
Exploring a Method to Detect Behaviour-Preserving
Evolution Using Graph Transformation

Javier Pérez, Yania Crespo
{jperez,yania}@infor.uva.es

Universidad de Valladolid

Third International ERCIM Symposium on Software Evolution
(co-located with ICSM 2007)

Javier Pérez (Universidad de Valladolid) Detecting Behaviour-Preserving Evolution October 2007 1 / 36

Introduction

Introduction: Context

Refactorings are commonly integrated into development
environments and are extensively used.

Finding and understanding refactorings is important to document
and to understand a system’s evolution.
It will be useful to determine automatically when software
evolution has been behaviour-preserving.

to verify a redesign process
to verify a handmade refactoring
to find and characterise stages of a system’s evolution
. . .

Javier Pérez (Universidad de Valladolid) Detecting Behaviour-Preserving Evolution October 2007 2 / 36

Introduction

Introduction: Goals

To detect whether two versions of a software system are
functionally equivalent,

by checking whether the evolution process between this two
versions can be formulated by a refactoring sequence

n n + 1

Javier Pérez (Universidad de Valladolid) Detecting Behaviour-Preserving Evolution October 2007 3 / 36

Introduction

Introduction: Goals

To detect whether two versions of a software system are
functionally equivalent,

by checking whether the evolution process between this two
versions can be formulated by a refactoring sequence

n n + 1R 1 R 2 R n

Javier Pérez (Universidad de Valladolid) Detecting Behaviour-Preserving Evolution October 2007 3 / 36

Introduction

Introduction: Approach

We are exploring a method which:
uses a graph representation format for Java programs and Java
refactorings,
models the problem as a state space search,
searches sequences of ONLY refactorings,
uses refactorings’ pre and postconditions to guide the search.

Javier Pérez (Universidad de Valladolid) Detecting Behaviour-Preserving Evolution October 2007 4 / 36

Introduction

Introduction: Approach

We are exploring a method which:
uses a graph representation format for Java programs and Java
refactorings,
models the problem as a state space search,
searches sequences of ONLY refactorings,
uses refactorings’ pre and postconditions to guide the search.

Javier Pérez (Universidad de Valladolid) Detecting Behaviour-Preserving Evolution October 2007 4 / 36

Introduction

Introduction: Approach

We are exploring a method which:
uses a graph representation format for Java programs and Java
refactorings,
models the problem as a state space search,
searches sequences of ONLY refactorings,
uses refactorings’ pre and postconditions to guide the search.

Javier Pérez (Universidad de Valladolid) Detecting Behaviour-Preserving Evolution October 2007 4 / 36

Introduction

Introduction: Approach

We are exploring a method which:
uses a graph representation format for Java programs and Java
refactorings,
models the problem as a state space search,
searches sequences of ONLY refactorings,
uses refactorings’ pre and postconditions to guide the search.

Javier Pérez (Universidad de Valladolid) Detecting Behaviour-Preserving Evolution October 2007 4 / 36

Short Example: Printing system

Example: Simulation of a Printing System

PrinterHub

 printWithPDF(p:PDFPrinter)

Printer

 content: String

 setContent(c:String)

 printDefault()

PDFPrinter

 printPDF()

Different printers for different document types and a printer hub to
connect all the printers. More printers will be added when needed.

Javier Pérez (Universidad de Valladolid) Detecting Behaviour-Preserving Evolution October 2007 5 / 36

Short Example: Printing system

Example: Refactored Printing System

PrinterHub

 print(p:Printer)

Printer

 content: String

 setContent(c:String)

 print()

The system administrator noticed that only pdf documents were sent.
Rashly modification to simplify the inheritance hierarchy.

Javier Pérez (Universidad de Valladolid) Detecting Behaviour-Preserving Evolution October 2007 6 / 36

Short Example: Printing system

Problem!

A new system administrator arrives. Finds two versions of the
system, and no documentation about the changes performed
between them.
Problems:

documenting the changes performed to the old system
is the new system functionally equivalent to the old one?

