature can be selected (but one of this must be always the CreditCard

payment type). The multiplicity 1..4 of the composition relationship states this

possibility. Finally, the PaymentGateways group of features are optional but

compatible (the multiplicity 0..2 clarify the possibilities).

The Table 1 presents the standard conversion patterns of feature to structural

models. The table conforms to the widespread solution designs that can be found in

the literature. However, we can appreciate that some basic information is missing in

this simple approach. For example, it is necessary to show that in some applications

the payment type PurchaseOrder or ElectronicCheque can be used or not, but any

application must have the possibility of CreditCard PaymentType. The problem is that

the image of figure 7 and the table 1 try to be a compact representation of the product

line, not a UML representation of the set of applications in the product line. This

representation must be modified to clarify these differences. Most authors use

stereotypes, annotating some classes as variants or optional elements [12, 15, 18] and

others use specialized superimposition UML diagrams [7] (see the related work

section for details). For example, to solve the mentioned problem about payment

types, the PurchaseOrder or ElectronicCheque classes could have the stereotype

<<variant>> to differentiate from the CreditCard PaymentType, present in all the

applications of the product line.

CheckOut

ShippingOptions

0..1

TaxationOptions

1

PaymentOptions

1

PaymentTypes1..4

CreditCard

DebitCard

PurchaseOrder

ElectronicChequePaymentGateways

0..2

FraudDetection

0..1

CheckOutType

Registered Guest

1

Verisign

CustomPG

Fig. 7 Product line Structural Feature model fragment and the correspondent package based

architectural solution

Table 1 Some of the basic structural features construction and their mapping into compact

class diagrams

Feature Construction Class Structure (classical version)

Login (String)

LoginCredentials

Password (String)

LoginCredentials

+login: String
+password: String

RegistrationInfo

ShippingAdress (String)

0..1

BillingAdress (String)

0..1

RegistrationInfo

+ShippingAdress: String[0..1]
+BillingAdress: String[0..1]

CheckOut

ShippingOptions

TaxationOptions

1..1

0..1

PaymentOptions

1..1

CheckOut

ShippingOptions

0..1

TaxationOptions

1

PaymentOptions

1

Registered

CheckOutType

Guest

1..1

CheckOutType

Registered Guest

1

CheckOut

CreditCard

ElectronicCheque

PaymentTypes

DebitCard

PurchaseOrder

1..4

PaymentOptions PaymentTypes1..4

CreditCard

DebitCard

PurchaseOrder

ElectronicCheque

PaymentGateways

CustomPGVerisign

0..2

PaymentOptionsPaymentGateways

0..2

Verisign

CustomPG

We have discussed in our previous work the disadvantages of these approaches and

proposed to separate completely the representation of variability of the product line

from the residual variability of the concrete applications [22]. We use for this the

UML package merge mechanism. The package merge mechanism basically consists

of adding details to the models in an incremental way. According to the specification

of UML 2, <<merge>> is defined as a relationship between two packages that

indicates that the contents of both are combined. It is very similar to the

generalization and is used when elements in different packages have the same name

and represent the same concept, beginning with a common base. The concept is

extended incrementally in each separate package. Selecting the desired packages, it is

possible to obtain a tailored definition from all the possible ones. Though the

examples in UML focus on class diagrams, the mechanism can be extended to any

UML model, in particular use cases and sequence diagrams.

This mechanism allows a clear traceability between feature and UML models to be

established. Each optional feature is described by an optional package of the product

line that will be selected or not in function of the concrete configuration of features.

The process consists of establishing for each UML model, a base package that

embodies the common part of the product line. Then, associated to each optional

feature, a new package is built, so that all the necessary changes in the model remain

located. This package is connected through the <<merge>> relationship with its base

package in the exact point of the package hierarchy. The sense of the relationship

expresses the dependence between packages: the base or merged package can always

be included in a specific product, the receiving package is an extension of the base

package and can only be included if the base package is also selected. This is exactly

the way the expert decides which features are included or not during the configuration

process, and must be directly reflected in the configuration of packages.

A modified version of the Table 1 patterns are imaginable, combining the classical

with the package merge based interpretations. The original version uses only the

multiplicity of the attributes in classes to represent optional features and is much more

compact. But the second version is preferable as removes any ambiguity and is

directly mapped to code. Consequently the representation of the product line

structural model that we use is the one shown in the Figure 8, instead of the one

shown in the previous Figures 5 and 7. The Table 2 presents the package version of

the conversion of feature patterns to structural models.

The apparent complexity of the package model reflects the real complexity of the

product line itself and it is easily handled by the current CASE and IDE tools. Being

realistic, the product lines were we have applied the approach deal with at most

dozens of optional features, not hundreds or them. In any case, the automation of the

process is absolutely necessary in order to successfully adopt the product line

development paradigm. We have used so far the xmp plug-in [1] as configuration

tool, combining the output of the plug-in (as a XML file) with the Visual Studio tools

and C# compiler and the results are very satisfying. The C# language is selected

because the direct support of the merge mechanism by means of partial classes. In

[22], these experiences are described and the basic transformations from feature

models to packages diagrams are defined using QVT [28].

