
Electronic Communications of the EASST
Volume X (2007)

Proceedings of the
Third International ERCIM Symposium on

Software Evolution
(Software Evolution 2007)

Exploring a Method to Detect Behaviour-Preserving Evolution Using
Graph Transformation

Javier Pérez, Yania Crespo

10 pages

Guest Editors: Tom Mens, Maja D’Hondt, Kim Mens
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

Exploring a Method to Detect Behaviour-Preserving Evolution
Using Graph Transformation

Javier Pérez1, Yania Crespo2

1 jperez@infor.uva.es, www.infor.uva.es/∼jperez
2 yania@infor.uva.es, www.infor.uva.es/∼yania

1,2 Departamento de Informática, ETSI Informática
Universidad de Valladolid, Valladolid, Spain

Abstract: One of the problems of documenting software evolution appears with
the extensive use of refactorings. This paper explores a method, based on graph
transformation, to detect wether the evolution between two versions of a software
system can be expressed by means of a sequence of refactoring operations. For this
purpose we extend a graph representation format to use it for simple Java programs,
and we show a sample implementation of the method using the AGG graph trans-
formation tool. In case a refactoring sequence exists, our technique can help reveal
the functional equivalence between the two versions of the system, at least, as far as
refactorings can assure behaviour preservation.

Keywords: finding refactoring sequences, documenting software evolution, be-
haviour preservation, functional equivalence, graph transformation

1 Introduction

Refactorings [FBB+99, Opd92] are structural transformations that can be applied to a software
system to perform design changes without modifying its behaviour. Efforts to include refactor-
ings as a regular technique in software development have led refactoring support to be commonly
integrated into development environments (e.g. Eclipse Development Platform, IntelliJ R© Idea,
NetBeans, etc.). Finding refactorings, now that they are extensively used, is one of the problems
of documenting and understanding software evolution [DDN00].

We explore a method, based on graph transformation [EEKR99, Roz97], to search for a refac-
toring sequence which can describe the evolution of a software system. A toy Java system will
be used, as an example, to explain our approach. The AGG graph transformation tool [ERT99]
is used for a sample implementation of the method.

The paper is organised as follows. Firstly, in Section 2 we show the example used to illustrate
our proposed method. Section 3 introduces an extension of a graph format to allow representing
simple Java programs as graphs, and Java refactorings as graph transformation rules. In Section 4
we describe our method to find refactorings using graph parsing. Section 5 describes a sample
implementation using the AGG graph transformation tool and, in Section 6 we show the test-run
of this implemention with the previously formulated example. The analysis and comparison to
related work of our approach is performed in Section 7. Finally, in Section 8 we present our
future work and conclude. inheritance

1 / 10 Volume X (2007)

mailto:jperez@infor.uva.es
www.infor.uva.es/~jperez
mailto:yania@infor.uva.es
www.infor.uva.es/~yania


Exploring a Method to Detect Behaviour-Preserving Evolution Using Graph Transformation

2 A short example

We will use a toy Java system, slightly inspired in the LAN simulation example [JDM03, MT04],
as a running example to illustrate our approach. Our original system (see Figure 1(a)) was
designed to model printers for different document types and a hub to connect them, providing
a single access point. A hierarchy of default and specific printers allows to add more printers
when needed. When the administrator notices that no other type than pdf documents are sent,
the original system is rashly modified to simplify the printer hierarchy (see Figure 1(b)). When a
new system administrator arrives, he finds the two versions of the system, and no documentation
about the changes performed between them. The problem here is not only about documenting
the changes performed, but mainly to test whether the new system is functionally equivalent to
the old one. For space reasons we have simplified the example removing some method’s bodies.