We know that a sequence exists (done manually).

Javier Pérez (Universidad de Valladolid) Detecting Behaviour-Preserving Evolution October 2007 7 / 36

Short Example: Printing system

Refactoring Sequence Applied

1 removeMethod:
printing.Printer.printDefault()

2 pullUpMethod:
printing.PDFPrinter.printPDF() =⇒ printing.Printer.printPDF()

3 renameMethod:
printing.Printer.printPDF() =⇒ printing.Printer.print()

4 renameMethod:
printing.PrinterHub.printWithPDF() =⇒ printing.PrinterHub.print()

5 useSuperType:
printing.Printer.print(PDFPrinter p) =⇒

printing.Printer.print(Printer p)
6 removeClass:

printing.PDFPrinter

Javier Pérez (Universidad de Valladolid) Detecting Behaviour-Preserving Evolution October 2007 8 / 36

Short Example: Printing system

Refactoring Sequence Applied

1 removeMethod:
printing.Printer.printDefault()

2 pullUpMethod:
printing.PDFPrinter.printPDF() =⇒ printing.Printer.printPDF()

3 renameMethod:
printing.Printer.printPDF() =⇒ printing.Printer.print()

4 renameMethod:
printing.PrinterHub.printWithPDF() =⇒ printing.PrinterHub.print()

5 useSuperType:
printing.Printer.print(PDFPrinter p) =⇒

printing.Printer.print(Printer p)
6 removeClass:

printing.PDFPrinter

Javier Pérez (Universidad de Valladolid) Detecting Behaviour-Preserving Evolution October 2007 8 / 36

Short Example: Printing system

Refactoring Sequence Applied

1 removeMethod:
printing.Printer.printDefault()

2 pullUpMethod:
printing.PDFPrinter.printPDF() =⇒ printing.Printer.printPDF()

3 renameMethod:
printing.Printer.printPDF() =⇒ printing.Printer.print()

4 renameMethod:
printing.PrinterHub.printWithPDF() =⇒ printing.PrinterHub.print()

5 useSuperType:
printing.Printer.print(PDFPrinter p) =⇒

printing.Printer.print(Printer p)
6 removeClass:

printing.PDFPrinter

Javier Pérez (Universidad de Valladolid) Detecting Behaviour-Preserving Evolution October 2007 8 / 36

Short Example: Printing system

Refactoring Sequence Applied

1 removeMethod:
printing.Printer.printDefault()

2 pullUpMethod:
printing.PDFPrinter.printPDF() =⇒ printing.Printer.printPDF()

3 renameMethod:
printing.Printer.printPDF() =⇒ printing.Printer.print()

4 renameMethod:
printing.PrinterHub.printWithPDF() =⇒ printing.PrinterHub.print()

5 useSuperType:
printing.Printer.print(PDFPrinter p) =⇒

printing.Printer.print(Printer p)
6 removeClass:

printing.PDFPrinter

Javier Pérez (Universidad de Valladolid) Detecting Behaviour-Preserving Evolution October 2007 8 / 36

Short Example: Printing system

Refactoring Sequence Applied

1 removeMethod:
printing.Printer.printDefault()

2 pullUpMethod:
printing.PDFPrinter.printPDF() =⇒ printing.Printer.printPDF()

3 renameMethod:
printing.Printer.printPDF() =⇒ printing.Printer.print()

4 renameMethod:
printing.PrinterHub.printWithPDF() =⇒ printing.PrinterHub.print()

5 useSuperType:
printing.Printer.print(PDFPrinter p) =⇒

printing.Printer.print(Printer p)
6 removeClass:

printing.PDFPrinter

Javier Pérez (Universidad de Valladolid) Detecting Behaviour-Preserving Evolution October 2007 8 / 36

Short Example: Printing system

Refactoring Sequence Applied

1 removeMethod:
printing.Printer.printDefault()

2 pullUpMethod:
printing.PDFPrinter.printPDF() =⇒ printing.Printer.printPDF()

3 renameMethod:
printing.Printer.printPDF() =⇒ printing.Printer.print()

