A Refactoring Discovering Tool based on Graph Transformation

Javier Pérez, Yania Crespo
Departamento de Informatica
Universidad de Valladolid

{jperez,yania}@infor.uva.es

Abstract

One of the problems of documenting software evo-
lution arises with the extensive use of refactorings.
Finding and documenting refactorings is usually harder
than other changes performed to an evolving system.
We introduce a tool prototype, based on graph trans-
formation, to discover refactoring sequences between
two versions of a software system. When a refactor-
ing sequence exists, our tool can also help reveal the
functional equivalence between the two versions of the
system, at least, as far as refactorings can assure be-
haviour preservation.

1 Introduction

Efforts to include refactorings as a regular tech-
nique in software development have led refactoring
support to be commonly integrated into development
environments (i.e. Eclipse Development Platform,
IntelliJ® Idea, NetBeans, etc.). Finding refactorings,
now they are extensively used, is one of the problems
of software evolution [2, 3]. For version management
tools, for example, refactorings are modifications more
difficult to deal with than any other kind of changes.

Our tool prototype implements a method, based on
graph transformation [5, 8], to discover refactoring se-
quences between two versions of a software system. In
case a refactoring sequence exists, our tool can also
help reveal the functional equivalence between the two
versions of the system, at least, as far as refactorings
can assure behaviour preservation.

2 Graph parsing approach

To search refactorings we use graph transforma-
tion as an underlying formalism to represent Object-
Oriented software and refactorings themselves. Refac-
torings involve modification of the system structure,

so we believe that graph transformation, which focuses
on description and manipulation of structural informa-
tion, is a quite appropriate formalism.

In [4, 7] the graph transformation approach is shown
to be valid for refactoring formalisation. In these
works, programs and refactorings are represented with
graphs, in a language independent way, using a kind
of abstract syntax trees with an adequate expressive-
ness level for the problem. This representation format
is claimed to be language independent and very sim-
ple, with the purpose of making it easy to use and as
flexible as possible. Therefore, as suggested in [7], it
was necessary to extend the graph format to represent
‘real’ programs containing specific elements and con-
structions of a particular language. We have developed
an extension to represent Java programs which we have
named ‘Java program graphs’.

Once programs have been represented with graphs,
and refactoring operations have been described as
graph transformation rules, we apply graph parsing al-
gorithms to find the refactoring sequence between two
different versions of a software system. We address
the problem of finding a transformation sequence from
one version of the system to another as a state space
search problem. With this approach we identify: the
original/old system as a start state, refactoring
operations as state changing operations (edges), the
refactored /new system as the goal state, the prob-
lem of whether a refactoring sequence exists as
a reachability problem, and a refactoring sequence
as the path from the start state to the goal state.

We propose a basic search algorithm to look for
refactoring sequences. In order to allow some kind
of guided search, we base our solution in the use of
refactoring preconditions and postconditions. So our
approach needs refactoring definitions which include
preconditions and postconditions.

The main idea of our algorithm is to iteratively mod-
ify the start state applying refactoring graph transfor-
mation rules. The set of selectable refactorings at each



iteration is composed just of refactorings whose precon-
ditions are held in the current state and whose post-
conditions are held in the goal state. When no more
refactorings are selectable, the algorithm backtracks to
the last transformation applied. The algorithm ends
up in success when the current state graph is isomor-
phic to the goal state graph. The refactoring sequence
is the path found to the goal state. The algorithm ends
up in fail when no more refactorings can be executed,
and the current and goal states are not isomorphic.

3 Our tool so far

Our refactoring discovering tool consists mainly of a
refactoring searching graph grammar and a plu-
gin for the Eclipse Development Platform (see
Fig. 1), which has a strong refactoring support.

We have developed a sample implementation of some
searching rules to test the validity of our approach.
Up to date, the refactoring searching graph grammar
searchs for pullUpMethod, renameMethod and useSu-
perType, supported by the Eclipse refactoring engine,
removeMethod and removeClass. Using graph repre-
sentation for source code enables to adjust the detail
level by adding or removing elements from the graph
model. The set of searchable refactorings can be easily
extended by adding more searching rules to the gram-
mar.

We use the AGG graph transformation tool [1] as
the back-end of our prototype implementation. AGG
is a rule-based tool that supports an algebraic approach
to graph transformation, and allows rapid prototyping
for developing graph transformation systems. We have
chosen AGG mainly because it supports graph parsing.
Graph parsing can be used to perform depth first search
with backtracking, and our algorithm can be partially
implemented that way.

Our initial Eclipse plugin [6] obtains the Java pro-
gram graph representation from the source code of the
two versions of a system, launches the graph transfor-
mation parser and shows a part of the output dumped
by the parser. From this raw information, we are able
to identify the refactoring sequence found, but this
is only valid for the purpose of testing our approach.
There is a clear need to improve the front-end to show
up the search results in a more convenient way.

4 Results and future work

We have developed a tool prototype based on graph
transformation to find whether a refactoring sequence
exists between two versions of a software system or

Graph Transformation Tool
(AGG)

Java
Program
Graphs

4 N\
Eclipse Development Platform Refactoring
Searching [— |
Graph Grammar

Java
Code

Refactoring

\
Sequence \
«——

Refactoring Refactoring Searching Plugin Graph
Parser

Output

State
Space

- J/

Figure 1. Outline of our tool

not. Our implementation is a proof of concept that
offers very promising results.

Our innmediate objectives are to improve the vi-
sualisation of results, to implement refactoring search-
ing rules to support more refactoring operations and to
measure the scalability of our technique over industrial-
size systems. This will include improving rule descrip-
tions to take benefit of new features being added in the
newest versions of the AGG tool or even testing other
graph transformation tools for the back-end.

References

[1] Agghome page, graph grammar group, Technische Uni-
versitdt Berlin. http://tfs.cs.tu-berlin.de/agg.

[2] S. Demeyer, S. Ducasse, and O. Nierstrasz. Finding
refactorings via change metrics. In OOPSLA, pages
166-177, 2000.

[3] D. Dig, C. Comertoglu, D. Marinov, and R. Johnson.
Automatic detection of refactorings in evolving com-
ponents. In ECOOP 2006 - Object-Oriented Program-
ming; 20th European Conference, Nantes, France, July
2006, Proceedings, pages 404-428, 2006.

[4] N. V. Eetvelde and D. Janssens. Refactorings as graph
transformations. Technical report, Universiteit Antwer-
pen, 2005.

[5] H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozen-
berg, editors. Handbook of Graph Grammars and Com-
puting by Graph Transformations, Volume II: Applica-
tions, Languages and Tools, volume 2. World Scientific,
1999.

[6] B. Martin Arranz. Conversor de Java a grafos AGG
para Eclipse. Master’s thesis, Escuela Ténica Superior
de Ingenieria Informdtica, Universidad de Valladolid,
September 2006.

[7] T. Mens, N. Van Eetvelde, S. Demeyer, and
D. Janssens. Formalizing refactorings with graph trans-
formations. Journal on Software Maintenance and Evo-
lution: Research and Practice, 17(4):247-276, July/Au-
gust 2005.

[8] G. Rozenberg, editor. Handbook of Graph Grammars
and Computing by Graph Transformations, Volume I:
Foundations, volume 1. World Scientific, 1997.