Fig. 8 Product line package based architectural solution (corresponding to the feature model of

Figures 5 and 7)

Table 2 The basic structural features and their translation to package combination of class diagrams

Feature Construction Class Structure (package merge variant)

Login (String)

LoginCredentials

Password (String)

LoginCredentials

+login: String
+password: String

RegistrationInfo

ShippingAdress (String)

0..1

BillingAdress (String)

0..1

PRegistrationInfo

PBillingAdress

PShippingAdress

<<merge>>

<<merge>>

RegistrationInfo

RegistrationInfo

+ShippingAdress: String

RegistrationInfo

+BillingAdress: String

CheckOut

ShippingOptions

TaxationOptions

1..1

0..1

PaymentOptions

1..1

PCheckOut

CheckOut

PaymentOptions

1

TaxationOptions1

PShippingOptions

<<merge>>

CheckOut

ShippingOptions

1

Registered

CheckOutType

Guest

1..1

PCheckOut

PRegistered

PGuest

<<merge>>

<<merge>>

Registered

CheckOutType

CheckOutType

Guest

CheckOutType

CheckOut

1

Table 3 (cont. of 2) The basic structural features and their translation to package combination of class diagrams

Feature Construction Class Structure (package merge variant)

CreditCard

ElectronicCheque

PaymentTypes

DebitCard

PurchaseOrder

1..4

PCheckOut

PaymentOptions PaymentTypes1..4

CreditCard

PPurchaseOrder
PElectronicCheque

PDebitCard

<<merge>>

<<merge>>

<<merge>>

PurchaseOrder

PaymentTypes
PaymentTypes

ElectronicCheque

PaymentTypes

DebitCard

PaymentGateways

CustomPGVerisign

0..2

PCheckOut

CheckOut

PaymentOptions

1

PPaymentGateways

PaymentOptions <<merge>>

PaymentGateways

1

PVerisign

PaymentGateways

Verisign

<<merge>>

PCustomPG

<<merge>>

PaymentGateways

CustomPG

The same argumentation can be used if we want to find behavioral patterns. The

obvious solution is to use as well the package merge mechanism. We base the UML

behavioral model in use case diagrams, with intensive use of include and extend

relationships. Mandatory behavior is modeled with included use cases and optional

behavior with extension use cases. But optional behavior has, as in structural models,

two meanings. First, the details of payment steps can be different in an implemented

application of the product line because it is possible to pay by cheque or credit card

(and then we use the extend relationship). Second, any application requires always the

credit card payments but not the cheque possibility (this behavior is in an extension

use case inside an optional package). This approach guides us to the Table 4 patterns

(we have included only the four basic patterns: optional/mandatory include/extend

version of the common situations).

Table 4 The basic behavioral features and their translation to package combination of UML use case diagrams

Feature Construction Use Case diagrams (package merge variant)

CheckOut

ShippingOptions

TaxationOptions

1..1

0..1

PaymentOptions

1..1

PCheckOut

CheckOut

Actor

PShipping

ShippingOptions
CheckOut

<<include>>

<<merge>>

TaxationOptions

<<include>>

PaymentOptions<<include>>

CreditCard

ElectronicCheque

PaymentTypes

DebitCard

PurchaseOrder

1..4

PCheckOut

CheckOutActor

CreditCard

PaymentOptions<<include>>

<<extend>>

PElectronicCheque

PDebitCard

PPurchaseOrder

<<merge>>

<<merge>>

<<merge>>
PaymentOptions

PaymentOptions
PaymentOptions

PurchaseOrder

<<extend>>

DebitCard

<<extend>>

ElectronicCheque

<<extend>>

4 MDE based transformations of feature patterns

According the Figure 9, in a product line approach and in the derivation of concrete

application phase, several transformations are required. The first step includes the

selection of the optimal combination of goals and soft-goals that respond to the

specific customer preferences. This selection leads by traceability links to a (possibly

partial or staggered) configuration of the product line feature model. The next step is

the derivation of the application architecture: The initial application domain model

obtained from the feature model and the asset base will be manually completed and

optimized. All the models in Figure 9 can be considered as PIMs. Out of the scope of

this Figure, the translation of an application (platform independent) model to specific

platforms (.NET or EJB) is a conventional PIM to PSM transformation that can be

defined using MDE transformation tools.

PL Architecture

(OO Framework)

Application

Feature

Sub-Model

Application

Architecture

Application

Goal/soft-goal

Model

Instantiation

Selection
Goal/soft-goal

Model

Configuration

Feature

Model

Rationale

Definition

Traceability

Links

Fig. 9 Transformation between the models of a product line

To enable this derivation process, the traceability links between the diverse PL

models must be carefully established. The feature patterns transformation focused in

this article can be automated, following the MDE paradigm. The method we have

chosen is based on the meta-model mapping approach [9]. The work consists of

defining a set of transformations between the patterns in the feature models and the

architectural UML constructions, based in the results of the previous section.

The way to define a transformation is to find an element (or more exactly a

combination of elements that satisfy certain constraints) of the feature meta-model

and give one or several equivalences in the UML meta-model. This implies that an

annotation is needed in the feature model to indicate which of the two possible

transformation mechanisms is applied (structural, behavioral or both). As we need a

precise definition of the meta-models and the target meta-model is UML, the first step

is to select the features meta-model. Several authors have specified different meta-

models using MOF. We have evaluate these meta-models as the election influences

greatly the transformation process and, finally the one proposed by Czarnecki et al. in

[10] has been selected because the simplicity of the related transformation. In this

approach, the distinctive property of the relationships is the cardinality. Figure 10

shows the above-mentioned meta-model and Figure 11 the UML target meta-model.