4 renameMethod:
printing.PrinterHub.printWithPDF() =⇒ printing.PrinterHub.print()

5 useSuperType:
printing.Printer.print(PDFPrinter p) =⇒

printing.Printer.print(Printer p)
6 removeClass:

printing.PDFPrinter

Javier Pérez (Universidad de Valladolid) Detecting Behaviour-Preserving Evolution October 2007 8 / 36

Graph Representation

Refactorings and Graph Transformation

We use Graph Transformation as a formal representation for
refactorings and OO software

GT deals with structure representation and modification
refactorings are structural modifications

We use the work of Mens et al. “Formalising Refactorings with
Graph Transformations” as our basis, to represent:

programs as graphs
refactorings as graph transformation rules

We have made a small extension to this format to represent
simple Java programs.

Javier Pérez (Universidad de Valladolid) Detecting Behaviour-Preserving Evolution October 2007 9 / 36

Graph Representation

Refactorings and Graph Transformation

We use Graph Transformation as a formal representation for
refactorings and OO software

GT deals with structure representation and modification
refactorings are structural modifications

We use the work of Mens et al. “Formalising Refactorings with
Graph Transformations” as our basis, to represent:

programs as graphs
refactorings as graph transformation rules

We have made a small extension to this format to represent
simple Java programs.

Javier Pérez (Universidad de Valladolid) Detecting Behaviour-Preserving Evolution October 2007 9 / 36

Graph Representation

Original Printing System

//------------------------PrinterHub.java
public class PrinterHub {

public void printWithPDF(PDFPrinter p){
p.printPDF();

}
}
//------------------------PDFPrinter.java
public class PDFPrinter extends Printer{

public void printPDF(){
// body of printPDF method

}
}
//---------------------------Printer.java
public class Printer {

public String content;
public void setContent(String c){

this.content = c;
}
public void printDefault(){

// body of printDefault method
}

}

Javier Pérez (Universidad de Valladolid) Detecting Behaviour-Preserving Evolution October 2007 10 / 36

Graph Representation

Original Printing System Graph

Javier Pérez (Universidad de Valladolid) Detecting Behaviour-Preserving Evolution October 2007 11 / 36

Graph Representation

Refactorings as Graph Transformation Rules

Left-hand side: Rule precondition.
Can be used to express refactorings’ pre and postconditions.

Rigth-hand side: Transformation.

Javier Pérez (Universidad de Valladolid) Detecting Behaviour-Preserving Evolution October 2007 12 / 36

Searching Method

Modeling the problem

We address the problem as a state space search problem:
Original/Old system ≃ start state.
Refactoring operations ≃ state changing operations, edges.
Refactored/New system ≃ goal state.
Does a refactoring sequence exist? ≃ reachability problem.
Refactoring sequence ≃ path from the start state to the goal state.

We apply a graph parsing algorithm to perform depth-first search
Main problem: size of the state space (finite?)

With refactoring descriptions expressed in terms of preconditions,
transformations and postconditions,
preconditions and postconditions can guide the search,
we can reduce the size of the state space.

Javier Pérez (Universidad de Valladolid) Detecting Behaviour-Preserving Evolution October 2007 13 / 36

Searching Method

Modeling the problem

We address the problem as a state space search problem:
Original/Old system ≃ start state.
Refactoring operations ≃ state changing operations, edges.
Refactored/New system ≃ goal state.
Does a refactoring sequence exist? ≃ reachability problem.
Refactoring sequence ≃ path from the start state to the goal state.

We apply a graph parsing algorithm to perform depth-first search
Main problem: size of the state space (finite?)

With refactoring descriptions expressed in terms of preconditions,
transformations and postconditions,
preconditions and postconditions can guide the search,
we can reduce the size of the state space.

Javier Pérez (Universidad de Valladolid) Detecting Behaviour-Preserving Evolution October 2007 13 / 36

Searching Method

Modeling the problem

We address the problem as a state space search problem:
Original/Old system ≃ start state.
Refactoring operations ≃ state changing operations, edges.
Refactored/New system ≃ goal state.
Does a refactoring sequence exist? ≃ reachability problem.
Refactoring sequence ≃ path from the start state to the goal state.

