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Abstract: Feature models are the basic instrument to analyze and configure the variability and 
commonality of a software product line. But feature models embody various different 
variability facets (structural, behavioral, non-functional, etc.). Features, used as core model, 
must be completed with other techniques (i.e. goals or UML models) to fulfill these 
variability aspects. This approach allows us to proceed in several steps, using the appropriate 
paradigms in each phase. The global picture is a sequence of model transformations from 
goal/requirements to features and from both to the architecture. In this context, this article 
aims to identify patterns in the feature models and their relation with the corresponding 
architectural counterparts (class and use case diagrams). The work is completed with the 
definition and implementation of meta-model based transformations between these models. 
The existence of a feature pattern catalog and the associated transformations make the 
automated creation of models and traceability links possible, enhancing the productivity of 
the development process of product lines.  
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1 Introduction 

The development of software product lines (PL) faces many technical and organizational trends, in 
spite of its success in the reuse field [2, 5]. On the requirement level, one of the key activities is the 
specification of the variability and commonality of the PL. The design of a solution for these 
requirements constitutes the PL domain architecture. Later, the concrete product architecture must 
be derived for each variant in the family. In this process the functional and non-functional 
customer requirements are used for choosing among alternative features and, indirectly, via 
traceability paths, the architecture of the product [2].  

Feature Oriented Domain Analysis (FODA) [18] proposed features as the basis for analyzing 
and representing commonality and variability of applications in a domain. A feature represents a 
system characteristic realized by a software component. There are four types of features in feature 
modeling: Mandatory, Optional, Alternative, and Or groups of features. However, although its 
effectiveness has been proven in many projects, these models are more oriented to the solution 
than to requirements. On the other hand, non-functional requirements (NFR) and platform specific 
aspects must be taken into account and other models can express these aspects better (we use UML 
models and goal oriented techniques). Consequently, the use of the feature diagrams as a 
monolithic tool over-simplifies and limits the potential of the technique.  

The origin of the problem is that FODA feature models try to cover different variability facets 
simultaneously: they represent structural, behavioral, non-functional, and platform variability. We 
consider that other well known techniques, different from feature diagrams (such as goal and UML 
models) are better at expressing different aspects of variability, while the feature model can be the 
central piece of the puzzle that connects the rest of the models. Taking into account the different 
categories of features, we have proposed to analyze them separately [20]: 

• Goal models (essentially hard goal) represent the intention of the PL, i.e. the high level 
objectives the family of applications must solve. The soft-goals represent the non-



functional characteristics. These can be used with the hard-goals contribution information 
to configure the optimal solution for a concrete application in the PL [11]. 

• Feature models represent the functional variability. They connect the goals with the UML 
models. Two main categories of features are included: structural and behavioral (services 
and operations) features. 

• UML models organize the architecture specification, including structural and behavioral 
system requirements of the PLs, connected with the feature model.       

 
The aim was to analyze the product line requirements using the appropriate model for each 

different variability aspect. The development of a PL can be seen as a sequence of model 
transformations from goals/soft-goals to features and from both to the initial architecture (a set of 
UML models), tracing the relationships between these models.  

We have manually developed some case studies of PLs using this approach1. However, the 
productivity (and the complexity in non-trivial product lines) requires the construction and 
derivation of the different models to be automated.  As the main strength of the Model Driven 
Engineering (MDE) paradigm is the manipulation of models, we propose to use this approach to 
define these transformations. This approach requires the establishment of precise rules, using 
meta-modeling and transformation tools. To establish these rules, the recurring patterns in the 
feature models must be discovered and correlated to UML structures. In this context, the next 
Section identifies the basic patterns that can be found in feature models. The result is a catalog of 
feature patterns and their corresponding structural and behavioral UML models. Section 3 shows 
the application of the MDE approach automating these transformations, using meta-modeling and 
QVT [26]. Section 4 presents related work and Section 5 concludes the paper and proposes 
additional work.  