//------------------------PrinterHub.java
public class PrinterHub {
public void printWithPDF(PDFPrinter p){
p.printPDF();

}
}
//------------------------PDFPrinter.java
public class PDFPrinter extends Printer{
public void printPDF(){
// body of printPDF method

}
}
//---------------------------Printer.java
public class Printer {

public String content;
public void setContent(String c){

this.content = c;
}
public void printDefault(){
// body of printDefault method

}
}

(a) The original printing system

//------------------------PrinterHub.java
public class printerHub {
public void print(Printer p){
p.print();

}
}

//---------------------------Printer.java
public class Printer {

public String content;
public void setContent(String c){

this.content = c;
}
public void print(){
// body of print method

}
}

(b) The modified printing system

Figure 1: The printing system example

We know that the new system was obtained after applying the following sequence of refac-
torings over the old one: 1) removeMethod applied to Printer.printDefault(); 2) pullUpMethod
applied to PDFPrinter.printPDF(), placing it at Printer.printPDF(); 3) renameMethod executed
over Printer.printPDF(), which is renamed as Printer.print; 4) renameMethod executed over
PrinterHub.printWithPDF(), which gets renamed as PrinterHub.print; 5) useSuperType applied
over Printer.print(PDFPrinter p), resulting the new method signature Printer.print(Printer p);
6) removeClass performed over the class PDFPrinter.

This sequence uses only refactorings supported by a refactoring tool. This restriction implies
that it is composed by widely tested refactorings, being also widely recognised that they are
behaviour-preserving. This guarantees that the sequence is behaviour-preserving and both ver-
sions of the system are functionally equivalent. These transformations belong to the set supported
by the Eclipse Development Platform 1. The removeMethod and removeClass, whose definitions
can be found, for example, in [Opd92], are not provided by Eclipse. These refactorings can be
performed manually, checking the preconditions and deleting the desired source code.

1 Eclipse Development Platform homepage: http://www.eclipse.org

Proc. Software Evolution 2007 2 / 10

http://www.eclipse.org


ECEASST

3 Representing refactorings with graph transformation

To tackle the problem we use a formal representation for refactorings and Object-Oriented soft-
ware. Refactorings involve modification of the system structure, and refactoring definitions must
include preconditions and postconditions in order to guarantee that these changes are behaviour-
preserving. Therefore, we have selected graph transformation [EEKR99, Roz97] as the un-
derlying formalism because its naturally focused on description and manipulation of structural
information and allows to model refactoring conditions too. Formalisation of refactorings with
graph transformation is described and validated in [EJ05, MVDJ05]. In that work, programs and
refactorings are represented with graphs, in a language-independent way, using a kind of abstract
syntax trees with an expressiveness level which is adequate for the problem.

3.1 Java programs as graphs

We use the part of the formalism from [MVDJ05] referenced as “program graphs” and related
to software representation to represent Java programs. As it is suggested in that work, it is
necessary to extend the graph format when representing programs containing specific elements
and constructions of a particular language. Bearing this fact in mind, we have developed an
extension to represent simple Java programs which we have named “Java program graphs”.

We describe the edges and nodes which build up this representation format within Tables 2(a)
and 2(b), including the elements of the original format and our modifications. Observing the
contribution of our extension, it can be noticed, for example, that some new node types have been
added to represent packages, interfaces, literals and operators, altogether with their relationships
edges. We also included a type attribute to E nodes, in order to represent control structures and
language constructions like a return or an instantiation (new) expression. Added seq attributes to
E and P nodes allow to represent the order of the sentences within a method body and the order
of the parameters within the signature of a method.

Using our extension, we can represent the old version of the printing system (see Figure 1(a))
as displayed in Figure 3. The graph shows that a prefix s: has been added to each node and edge
type label. This prefix is needed by the implementation that will be described later.

3.2 Refactorings as graph transformation rules

Graph transformation rules are similar to the derivation rules of string grammars. To apply
a rule, a graph transformation system looks for a subgraph, within the graph currently being
transformed, which matches the left-hand side of the rule. Then, the left-hand side matched
subgraph is transformed into the subgraph of the right-hand side. Rule constraints, such as
negative application conditions, can be added. Negative application conditions (NAC) describe
subgraphs which forbid the application of a rule if a match for the NAC exists. The basis of
formalising refactorings as graph transformation rules is presented in [EJ05, MVDJ05].