In the meta-model of Figure 10, the relationships are implicit and the source of the

transformation must be the cardinality attribute of the features and group of features.

In previous work [22], we have defined and implemented the structure of packages

that represent the architectural vision of the product line. The transformation is now

complete, filling the packages with classes and attributes.

Fig. 10 Feature simplified meta-model, adapted from Czarnecki et al. [10]

general

1

specific

1
Generalization

namespace

Namespace

ownedMember

0..*

NamedElement

name

0..*

mergingPackage packageMerge
PackageMergePackaqe

1 *
1 mergedPackage

*1
1

2..*

AssociationmemberEnd
Class

1

1
Property

aggregation

lower

upper0..10..1

Fig. 11 partial UML meta-model (structural concepts)

FeatureGroup

groupCardinality

GroupedFeature

1..*
SolitaryFeature

featureCardinality

Feature

0..*

0..*
1..*

0..*

0..*

RootFeature

FeatureModel

1..*1..*

FeatureGroup

groupCardinality

GroupedFeature

1..*
SolitaryFeature

featureCardinality

Feature

0..*

0..*
1..*

0..*

0..*

RootFeature

FeatureModel

1..*1..*

The transformation implies:

a) Transform the Feature model into a UML model.

b) Transform each RootFeature into a root Package and an included class

with the same name as the feature.

c) Transform each mandatory FeatureGroup (i.e., with minimum cardinality

greater than zero, as in examples 4 and 5 of Table 1) into a super-class of

the set of classes generated by its owned GroupedFeature instances and

generate an association with the class generated from the owner Feature

with multiplicity equal to the groupCardinality.

d) Transform each optional FeatureGroup (i.e., with minimum cardinality

equal to zero, as in example 3) into a package merged with the previous

package. Then, inside this package, create a super-class of the set of

classes generated by its owned GroupedFeature instances and an

association with a duplicate of the class generated from the owner Feature

with multiplicity equal to the groupCardinality.

e) Transform each mandatory GroupedFeature into a class that specializes

the class generated by the owner FeatureGroup (CreditCard example).

f) Transform each optional GroupedFeature into a package merged with the

previous package. Then, inside the new package, create a class that

specializes in a duplicate of the class generated by the owner

FeatureGroup (as in the DebitCard example)

g) Transform each mandatory SolitaryFeature typed as FEATURE into a

class and associate it with the class generated from the owner feature with

multiplicity equal to the featureCardinality (TaxationOp in example 3).

h) Transform each mandatory SolitaryFeature (all the subtypes except

FEATURE) into a typed attribute and assign this attribute to the class

generated from the owner feature (Login in example 1).

i) Transform each optional SolitaryFeature (all the subtypes) into a package

merged with the previous package. Then:

a. Inside the new package, transform the SolitaryFeature typed as

FEATURE into a class and, additionally, associate this class with

a duplicate of the class generated from the owner feature with

multiplicity equal to the featureCardinality (ShippingOptions in

example 3).

b. Inside the new package, transform the SolitaryFeature with type

other than FEATURE into an attribute and assign this attribute to

a duplicate of the class generated from the owner feature

(ShippingAdresss in example 2).

The strategy is based in the three subtypes of Feature. The root of every tree in a

Feature model (RootFeature) is transformed in a class and a recursive transformation

of Solitary Features and Feature Groups linked to every feature is carried out. The

presence of a group implies a class associated to the parent feature that is specialized

into several subtypes (one per alternative feature). Figures 12 and 13 show the

graphically expressed transformations (using the QVT syntax [28]) of a Model

Feature into a UML structural model. A similar set of transformations definition has

been built in order to produce in parallel the use case package diagrams. In fact, the

transformation is most interesting if we consider that the package structure obtained

(and completed by the designer) can be used to automatically derive the application

model by selecting the desired goal/features, as mentioned above. This possibility

compensates the overcharge of complexity of the goal/feature traceability

management in the architectural model.

Fig. 12 Transformation definition of a Feature model into a UML/XMI model

FeatureModelToUmlModel

um:Model

name=mn

<<domain>>uml, efm, c

m:FeatureModel

<<domain>>

name=mn

RootFeatureToPackageClass

f:RootFeature
<<domain>>

name=fn

m:FeatureModel

p:Package

name=fn

uml, efm, c

when

FeatureModelToUmlModel(m,um)

where

SolitaryFeatureToClass (f,c,p);

SolitaryFeatureToAttribute(f,c,p);

FeatureGroupToClass(f,c,p);

c: Class

name=fn

<<domain>>

um:Model

SolitaryFeatureToAtribute

f:Feature

sf:SolitaryFeature

uml, efm, c

name=sn

featureCardinality=fc

c: Class

a: Property

name=sn

type=sf.type

when

sf.type <> FEATURE

sf.featureCardinality.min > 0

<<domain>>
<<domain>>

SolitaryFeatureToAtrribute

uml, efm, c

p:Package

pp:Package

name=sn

pm:PackageMerge

when

sf.type<> FEATURE

sf.featureCardinality.min = 0

a: Property

name=sn

type=sf.type

c2: Class

name=c.name

<<domain>>

c: Class

sf:SolitaryFeature

name=sn

featureCardinality=fc

f:Feature
<<domain>>

<<domain>>

when

sf.type= FEATURE

sf.featureCardinality.min > 0

where

SolitaryFeatureToClass (sf,sc,p);