2 Feature Patterns 

In a product line development process, after the goals and feature models are established, several 
structural and behavioral UML models must be built (hopefully using a catalog of commonly used 
derivations from feature to UML models). A revision of the literature has shown it to be naive to 
try to make a simple and univocal transformation from feature models to UML diagrams. 
Therefore, we have adopted a pragmatic and multi-view approach as stated in the introduction: 
separating the different categories of features and analyzing them with different techniques. In this 
section, we use a selection of examples extracted from a large case study described in [23], using 
feature models, class models and activity diagrams. It is an electronic commerce product line 
(manually developed) and includes a great number of optional features and, as a consequence, a 
large number of potentially derived products. The feature tool used is the fmp eclipse plug-in 
developed in Waterloo University [1] and an adapted version of a conventional CASE tool.  

We differentiate two kinds of transformations: the structural information of the feature models 
is mapped to class diagrams and the behavioral features are connected with use case diagrams.  

Consider the simplest situation. An AND feature construction that represents structural 
information can be directly transformed into classes and attributes (Figure 1). In our approach, 
based on [9], the features are typed. The type can be a simple type or the default FEATURE type 
itself. The key aspect is that the leaves of the tree can be features with information about simple 
types and in these cases a simple typed feature is mapped into an attribute of a parent class. 

If the leaf is not an atomic feature (or is simply an intermediate node in the tree) a little more 
complicated solution is required. The mapping consists of creating a class that represents the 
feature (more details will be added during the later refinement of the structural model). The 
mandatory and optional features imply a 1..1 or  0..1 composition relationship respectively. Figure 

                                                           
1 available at http://www.giro.infor.uva.es as student term projects 



1 includes some examples of both circumstances: CreditCardInfo is a class that represents optional 
information in the class model; LoginCredentials represents compulsory information. 

This enables the identification of several simple patterns in feature models:  
• The presence of a mandatory feature of FEATURE type originates a class that is associated 

(with a 1..1 multiplicity) with another class that represents the parent feature.  
• The presence of an optional feature of FEATURE type originates a class that is associated 

(with a 0..1 multiplicity) with another class that represents the parent feature.  
• The presence of a mandatory feature of a simple type (INTEGER, STRING, DATE…, i.e. 

any type different from default FEATURE type) originates an attribute in a class that 
represents the parent feature. The presence of an optional feature defined by a simple type 
originates an optional attribute (represented by the UML attribute multiplicity information) 
in the class that represents the parent feature.   

Summing up, the structure of classes/attributes connected by a 1..1 or 0..1 multiplicity 
association or composition relationship reflects the original structure of the features.  

 

The common architectural equivalence of a set of grouped features (alternative and OR groups) 
is based on generalization. In fact, a combination of composition and generalization relationships 
is needed to differentiate alternative from OR patterns. Both variants have a common part in the 
corresponding class diagram structure: a composition relationship indicates whether the selection 
of one or several sub-features is compulsory (minimum multiplicity equal to or greater than one) 
or optional (minimum multiplicity equal to zero). The composition maximum multiplicity 
differentiates the OR relation (maximum multiplicity greater than one) from the pure alternative 
relation (maximum multiplicity exactly equal to one).  

Figure 2 shows examples of both variants. The CheckOut feature always has a CheckOutType, 
but this must be (in a concrete application) a Registered CheckOut or, alternatively, a Guest 
CheckOut. The two variants cannot be implemented simultaneously in a concrete application. This 
is reflected in the composition relationship shown in the same Figure: only one instance of type 
CheckOutType can be connected to a CheckOut instance. However, the variant of the 
PaymentTypes feature implies that more than one feature can be selected (but one of these must 
always be the CreditCard payment type). The multiplicity 1..3 of the composition relationship 
states this possibility. Finally, the PaymentGateways group of features are optional and compatible 
(the multiplicity 0..2 clarifies the possibilities).  