We apply a graph parsing algorithm to perform depth-first search
Main problem: size of the state space (finite?)

With refactoring descriptions expressed in terms of preconditions,
transformations and postconditions,
preconditions and postconditions can guide the search,
we can reduce the size of the state space.

Javier Pérez (Universidad de Valladolid) Detecting Behaviour-Preserving Evolution October 2007 13 / 36

Searching Method

Algorithm

TargetSource 0

R1 R2 R3 R4

Available Refactorings Refactoring Sequence

Javier Pérez (Universidad de Valladolid) Detecting Behaviour-Preserving Evolution October 2007 14 / 36

Searching Method

Algorithm

TargetSource 0

R1 R2 R3 R4

Available Refactorings Refactoring Sequence

Pre

Post

Post

Post

R1

R3Pre

Looks for refactoring preconditions in the start graph.

Looks for refactoring postconditions in the goal graph.

Javier Pérez (Universidad de Valladolid) Detecting Behaviour-Preserving Evolution October 2007 15 / 36

Searching Method

Algorithm

TargetSource 1

R1 R2 R3 R4

Available Refactorings

R1

Refactoring Sequence

Pre

Post

Post

R1

PostR3Pre

Iteratively selects candidate refactorings

Transforms the current graph with them

Javier Pérez (Universidad de Valladolid) Detecting Behaviour-Preserving Evolution October 2007 16 / 36

Searching Method

Algorithm

TargetSource 2

R1 R2 R3 R4

Available Refactorings

R1 R1

Refactoring Sequence

Post

R4Pre

PostR3Pre

Iteratively selects candidate refactorings

Transforms the current graph with them

Javier Pérez (Universidad de Valladolid) Detecting Behaviour-Preserving Evolution October 2007 17 / 36

Searching Method

Algorithm

TargetSource 3

R1 R2 R3 R4

Available Refactorings

R1 R1 R3

Refactoring Sequence

Pre

PostR2

Javier Pérez (Universidad de Valladolid) Detecting Behaviour-Preserving Evolution October 2007 18 / 36

Searching Method

Algorithm

TargetSource 4

R1 R2 R3 R4

Available Refactorings

R1 R1 R3 R2

Refactoring Sequence

Success: current graph isomorphic to the goal graph,
Fail: No more refactorings can be executed, current and goal
states are not isomorphic.

Javier Pérez (Universidad de Valladolid) Detecting Behaviour-Preserving Evolution October 2007 19 / 36

Implementation in AGG

Implementation in AGG

Easy to use graph transformation tool

AGG allows rapid prototyping of GT systems.
It supports graph parsing, which can be used to perform the
search:

The AGG parser randomly applies rules to the start graph
until it is isomorphic to the goal graph,
or no more rules are available,
and backtracking is no longer possible.

AGG allows to “exercise” our approach easily.

It present expressiveness and efficiency limitations.

Javier Pérez (Universidad de Valladolid) Detecting Behaviour-Preserving Evolution October 2007 20 / 36

Implementation in AGG

Implementation in AGG

Easy to use graph transformation tool

AGG allows rapid prototyping of GT systems.
It supports graph parsing, which can be used to perform the
search:

The AGG parser randomly applies rules to the start graph
until it is isomorphic to the goal graph,
or no more rules are available,
and backtracking is no longer possible.

AGG allows to “exercise” our approach easily.

It present expressiveness and efficiency limitations.

Javier Pérez (Universidad de Valladolid) Detecting Behaviour-Preserving Evolution October 2007 20 / 36

Running the Example

Running the Example

Set of rules to search:
pullUpMethod, renameMethod, removeMethod, removeClass,
removeInterface and useSuperType

Each iteration, among candidate rules:
AGG selects randomly one to apply it.
AGG backtracks when needed and possible.