SolitaryFeatureToAttribute(sf,sc,p);

FeatureGroupToClass (sf,sc,p);

SolitaryFeatureToClass

f:Feature
<<domain>>

sf:SolitaryFeature

c:Class
<<domain>>

uml, efm, c

a:Association

name=sn

featureCardinality=fc

sc:Class

name=sn

ae2:AssociationEnd

multiplicity=fc

ae1:AssociationEnd

multiplicity=“1..1”

p:Package
<<domain>>

when

sf.type== FEATURE

sf.featureCardinality.min =0

where

SolitaryFeatureToClass (sf,sc,pp);

SolitaryFeatureToAttribute(sf,sc,pp);

FeatureGroupToClass (sf,sc,pp);

SolitaryFeatureToClass

f:Feature
<<domain>>

sf:SolitaryFeature

uml, efm, c

name=sn

featureCardinality=fc

<<domain>>

p:Package

pp:Package

name=sn

pm:PackageMerge

c:Class
<<domain>>

a:Association

ae2:AssociationEnd

multiplicity=fc

ae1:AssociationEnd

multiplicity=“1..1”

sc:Class

name=sn

c2:Class

name=c.name

when

sf.featureCardinality.min > 0

where

GroupedFeatureToClass(fg,cg,p);

FeatureGroupToClass

f:Feature
<<domain>>

fg:FeatureGroup

uml, efm, c

name=gn

groupCardinality=gc

c:Class
<<domain>>

a:Association

ae2:AssociationEnd

multiplicity=gc

ae1:AssociationEnd

multiplicity=“1..1”

cg:Class

name=gn

p:Package
<<domain>>

when

sf.featureCardinality.min =0

where

GroupedFeatureToClass(fg,cg,gp);

FeatureGroupToClass

f:Feature
<<domain>>

fg:FeatureGroup

uml, efm, c

name=gn

groupCardinality=gc

a:Association

ae2:AssociationEnd

multiplicity=gc

ae1:AssociationEnd

multiplicity=“1..1”

cg:Class

name=gn

<<domain>>

p:Package

gp:Package

name=gn

pm:PackageMerge

c:Class
<<domain>>

c2:Class

name=c.name

when

sf.featureCardinality.min > 0

where

SolitaryFeatureToClass (f,c,p);

SolitaryFeatureToAttribute(f,c,p);

FeatureGroupToClass (f,c,p);

GroupedFeatureToClass

fg:FeatureGroup
<<domain>>

f:GroupedFeature

gc:Class
<<domain>>

uml, efm, c

name=fn

featureCardinality=fc
c:Class

name=fn

g:Generalization

parent

child

p:Package
<<domain>>

when

f.featureCardinality.min =0

where

SolitaryFeatureToClass (f,c,gp);

SolitaryFeatureToAttribute(f,c,gp);

FeatureGroupToClass (f,c,gp);

GroupedFeatureToClass

fg:FeatureGroup
<<domain>>

f:GroupedFeature

uml, efm, c

name=fn

featureCardinality=fc

c:Class

name=fn

g:Generalization

parent

child

<<domain>>

p:Package

gp:Package

name=fn

pm:PackageMerge

gc:Class
<<domain>>

gc2:Class

name=gc.name

Fig. 13 Transformation definition of a Feature model into a UML/XMI model

Fig. 14 partial UML meta-model (use case concepts)

 A parallel transformation, from features into packages, use cases and

extend/include relationships can be defined. The transformation consists of:

a) Transform the Feature model in a UML model.

b) Transform each RootFeature into a root Package and one included use

case with the same name of the feature

c) Transform each mandatory FeatureGroup (minimum cardinality greater

than zero) into an included use case and generate an include relationship

with the use case generated from the owner Feature.

d) Transform each optional (minimum cardinality equal to zero)

FeatureGroup into a package merged with the previous package. Then

inside this package, create an included use case and generate an include

relationship with a duplicate of the use case generated from the owner

Feature.

e) Transform each mandatory GroupedFeature into a use case that extends

the use case generated by the owner FeatureGroup

f) Transform each optional GroupedFeature into a package merged with the

previous package. Then, inside the new package, create a use case that

extends a duplicate of the use case generated by the owner FeatureGroup.

g) Transform each mandatory SolitaryFeature typed as FEATURE into an

included use case and an included relationship with the use case generated

from the owner feature.

h) Transform each optional SolitaryFeature typed as FEATURE into a

package merged with the previous package. Then, Inside the new

package, transform the SolitaryFeature into an included use case and, and

include relationship with a duplicate of the use case generated from the

owner feature

FeatureModelToUmlModel

um:Model

name=mn

<<domain>>uml, efm, c

m:FeatureModel

<<domain>>

name=mn

when

sf.type= FEATURE

sf.featureCardinality.min > 0

where

SolitaryFeatureToUseCase (sf,ic,p);