These patterns conform to the literature. However, we can appreciate that some basic 
information is lost. For example, it is necessary to show that the payment type DebitCard or 
ElectronicCheque can be used in some applications or not, but each application in the PL must 
have the CreditCard PaymentType. This is not shown in Figure 2, and this representation must be 
modified to clarify these differences.  

RegistrationInfo

Login (String)

CreditCardInfo

LoginCredentials

ShippingAdress (String)

CardNumber (String)

Password (String)

CardName (String)

0..1

0..1

1..1

0..1

BillingAdress (String)

ExpiryDate(Date)

SecurityInfo (String)

0..1

RegistrationInfo

+ShippingAdress: String[0..1]
+BillingAdress: String[0..1]

LoginCredentials

+login: String
+password: String

1

CreditCardInfo

+CardName: String
+CardNumber: String
+ExpiryDate: Date
+SecurityInfo: String[0..1]

0..1

Fig.  1 Structural feature model fragment and the corresponding UML model equivalent 
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Fig.  2 Structural feature model fragment with examples of alternative and OR feature constructions and the 
corresponding literature based architectural solution 

In a previous work we proposed to separate the representation of variability of the PL 
completely from the variability of the concrete applications [21], using the UML package merge 
mechanism to add details to the models in an incremental way.  The <<merge>> relationship 
indicates that the contents of two packages are combined. It is used when elements in different 
packages have the same name and represent the same concept, which is extended incrementally in 
each separate package. Selecting the desired packages, it is possible to obtain a tailored definition 
from all the possible ones. Although the examples in UML focus on class diagrams, the 
mechanism can be extended to any UML model, in particular use cases and sequence diagrams.  

This mechanism provides a clear traceability between feature and UML models. Each optional 
feature is described by an optional package of the PL that will be selected or not, in function of the 
concrete configuration of features.  The process consists of establishing, for each UML model, a 
base package that embodies the common part of the PL. Then, associated to each optional feature, 
a new package is built, so that all the necessary changes in the model remain located. This package 
is connected through the <<merge>> relationship with its base package in the exact point of the 
package hierarchy.  The direction of the relationship expresses the dependence between packages: 
the base or merged package can always be included in a specific product, the receiving package is 
an extension of the base package and can only be included if the base package is also selected. 
This is exactly the way the expert decides which features are included or not during the 
configuration process, and must be directly reflected in the configuration of packages. A modified 
version of the feature patterns is imaginable, combining the literature based structures with the 
package merge mechanism. 

The representation of the PL structural model we use is shown in Table 1, which presents some 
examples of the package based version of the feature patterns equivalences with structural models. 
This second version is preferable, as it removes any ambiguity about the multiplicity semantics 
and is directly translatable to code. 

The example 5 is clarifying: All the applications in the PL have the possibility of Credit Card 
payment but some of them have two or three additional possibilities of payment. This doesn’t 
presume which type of payment (or combination) will be selected by the final user in each system 
execution. The semantics of cardinality in feature models is different from the multiplicity 
semantics in class diagrams and is actually related to the package organization of the PL 
architecture. A collateral benefit is that the traceability between features and packages is registered 
automatically. 

 



 
A similar argumentation can be used if we want to find the behavioral equivalences of feature 

patterns. We base the UML behavioral model on use case diagrams (obviously combined with the 
package merge mechanism) with intensive use of include and extend relationships.  Mandatory 
behavior is modeled with included use cases and optional behavior with extension use cases. But 

Table 1  Examples of  basic structural features and their transformation to package combination of class diagrams 
Feature  Pattern Class Structure (package merge variant) 

(1)

Login (String)

LoginCredentials

Password (String)  

LoginCredentials

+login: String
+password: String

 

RegistrationInfo

ShippingAdress (String)

0..1

BillingAdress (String)
0..1

 
 
 

(2) 

PRegistrationInfo

PBillingAdress 

PShippingAdress 

<<merge>>

<<merge>>
RegistrationInfo

RegistrationInfo

+ShippingAdress: String

RegistrationInfo

+BillingAdress: String
 

 
CheckOut

ShippingOptions

TaxationOptions

1..1

0..1

PaymentOptions

1..1

 
(3) 