Output from the AGG parser’s debugging information:
rules applied
when backtracking occurs
intermediate graphs
. . .

parsing takes about 2 seconds

Javier Pérez (Universidad de Valladolid) Detecting Behaviour-Preserving Evolution October 2007 21 / 36

Running the Example

Running the Example

Set of rules to search:
pullUpMethod, renameMethod, removeMethod, removeClass,
removeInterface and useSuperType

Each iteration, among candidate rules:
AGG selects randomly one to apply it.
AGG backtracks when needed and possible.

Output from the AGG parser’s debugging information:
rules applied
when backtracking occurs
intermediate graphs
. . .

parsing takes about 2 seconds

Javier Pérez (Universidad de Valladolid) Detecting Behaviour-Preserving Evolution October 2007 21 / 36

Running the Example

State Space, Derivation Graph

0 / S o u r c e

2

r e m o v e M e t h o d (p r i n t D e f a u l t)

7 1 2

p u l l U p M e t h o d (p r i n t P D F)

r e n a m e M e t h o d (p r i n t P D F , p r i n t)

1 4

r e m o v e M e t h o d (p r i n t W i t h P D F)

r e n a m e M e t h o d (p r i n t W i t h P D F , p r i n t)

F A I L

S U C C E S S

2 3

2 5

2 6 / T a r g e t

u s e S u p e r T y p e

r e m o v e C l a s s (P D F P r i n t e r)

8

1 3

p u l l U p M e t h o d (p r i n t P D F)

S T A R T

r e n a m e M e t h o d (p r i n t W i t h P D F , p r i n t)

For this experiment, the parsing terminates and finds a sequence.

Javier Pérez (Universidad de Valladolid) Detecting Behaviour-Preserving Evolution October 2007 22 / 36

Running the Example

State Space, Derivation Graph

0 / S o u r c e

2

r e m o v e M e t h o d (p r i n t D e f a u l t)

7 1 2

p u l l U p M e t h o d (p r i n t P D F)

r e n a m e M e t h o d (p r i n t P D F , p r i n t)

1 4

r e m o v e M e t h o d (p r i n t W i t h P D F)

r e n a m e M e t h o d (p r i n t W i t h P D F , p r i n t)

F A I L

S U C C E S S

2 3

2 5

2 6 / T a r g e t

u s e S u p e r T y p e

r e m o v e C l a s s (P D F P r i n t e r)

8

1 3

p u l l U p M e t h o d (p r i n t P D F)

S T A R T

r e n a m e M e t h o d (p r i n t W i t h P D F , p r i n t)

For this experiment, the parsing terminates and finds a sequence.

Javier Pérez (Universidad de Valladolid) Detecting Behaviour-Preserving Evolution October 2007 22 / 36

Running the Example

State Space, Derivation Graph

0 / S o u r c e

2

r e m o v e M e t h o d (p r i n t D e f a u l t)

7 1 2

p u l l U p M e t h o d (p r i n t P D F)

r e n a m e M e t h o d (p r i n t P D F , p r i n t)

1 4

r e m o v e M e t h o d (p r i n t W i t h P D F)

r e n a m e M e t h o d (p r i n t W i t h P D F , p r i n t)

p u l l U p M e t h o d (p r i n t P D F)

9

1 6

r e n a m e M e t h o d (p r i n t P D F , p r i n t)

F A I L

S U C C E S S

2 3

r e n a m e M e t h o d (p r i n t W i t h P D F , p r i n t)

2 5

2 6 / T a r g e t

u s e S u p e r T y p e

r e m o v e C l a s s (P D F P r i n t e r)

8

1 3

p u l l U p M e t h o d (p r i n t P D F)

S T A R T

r e n a m e M e t h o d (p r i n t W i t h P D F , p r i n t)

The first sequence found differs from the one found manually

Javier Pérez (Universidad de Valladolid) Detecting Behaviour-Preserving Evolution October 2007 23 / 36

Running the Example

State Space, Derivation Graph

0 / S o u r c e

2

r e m o v e M e t h o d (p r i n t D e f a u l t)