FeatureGroupToUseCase (sf,ic,p);

SolitaryFeatureToUseCase

f:Feature
<<domain>>

sf:SolitaryFeature

c:UseCase
<<domain>>

uml, efm, c

name=sn

featureCardinality=fc

ic:UseCase

name=sn

i: Include

p:Package
<<domain>>

adittion

RootFeatureToPackageUseCase

f:RootFeature
<<domain>>

name=fn

m:FeatureModel

p:Package

name=fn

uml, efm, c

when

FeatureModelToUmlModel(m,um)

where

SolitaryFeatureToUseCase (f,c,p);

FeatureGroupToUseCase(f,c,p);

c: UseCase

name=fn

<<domain>>

um:Model

when

sf.type== FEATURE

sf.featureCardinality.min =0

where

SolitaryFeatureToUseCase (sf,ic,pp);

FeatureGroupToUseCase (sf,ic,pp);

SolitaryFeatureToUseCase

f:Feature
<<domain>>

sf:SolitaryFeature

uml, efm, c

name=sn

featureCardinality=fc

<<domain>>

p:Package

pp:Package

name=sn

pm:PackageMerge

c:UseCase
<<domain>>

ic:UseCase

name=sn

c2:UseCase

name=c.name

i: Include

adittion

Fig. 15 Transformation definition of a Feature model into a UML/XMI model

The strategy is based in the three subtypes of Feature as in the structural

transformations. The features of type different from FEATURE are ignored. Figures

15 and 15 show the graphically expressed transformations (using the QVT syntax

[28]) of a Model Feature into a UML behavioral model.

Concerning the implementation details, a partial implementation, using a XML

style sheet, is given in [22]. We use a combination of tools based on the Eclipse

platform (the feature and UML models and the feature configuration utilities) and

Microsoft proprietary tools (the goals analysis tools and Visual Studio for the C# code

and the package configuration). The connection between them is achieved using

intermediate XML files that can be automatically generated and manually completed.

Recently we have finished the development of a specific domain language

functionally using MS DSL tools equivalent to the fmp eclipse plug-in, in order to

integrate all the phases of the process, from goals analysis to the application package

configuration inside the MS Visual Studio platform.

when

sf.featureCardinality.min > 0

where

GroupedFeatureToUseCase(fg,ic,p);

FeatureGroupToUseCase

f:Feature
<<domain>>

fg:FeatureGroup

uml, efm, c

name=gn

groupCardinality=gc

c:UseCase
<<domain>>p:Package

<<domain>>

ic:UseCase

name=gn

i: Include

adittion

when

sf.featureCardinality.min =0

where

GroupedFeatureToUseCase(fg,ic,pp);

f:Feature
<<domain>>

fg:FeatureGroup

uml, efm, c

name=gn

groupCardinality=gc

<<domain>>

p:Package

pp:Package

name=gn

pm:PackageMerge

c:UseCase
<<domain>>

c2:UseCase

name=c.name

i: Include

adittion

ic:UseCase

name=sn

when

f.featureCardinality.min > 0

where

SolitaryFeatureToUseCase (f,c,p);

FeatureGroupToUseCase (f,c,p);

GroupedFeatureToUseCase

fg:FeatureGroup
<<domain>>

f:GroupedFeature

gc:UseCase
<<domain>>

uml, efm, c

name=fn

featureCardinality=fc
c:UseCase

name=fn

e: Extension

extendedCase

extend

p:Package
<<domain>>

when

f.featureCardinality.min =0

where

SolitaryFeatureToUseCase (f,c,gp);

FeatureGroupToUseCase (f,c,gp);

GroupedFeatureToUseCase

fg:FeatureGroup
<<domain>>

f:GroupedFeature

uml, efm, c

name=fn

featureCardinality=fc

c:UseCase

name=fn

e: Extension

extendedCase

extend

<<domain>>

p:Package

gp:Package

name=fn

pm:PackageMerge

gc:UseCase
<<domain>>

gc2:UseCase

name=gc.name

Fig. 16 Transformation definition of a Feature model into a UML/XMI model

5 Automated Transformations using FMT plug-in for Visual

Studio.

We have developed a specific domain language functionality equivalent to the fmp

eclipse plug-in in order to integrate all the phases of a development process from goal

analysis to the application package configuration inside the MS Visual Studio

Platform.

This tool introduces product line as one of the project types provided by the

development platform. The interface and underlining meta-model of the FMT is

similar to the fmp eclipse plug-in and compatible with it, allowing the direct import of

fmp models. The advantages of this FMT are direct integration into the Visual Studio

IDE and the possibility of visual representation and manipulation of features and

mutex/require constraints. As additional benefits, the package structure of the product

line and configuration files can be directly generated.

The developed tool allows the user to define and configure a feature model in order

to obtain a package model as a main framework of the product line. The package

model is obtained using a code based transformation using XMI in order to get the

diagram using a CASE tool. We apply the previously defined transformation to obtain

a complete package model, including classes, attributes and relationships.

We show the functionality of this application with the following example based on

the thesis of Sean Quan Lau [37]. We only consider a subset of the complete feature

model presented in this thesis. The following figure shows the feature model of this e-

commerce example designed with our FMT tool for Visual Studio Platform.