PCheckOut

CheckOutPaymentOptions 1

TaxationOptions
1

PShippingOptions<<merge>>
CheckOut

ShippingOptions

1

PaymentGateways

CustomPGVerisign

0..2

 
 
 
 

(4) 

PPaymentGateways

PaymentOptions

PaymentGateways

1

PVerisign
PaymentGateways

Verisign

<<merge>>

PCustomPG

<<merge>>

PaymentGateways

CustomPG

PCheckOut

PaymentOptions
<<merge>>

 

CreditCard
ElectronicCheque

PaymentTypes

DebitCard

PurchaseOrder

1..4

 
 

(5) 

PCheckOut
PaymentOptions PaymentTypes1..*

CreditCard

PPurchaseOrder
PElectronicCheque

PDebitCard

<<merge>>

<<merge>>

<<merge>>

PurchaseOrder

PaymentTypes PaymentTypes

ElectronicCheque

PaymentTypes

DebitCard



optional behavior has, as in structural models, two meanings. Using the same example, the details 
of payment steps can be different in an implemented application in the PL because it is possible to 
pay by cheque or credit card (and then we use the extend relationship). However, any application 
always requires the credit card payments but not the cheque possibility (this second behavior is in 
an extension use case inside an optional package). This approach leads us to Table 2, basic 
examples of patterns (optional/mandatory and include/extend combinations). The name of use 
cases can be modified as a part of the transformation (using a convention as “manage X”) but this 
is not relevant as the internal structure of each package is only a fist cut that must be manually 
refined (in contrast, the package structure must be preserved).  

3 Transformations of feature patterns 

The complexity of the models forces us to automate the transformations in order to successfully 
adopt the product line paradigm. As the method we have chosen is based on the meta-model 
mapping approach [8], our work consists of defining a set of transformations between the feature 
patterns and the architectural UML constructions (both defined in terms of the corresponding 
meta-model), based on the informal finding of the previous section. 

Table 2  Basic behavioral features and their transformation to package combination of UML use case diagrams
Feature Pattern Use Case diagrams (package merge variant) 

CheckOut

ShippingOptions

TaxationOptions

1..1

0..1

PaymentOptions

1..1

 
(1) 

PCheckOut

CheckOut

Actor

PShipping

ShippingOptionsCheckOut

<<include>>

<<merge>>

TaxationOptions

<<include>>

PaymentOptions<<include>>

 

CreditCard
ElectronicCheque

PaymentTypes

DebitCard

PurchaseOrder

1..4

 
 
 

(2) 

 

PCheckOut

PaymentOptions

CreditCard

PaymentTypes<<include>>

<<extend>>

PElectronicCheque

PDebitCard

PPurchaseOrder

<<merge>>

<<merge>>

<<merge>> PaymentOptions

PaymentOptions
PaymentOptions

PurchaseOrder

<<extend>>

DebitCard

<<extend>>

ElectronicCheque

<<extend>>



The way to define a transformation is to identify an element (or more exactly a combination of 
connected elements that satisfy certain constraints) of the feature model and give the two 
equivalences in terms of the UML meta-model. As the election of the meta-model greatly 
influences the transformation process, we evaluated several possibilities specified in the literature.  
The meta-model proposed by Czarnecki et al. in [9] has finally been selected because of the 
simplicity of the transformations. In this approach, the distinctive property of the relationships is 
the cardinality. In a previous work [21], we defined and implemented the structure of packages 
that represent the architectural vision of the PL, facilitating the traceability of the models. The 
transformation is now completed, filling the packages with classes, attributes, and relationships 
(and in parallel, use cases and extend/include relationships).  