7 1 2

p u l l U p M e t h o d (p r i n t P D F)

r e n a m e M e t h o d (p r i n t P D F , p r i n t)

1 4

r e m o v e M e t h o d (p r i n t W i t h P D F)

r e n a m e M e t h o d (p r i n t W i t h P D F , p r i n t)

p u l l U p M e t h o d (p r i n t P D F)

9

1 6

r e n a m e M e t h o d (p r i n t P D F , p r i n t)

F A I L

S U C C E S S

2 3

r e n a m e M e t h o d (p r i n t W i t h P D F , p r i n t)

2 5

2 6 / T a r g e t

u s e S u p e r T y p e

r e m o v e C l a s s (P D F P r i n t e r)

8

1 3

p u l l U p M e t h o d (p r i n t P D F)

S T A R T

r e n a m e M e t h o d (p r i n t W i t h P D F , p r i n t)

The first sequence found differs from the one found manually

Javier Pérez (Universidad de Valladolid) Detecting Behaviour-Preserving Evolution October 2007 23 / 36

Running the Example

State Space, Derivation Graph

0 / Source

2

3

5

removeMethod(printDefault)

renameMethod(printDefault, print)

pullUpMethod(printPDF)

4

renameMethod(printWithPDF, print)

7 12

1

removeMethod(printWithPDF)

removeMethod(printDefault) pullUpMethod(printPDF)

renameMethod(printPDF, print)

14

6

pullUpMethod(printPDF) removeMethod(printDefault)

removeMethod(printWithPDF)

renameMethod(printWithPDF, print)

pullUpMethod(printPDF)
9

16

renameMethod(printPDF, print)

FAIL

SUCCESS

23

renameMethod(printWithPDF, print)

25

26 / Target

useSuperType

removeClass(PDFPrinter)

removeMethod(printWithPDF)

8

13

pullUpMethod(printPDF)

useSuperType

15 1920

removeClass(PDFPrinter)

renameMethod(printPDF, print)

renameMethod(printPDF, print)

removeClass(PDFPrinter)

10

11

removeMethod(printWithPDF)

renameMethod(printWithPDF, print)
18

pullUpMethod(printPDF)

22

useSuperType

24

removeClass(PDFPrinter)

FAIL

17
pullUpMethod(printPDF)

FAIL

START

renameMethod(printWithPDF, print)

We can obtain the whole state space. In this case, it is finite.

Javier Pérez (Universidad de Valladolid) Detecting Behaviour-Preserving Evolution October 2007 24 / 36

Discussion

Our results

There are not many works dealing with finding refactorings.

These efforts focus in mining refactorings mixed with other
changes.

We focus on the detection of behaviour-preserving evolution.
Changes are only refactorings.

We can deal with multiple refactoring changes applied to the same
piece of code.

We can deal with renamings.

The structural representation can be as detailed as needed to
support refactorings at any abstraction level.

We have explored the possibilities of our approach.

Many ways of improving it to solve the open problems.

Javier Pérez (Universidad de Valladolid) Detecting Behaviour-Preserving Evolution October 2007 25 / 36

Discussion

Our results

There are not many works dealing with finding refactorings.

These efforts focus in mining refactorings mixed with other
changes.

We focus on the detection of behaviour-preserving evolution.
Changes are only refactorings.

We can deal with multiple refactoring changes applied to the same
piece of code.

We can deal with renamings.

The structural representation can be as detailed as needed to
support refactorings at any abstraction level.

We have explored the possibilities of our approach.

Many ways of improving it to solve the open problems.

Javier Pérez (Universidad de Valladolid) Detecting Behaviour-Preserving Evolution October 2007 25 / 36

Discussion

Our results

There are not many works dealing with finding refactorings.

These efforts focus in mining refactorings mixed with other
changes.

We focus on the detection of behaviour-preserving evolution.
Changes are only refactorings.

We can deal with multiple refactoring changes applied to the same
piece of code.

We can deal with renamings.

The structural representation can be as detailed as needed to
support refactorings at any abstraction level.