 Fig. 17 Feature Modeling Tool.

Fig. 18 Ecommerce Feature Model.

Once we have finished the definition of our feature model as is shown above, our

tool can do automatically the transformation into a UML package model following

the transformation definition mentioned in the previous chapter. The result of this

transformation is a XMI document that we can open with a CASE tool, as we can see

in the figure below (Figure 19).

The transformation has successful results. All mandatory features have been

transformed into classes in the corresponding package. Typed leaf features have been

transformed into attributes of a class. And finally, optional and group features have

been transformed into packages connected with a merge relationship.

According to the transformations definition in the previous chapter, this

transformation is correct, but we want to determine if it is really useful in order to

develop a product line specific product.

Fig. 19 Package Model obtained from a feature model using FMT.

In order to check the usefulness of this transformation we have compared this

automated development of this e-commerce product line, with the manual

development of the same product line that we have developed previously, with the

following results:

 Manual Development Automatic

Packages created 14 15

Merge relationships created 12 14

Classes Created 39 36

Relationships created 27 24

Attributes created 56 8

Coincidence between packages 81.25%

Coincidence between merge relationships 100%

Coincidence between classes 36,83%

Coincidence between relationships 16%

Coincidence between attributes 5,35%

Useful Packages 86,67%

Useful Classes 58,33%

Useful Attributes 100%

 The automatic transformation has generated less classes and relationships than the

manual example. The coincidence in the basic structure is almost a 100%, so it looks

reasonable to use this automatic transformation to create the main framework to

develop a specific product o f the PL. The merge relationship between these packages

has been generated successfully too.

The problem comes when if we want to do classes attributes and relationships

transformations. The accuracy between the manual example and our automatic

transformation is not very good. Only a 37% of the classes have been included in the

manual development and the amount of attributes and relationships are even lower.

However, if we only consider the useful elements generated in the automatic

transformation, we can see that the results are not so bad. The percentage of useful

classes is almost 60%, i.e. 60% of the generated classes can be used or have been used

in our manual development, which is a satisfactory result. The results of attributes are

even better, because all attributes generated automatically have been used in the

manual development.

 We have proved the transformation into UML Use Case packages as it is shown in

the previous chapter but the results are not as good as we expected. The correlation

between features and use cases is not very clear yet and the percentage of useful

elements in this transformation is very low. For that reason, we won’t include this

transformation functionality in the tool.

In conclusion, with the obtained results we can consider the use of the automatic

transformation an advantage in order to develop a product line specific product, we

can save a lot of time, and we can begin the development of the product as soon as

possible.

6 Related Work.

Schobbens et al. [30] have revised the diverse variant of feature diagrams,

clarifying the differences and establishing a generic formal semantics. The influence

of non functional requirements preferences in variant selection has been faced by

several authors. The original FODA proposal uses the feature models for representing

all the types of variability, functional and non functional [20]. Jarzabek et al. address

the non functional requirements and feature relationships in the product line context

[17]. They extend FODA with concepts of goal-oriented analysis. The proposed

framework allows developers to record design rationale in the form of

interdependencies among variant features and soft-goals. Both models are in the same

level. Bosch [2] proposes an assessment method that addresses design decisions and

non functional requirements in product-line development. In his approach, different

profiles are used in relation to different “ilities” (usage profile for reliability or change

profile for maintainability). Kazman et al. [21] proposed the SEI the architecture

tradeoff analysis method (ATAM) for assessing the influences of architectural

decisions on the quality attributes. Finally Yu et al. present in [35, 36] a model-driven

extension to their Early Requirements Engineering tool (OpenOME) that generates an

initial feature model from stakeholder goals.

Also the work devoted to relate feature constructions and architectural designs is

abundant. Recent proposals express variability with UML models modifying or

annotating these models. Structural, functional or dynamical models have been used.

Some authors have proposed explicitly representing the functional variation points by

adding annotations or changing the essence of the use case diagrams. For example,

Von der Maßen et al. [34] propose using new relationships ("option" and

"alternative") and the consequent extension of the UML meta-model. John and

Muthig [18] suggest the application of use case templates to represent the variability

in product lines, using stereotypes, though they do not distinguish between optional,

alternative or obligatory variants. On the other hand, Halman and Pohl [15] defend the

modification of the use case models to represent the variation points orthogonally

(using a triangle symbol with different annotations). In all these cases the original

UML model is modified to obtain the desired purpose.

Concerning structural models, either the mechanisms of UML are used directly

(through the specialization relationship, the association multiplicity, etc.), as in the

case of Jacobson [16]; or the models are explicitly annotated using stereotypes. The

work of Gomaa [12] is an example of this approach, since it uses the stereotypes

<<kernel>>, <<optional>> and <<variant>> (corresponding to obligatory, optional,

and variant classes). Similarly, Clauß proposes a set of stereotypes to express the

variability in the architecture models: <<optional>>, <<variationPoint>> and

<<variant>> stereotypes designate respectively optional, variation points (and its sub-

classes), and variant classes [5].

The mapping between requirements and design has been always considered

complex for several reasons (flexibility and adaptability of the product line,

technology options, availability of resources, etc.). Sochos et al. provide an analysis

on the product line methods and propose to strength the mapping between

requirements and architecture modifying the feature models [31]. The disadvantage is

the introduction of implementation characteristics in the requirements models.