The transformation from feature into structural models (Table 1) implies: 
a) Transform the Feature model into a UML model. 
b) Transform each RootFeature into a root Package, which includes a class with the same 

name as the feature.  
c) Transform each mandatory FeatureGroup (i.e., with minimum cardinality greater than 

zero, as in example 5 of Table 1) into a super-class of the set of classes generated by 
its owned GroupedFeature instances and generate an association with the class 
generated from the owner Feature. 

d) Transform each optional FeatureGroup (i.e., with minimum cardinality equal to zero, 
as in example 4) into a package merged with the package associated with the parent 
feature. Then, inside this package, create a super-class of the set of classes generated 
by its owned GroupedFeature instances and an association with a duplicate of the class 
generated from the owner Feature. 

e) Transform each mandatory GroupedFeature into a class that specializes the class 
generated by the owner FeatureGroup (CreditCard in example 5). 

f) Transform each optional GroupedFeature into a package merged with the package 
associated with the parent feature. Then, inside the new package, create a class that 
specializes a duplicate of the class generated by the owner FeatureGroup (DebitCard 
in example 5) 

g) Transform each mandatory SolitaryFeature typed as FEATURE into a class and 
associate it with the class generated from the owner feature (TaxationOp in example 
3). 

h) Transform each mandatory SolitaryFeature (all the subtypes except FEATURE) into a 
typed attribute and assign this attribute to the class generated from the owner feature 
(Login in example 1).   

i) Transform each optional SolitaryFeature (all the subtypes) into a package merged with 
the package associated with the parent feature. Then:  

a. Inside the new package, transform the SolitaryFeature typed as FEATURE 
into a class and, additionally, associate this class with a duplicate of the class 
generated from the owner feature with (ShippingOptions  in example 3).   

b. Inside the new package, transform the SolitaryFeature with type other than 
FEATURE into an attribute and assign this attribute to a duplicate of the class 
generated from the owner feature (ShippingAdresss  in example 2).  

 
The strategy is based on the three subtypes of Feature. The root of every tree in a feature model 

(RootFeature) is transformed into a base package (and an initial class, which will generally be 
discarded) and a recursive transformation of SolitaryFeatures and FeatureGroups linked to every 
feature is carried out. The presence of a group implies a class associated to the parent feature that 
is specialized in several subtypes (one per alternative feature). Previously, a new merging package 
is created if the feature is optional. A similar set of transformations has been defined in parallel 
from feature patterns to use case diagrams. The complete definition of both sets of 
transformations, using QVT [26], can be found in [22]. The package content must be revised and 
completed, but the package structure itself can be used afterwards to automatically derive the 



product model by selecting the desired features. This possibility compensates for the overcharge of 
complexity that the traceability management and the extensive use of packages in the architectural 
models entails.  

Concerning the implementation details of the transformations, a partial implementation, using 
XML style sheets, was given in [21]. We used a combination of available tools, based on the 
Eclipse platform (fmp plug-in [11]) and Microsoft proprietary tools. The connection between them 
is achieved using intermediate XML files that can be automatically generated. The C# language 
and the Microsoft .NET platform have been selected because of the direct support of the package 
merge mechanism by means of partial classes. In [21] these experiences are described. The 
developed product line domains include Web and mobile based families of applications.  

Work in progress includes the development, with the Microsoft DSL tools, of a specific domain 
language, functionally equivalent to the fmp eclipse plug-in, to integrate all the steps of the 
process, from goals analysis to application package configuration inside the Microsoft Visual 
Studio platform.  

4 Related Work 

Schobbens et al. [27] have reviewed the different variants of feature diagrams, clarifying the 
differences and establishing generic formal semantics. The influence of non-functional 
requirements preferences in variant selection has been faced by several methods. The original 
FODA proposal uses the feature models to represent all the types of variability, functional and 
non-functional [18].  Jarzabek et al. address the non-functional requirements and feature 
relationships in the PL context [15]. They extend FODA with concepts of goal-oriented analysis.  
The proposed framework allows developers to record design rationale in the form of 
interdependencies between variant features and soft-goals, with both models at the same level. 
Finally Yu et al. present a model-driven extension to their Early Requirements Engineering tool 
(OpenOME) in [31] that generates an initial feature model from stakeholder goals. 