We have explored the possibilities of our approach.

Many ways of improving it to solve the open problems.

Javier Pérez (Universidad de Valladolid) Detecting Behaviour-Preserving Evolution October 2007 25 / 36

Discussion

Problems and Limitations: Termination

Problem:
Our searching algorithm is only partially correct.
If the state space is not finite the termination can not be
guaranteed.

Solutions:
Use of refactorings’ pre and postconditions
Formulate the searching rules to limit the search space size.
Store states to not check the same state twice.
More heuristics.

Javier Pérez (Universidad de Valladolid) Detecting Behaviour-Preserving Evolution October 2007 26 / 36

Discussion

Problems and Limitations: Termination

Problem:
Our searching algorithm is only partially correct.
If the state space is not finite the termination can not be
guaranteed.

Solutions:
Use of refactorings’ pre and postconditions
Formulate the searching rules to limit the search space size.
Store states to not check the same state twice.
More heuristics.

Javier Pérez (Universidad de Valladolid) Detecting Behaviour-Preserving Evolution October 2007 26 / 36

Discussion

Problems and Limitations: expressiveness

Problem:
We have not implemented “real” refactoring operations.
AGG lacks some key features needed, path expressions.
Representing context:

Limitation to a single, finite context.
We need to specify a set of contexts.

Solution:
Test more GT tools (PROGRES, GROOVE, . . .).

Javier Pérez (Universidad de Valladolid) Detecting Behaviour-Preserving Evolution October 2007 27 / 36

Discussion

Problems and Limitations: expressiveness

Problem:
We have not implemented “real” refactoring operations.
AGG lacks some key features needed, path expressions.
Representing context:

Limitation to a single, finite context.
We need to specify a set of contexts.

Solution:
Test more GT tools (PROGRES, GROOVE, . . .).

Javier Pérez (Universidad de Valladolid) Detecting Behaviour-Preserving Evolution October 2007 27 / 36

Discussion

Problems and Limitations: Complex Refactorings

Problem:
Difficult to represent rules for refactorings which take an
undetermined number of steps.
Lack of a full transformation control in AGG,

Solutions:
Last versions of AGG implement a better execution control.
Program the rule control and use AGG as a backend rule execution
engine.
Test more GT tools (PROGRES, GROOVE, . . .).

Javier Pérez (Universidad de Valladolid) Detecting Behaviour-Preserving Evolution October 2007 28 / 36

Discussion

Problems and Limitations: Complex Refactorings

Problem:
Difficult to represent rules for refactorings which take an
undetermined number of steps.
Lack of a full transformation control in AGG,

Solutions:
Last versions of AGG implement a better execution control.
Program the rule control and use AGG as a backend rule execution
engine.
Test more GT tools (PROGRES, GROOVE, . . .).

Javier Pérez (Universidad de Valladolid) Detecting Behaviour-Preserving Evolution October 2007 28 / 36

Future Work

Future Work

Analysis of the state space: Can we formulate the refactoring
searching rules to restrict the search space to a finite state space?

Searching rule catalog: Improving rules with features in the
newest AGG’s versions. Implementing rules to search more
refactorings.

Test other GT tools: To improve efficiency, expressiveness, . . .

Full Java model: Use another metamodel which can represent
full Java programs.

Scalability: Measuring the scalability and reliability of our
technique over industrial-size systems.

Tool: Eclipse plugin front-end to translate code to graphs, to
launch AGG and to show up the refactoring sequence in a more
convenient way.

Javier Pérez (Universidad de Valladolid) Detecting Behaviour-Preserving Evolution October 2007 29 / 36

Thanks for your attention!

Exploring a Method to Detect Behaviour-Preserving
Evolution Using Graph Transformation

Javier Pérez, Yania Crespo
{jperez,yania}@infor.uva.es

Universidad de Valladolid

Third International ERCIM Symposium on Software Evolution
(co-located with ICSM 2007)

Javier Pérez (Universidad de Valladolid) Detecting Behaviour-Preserving Evolution October 2007 30 / 36