Another solution, proposed by Czarnecki [7], consists of annotating the UML

models with presence conditions, so that each optional feature is reflected in one or,

more realistically, several parts of a diagram (which may be a class, an association, an

attribute, etc. or a combination of elements). Although the class diagrams are the most

used, the technique can be applied to any UML model, in particular the sequence or

activity diagrams. Some tools are provided, such as an Eclipse plug-in for the

definition and configuration of the feature model and an auxiliary tool to show the

presence condition in UML templates.

In [11] MDA is presented as an approach to derive products in a specific type of

product lines, configurable families. The authors’ main idea is that a software system

that is specified according to the MDA approach is a particular case of product line

where the most characteristic variation point consists of products that implement the

same functionality on different platforms. The choice for the alternative platforms is a

variation point in such a product line. This variation point can be separated from the

specification models and managed in the transformation definition itself. The main

benefit of MDA compared to traditional development, is that the management of the

platform variation point is handled automatically by the transformation step and is not

a concern for the product engineer. However the final platform for a product is not the

only variation point that needs to be managed in a product line. The various product

line members differ in both their functional and non-functional requirements. We

think that our approach is more complete and flexible.

6 Conclusions and future work

In this article, the possibilities provided by the combination of diverse modeling

paradigms to represent and configure variability in a product line are discussed. The

use of several models for representing the diverse facets of variability can improve the

development of product lines. Other specialized techniques have shown better results

for expressing different aspects of the requirement variability, while the feature model

continues being the central piece of the puzzle.

 The main contribution of the article is the identification of patterns in the feature

models and the mapping of these patterns with the correspondent architectural

diagrams. The feature patterns catalog allows the automated creation of traceability

links between the product line feature and the architectural models, and consequently

the productivity in product line development is improved. The final conclusion is

positive as the combination of paradigms and the patterns catalog makes more

straightforward the development process of the product line.

A set of transformations based in QVT are partially implemented to automatically

obtain the UML and structural models, filling the package structures already

implemented in our previous work. Work in progress include the development with of

a specific domain language functionally that will integrate all the phases of the

process, from goals analysis to the application package configuration.

As future work, an advanced vision is based more strictly on the MDE paradigm,

automating most of the phases of product line development. First, the set of UML

domain and behavior models are obtained using the feature pattern transformations

(and manually completing these models). Then, the goal based configuration process

yields a subset of packages that will be merged at conceptual level in a monolithic

model (using existing MDE tools). The resulting (platform independent) model will

be used as input to code generators tools. These tools are precisely intended to

generate the platform specific models and the final code. We are evaluating some of

the best known tools in order to assess the practical possibilities of this product line

and MDE alliance.

Acknowledgements

This work has been supported by the Junta de Castilla y León (project VA018A07).

References

1. Antkiewicz, M., and Czarnecki, K. Feature modeling plugin for Eclipse. In OOPSLA’04

Eclipse technology exchange workshop (2004).

2. Bosch, J. “Design & Use of Software Architectures. Adopting and Evolving a Product-

Line Approach”. Addison-Wesley. 2000.

3. Chastek, G., Donohoe, P., Kang, K. C., Thiel, S. “product line Analysis: A Practical

Introduction”. Technical Report CMU/SEI-2001-TR-001 ESC-TR-2001-001, Software

Engineering Institute (Carnegie Mellon), Pittsburgh, PA 15213

4. Chung, L., Nixon, B., Yu, E. and Mylopoulos, J. Non-Functional Requirements in

Software Engineering. Kluwer Academic Publishers 2000.

5. M. Clauß. Generic modeling using Uml extensions for variability. In Workshop on

Domain Specific Visual Languages at OOPSLA 2001, 2001.

6. Clements, Paul C. and Northrop, Linda. “Software product lines: Practices and Patterns”.

SEI Series in Software Engineering, Addison-Wesley. 2001.

7. K. Czarnecki, M. Antkiewicz, Mapping features to models: a template approach based on

superimposed variants, In proc. International Conference on Generative Programming and

Component Engineering (GPCE’05), LNCS 3676, Springer, pp. 422-437.

8. Krzystof Czarnecki and Ulrich W. Eisenecker, “Generative Programming: Methods,

Tools, and Applications”, Addison-Wesley, 2000

9. Krzysztof Czarnecki, Simon Helsen. “Classification of Model Transformation

Approaches”. OOPSLA’03 Workshop on Generative Techniques in the Context of Model-

Driven Architecture, 2003.

10. K. Czarnecki, S. Helsen, and U. Eisenecker. Staged Configuration Through Specialization

and Multi-Level Configuration of Feature Models. Software Process Improvement and

Practice, special issue on "Software Variability: Process and Management, 10(2), 2005,

pp. 143 - 169

11. Sybren Deelstra, Marco Sinnema, Jilles van Gurp, Jan Bosch, “Model Driven Architecture

as Approach to Manage Variability in Software Product Families”, in Arend Rensink

(Editor), Model Driven Architecture: Foundations and Applications, CTIT Technical

Report TR–CTIT–03–27, University of Twente, avalaible in

http://trese.cs.utwente.nl/mdafa2003

12. H. Gomaa. Object Oriented Analysis and Modeling for Families of Systems with UML.

InW. B. Frakes, editor, IEEE International Conference for Software Rreuse (ICSR6),

pages 89–99, June 2000.