Also, the work devoted to relating feature constructions and architectural designs is abundant.  
Recent proposals express variability with UML models by modifying or annotating these models. 
Structural, functional or dynamic models have been used. Some authors have proposed explicitly 
representing the functional variation points by adding annotations or changing the essence of the 
use case diagrams. For example, Von der Maßen et al. [30] propose using new relationships 
("option" and "alternative") and the consequent extension of the UML meta-model. John and 
Muthig [16] suggest the application of use case templates to represent the variability in PLs, using 
stereotypes. Concerning structural models, either the mechanisms of UML are used directly 
(through the specialization relationship, the association multiplicity, etc.), as in the case of 
Jacobson [14]; or the models are explicitly annotated using stereotypes. The work of Gomaa [10] 
is an example of this approach, since it uses the stereotypes <<kernel>>, <<optional>> and 
<<variant>> (corresponding to obligatory, optional, and variant classes). Similarly, Clauß 
proposes a set of stereotypes to express the variability in architecture models [4].  

In the Czarnecki meta-model approach [9], the features are typed (including FEATURE type as 
default type and String, Integer, etc.). Additionally, we use other elemental types such as Date, 
Time, Money, directly translatable to conventional programming languages. 

The mapping between requirements and design has always been considered complex for several 
reasons (flexibility and adaptability of the PL, technology options, availability of resources, etc.) 
[28]. The classical works of Kang and Lee [17, 18, 23], Czarnecky [7], Griss et al. [12], or Bosh 
[2] among others, have enabled the identification of a set of feature patterns that can potentially 
populate the intended catalog. Sochos et al. provide an analysis of the PL methods and propose 
strengthening the mapping between requirements and architecture by modifying the feature models 
[28]. The disadvantage is the introduction of implementation characteristics in the requirements 
models. Bragança et al. [3] propose the reverse transformation, obtaining features from use case 



models. Their solution requires the UML meta-model extension and the use of annotations. 
Another solution, proposed by Czarnecki [6], consists of annotating the UML models with 
presence conditions, so that each optional feature is reflected in one or, more realistically, several 
parts of a diagram (which may be a class, an association, an attribute, etc. or a combination of 
elements). Although the class diagrams are the most used, the technique can be applied to any 
UML model, in particular the sequence or activity diagrams. Some tools are provided, such as an 
Eclipse plug-in for the definition and configuration of the feature model and an auxiliary tool to 
show the presence condition in UML models. We think that our package approach is a better 
solution as it uses conventional UML CASE tools. 

5 Conclusions and future work 

In this article, the possibilities provided by the combination of different modeling paradigms to 
represent and configure variability in a product line are discussed. The main contribution is the 
identification of patterns in feature models and their mapping into the corresponding architectural 
structures. The organization of the product line in packages that represent the common and 
optional parts is taken into account as an integral part of the transformations.  

The feature patterns catalog enables the automated creation of traceability links between the 
product line feature and the architectural models. A set of transformations based on QVT are 
defined to obtain the UML behavioral and structural models, including the package structures. 
Work in progress includes the development of a specific domain language (based on the feature 
meta-model) that will connect all the phases of the process, from goal analysis to the application 
package configuration in the same tool, using these traceability links. 

As future work, an advanced vision is based more strictly on the MDE paradigm, automating 
most of the phases of product line development. Firstly, the set of UML structural and behavior 
models are obtained using the feature pattern transformations (manual completion of these models 
will always be required). Then, the goal based configuration process yields a subset of packages 
that will be merged into a (platform independent) combined model using existing MDE tools. The 
resulting PIM will be used as input to code generator tools. These tools are precisely intended to 
generate the platform specific models and the final code. We are evaluating some of the best 
known tools in order to assess the practical possibilities of the product line and MDE paradigms 
alliance.  
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