13. González-Baixauli, B., Leite J.C.S.P., and Mylopoulos, J. “Visual Variability Analysis

with Goal Models”. Proc. of the RE’2004. Sept. 2004. Kyoto, Japan. IEEE Computer

Society, 2004. pp: 198-207.

14. Griss, M.L., Favaro, J., d'Alessandro, M., "Integrating feature modeling with the RSEB",

Proceedings of the Fifth International Conference on Software Reuse, p.76-85. , 1998

15. Halmans, G., and Pohl, K., “Communicating the Variability of a Software-Product Family

to Customers”. Journal of Software and Systems Modeling 2, 1 2003, 15--36.

16. Jacobson I., Griss M. and Jonsson P. “Software Reuse. Architecture, Process and

Organization for Business Success”. ACM Press. Addison Wesley Longman. 1997.

17. Jarzabek, S.; Yang, B.; Yoeun, S., "Addressing quality attributes in domain analysis for

product lines," Software, IEE Proceedings - , vol.153, no.2, pp. 61-73, April 2006

18. John, I., Muthig, D.: Tailoring Use Cases for product line Modeling. Proceedings of the

International Workshop on Requirements Engineering for product lines 2002 (REPL’02).

Technical Report: ALR-2002-033, AVAYA labs, 2002

19. Kang, K. C., Kim, S., Lee, J. y Kim, K. “FORM: A Feature-Oriented Reuse Method with

Domain-Specific Reference Architectures”. Annals of Software Engineering, 5:143-168.

1998.

20. K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson. “Feature-Oriented Domain

Analysis (FODA) Feasibility Study”. Technical Report, CMU/SEI-90-TR-21, Software

Engineering Institute (Carnegie Mellon), Pittsburgh, PA 15213

21. Kazman, R., Klein, M., and Clements, P.: ‘ATAM: method for architecture evaluation’,

Technical Report CMU/SEI-2000-TR-004,Software Engineering Institute, Carnegie

Mellon University,Pittsburgh, PA, USA, 2000

22. Miguel A. Laguna, Bruno González-Baixauli, José Manuel Marqués, Seamless

Development of Software Product Lines: Feature Models to UML Traceability. Sixth

International Conference on Generative Programming and Component Engineering

(GPCE 07). Salzburg, Austria - oct 2007

23. Lau, S., “Domain Analysis of E-Commerce Systems Using Feature-Based Model

Templates”, MASc Thesis, ECE Department, University of Waterloo, Canada, 2006.

24. Lee, K., Kang, K. C., Chae, W., Choi, B. W. “Feature-Based Approach to Object-

Oriented Engineering of Applications for Reuse”. Software: Practice and Experience,

30(9):1025-1046. 2000.

25. S.J. Mellor, M. J.Balcer, “Executable UML A foundation for the Model-Driven

Architecture”, Addison Wesley Professional, 2002

26. J. Mylopoulos, L. Chung, and E. Yu. “From object-oriented to goal-oriented requirements

analysis”. Communications of the ACM, 42(1):31–37, Jan. 1999.

27. Object Management Group, “MDA Guide Version 1.0”, 2003

28. Object Management Group and QVT-Merge Group , “Revised submission for MOF 2.0

Query/View/Transformation version 2.0” Object Management Group doc. ad/2005-03-02,

2005.

29. Schobbens, P.-Y., Heymans, P., and Trigaux, J.-C. Feature diagrams: A survey and a

formal semantics. In RE, pp. 136–145.2006.

30. Schobbens, P., Heymans, P., Trigaux, J., and Bontemps, Y. 2007. Generic semantics of

feature diagrams. Comput. Netw. 51, 2, 456-479. Feb. 2007.

31. P. Sochos, I. Philippow, M. Riebish. Feature-oriented development of software product

lines: mapping feature models to the architecture. Springer, LNCS 3263, 2004, pp. 138-

152.

32. van Lamsweerde, A. “Goal-Oriented Requirements Engineering: A Guided Tour”,

Proceedings of the 5 IEEE Int. Symp. on Requirements Engineering, 2001, pp: 249-262

33. A. van Deursen and P. Klint. “Domain-Specific Language Design Requires Feature

Descriptions”. Journal of Computing and Information Technology 10(1):1-17, 2002.

34. Thomas von der Massen, Horst Lichter, “RequiLine: A Requirements Engineering Tool

for Software product lines”. In Software Product-Family Engineering, PFE 2003, Siena,

Italy, LNCS 3014 pp 168-180, 2003.

35. Y. Yu, A. Lapouchnian, S. Liaskos J. Mylopoulos and J.C.S.P. Leite. From goals to high-

variability software design, pp. 1-16, In: 17th International Symposium on Methodologies

for Intelligent Systems (ISMIS'08), 2008.

36. Y. Yu, A. Lapouchnian, J.C.S.P. Leite and J. Mylopoulos. Configuring Features with

Stakeholder Goals. In: ACM SAC RETrack 2008

37. Sean Quan Lau Domain Analysis of E-commerce Systems Using Feature-Based Model

Templates. Waterloo Ontario, Canada , 2006.