Figure 4(c) shows how we specify a simplified version of the removeMethod refactoring with
the AGG graph transformation tool. The leftmost part of Figure 4(c) is the left-hand side of
the rule. It represents a method signature (node type M) dynamically linked (edge type l) to a
method definition (node type MD) which is a member (edge type m) of a class (node type C). The

3 / 10 Volume X (2007)



Exploring a Method to Detect Behaviour-Preserving Evolution Using Graph Transformation

Concept Node Attributes Description
package PKG Java package

name: string name
interface I (same as package) Java interface
class C Java class

name: string name
visibility: enum visibility: [non-public, public,

protected, private]
hierarchy: enum order within a inheritance hierar-

chy: [abstract, middle, final]
static: boolean is static?: [true, false]

method M (same as class) signature of a method
MD implementation of a method

variable V (same as class) atttribute or local variable
VD attribute or local variable decla-

ration
parameter P formal parameter

seq: integer position of the parameter within
the parameter list

expression E expression, subexpression or
sentence

type: enum type of expression: [new, return,
if, else, for, loop, ... ]

seq: integer order within a sequence of
subexpressions sharing the root
node, i.e. sentence order

operator O operator
type: string string that represents the opera-

tor
literal L literal or constant

value: string string representation of the lit-
eral value

(a) nodes and attributes

Label Edge Description
i: C −→ C inheritance relationship between classes (reference on an “extends”

subexpression)
I −→ I inheritance relationship between interfaces (reference on an “extends”

subexpression)
C −→ I class which implements an interface (reference on an “implements”

subexpression)
o: C −→ I an interface is observable from a class (“import” subexpression)

C −→ C a class is observable from a class (“import” subexpression)
I −→ I an interface is observable from an interface (“import” subexpression)
I −→ C a class is observable from an interface (“import” subexpression)

t: M −→ C type of a method
V −→ C type of a variable or attribute
P −→ C type of a formal parameter
L −→ C type of a literal/constant

m: MD −→ C body of method MD appears in class C
VD −→ C declaration of an attribute within a class

VD −→MD declaration of a local variable within a method’s body
PKG −→ PKG a package belongs to another package

C −→ PKG a class belongs to a package
I −→ PKG an interface belongs to a package

M −→ I method’s signature belongs to an interface
VD −→ I attribute declaration belongs to an interface

l: M −→MD binding of method’s signature to a method’s body
V −→ VD binding of an attribute or a local variable to its declaration

p: M −→ P formal parameter declaration within a method’s signature
e: MD −→ E expression within a method’s body

E −→ E subexpression or hierarchical relationship between expressions
d: E −→ VD local variable declaration in subexpression
c: E −→M method call in subexpression

E −→ O operator used in subexpression
a: E −→ V access to a local variable or attribute

E −→ P access to a parameter
E −→ L access to a literal

u: E −→ V variable update expression
E −→ P parameter update expression

(b) edges

Figure 2: Description of nodes and edges of Java program graphs

right-hand side describes the result of the rule application. All the elements that represent the
method found by the left-hand side matching subgraph, have been removed from that subgraph.
Figure 4(b) describes a NAC: if any expression (node type E) exists, which represent a call (edge
type c) to the method in the left-hand side, the rule can not be applied. The numbers appearing
in the graph elements stand for identity mappings between elements from the different parts of
the rule (left-hand side, right-hand side and NAC). Attribute values, like name=mName, specify
variables, parameters of the rule, which are substituted with values from the graph to find a
match. When the left-hand side of the rule is matched to a subgraph and a match for the NAC
can not be found, the subgraph is transformed into the right-hand side of the rule. Application of
the rule of Figure 4(c) removes a method from the class where it is declared.

4 A method to detect refactoring sequences

Using the representation format described in the previous Section, we can apply graph parsing
algorithms to search for a refactoring sequence between two different versions of a software
system. We address the problem of finding this transformation sequence as a state space search
problem. With this approach we identify: the original/old system as a start state, refactoring
operations as state changing operations (edges), the refactored/new system as the goal state,
the problem of whether a refactoring sequence exists as a reachability problem, and a refac-

Proc. Software Evolution 2007 4 / 10



ECEASST

Figure 3: The original system of the example

(a) NAC: method does not
exist in target

(b) NAC: method call does
not exist in source

(c) Rule: removeMethod

Figure 4: Rule to search removeMethod

toring sequence as the path from the start state to the goal state. We will refer to the old version
of the system as “source”, to the new version of the system as “target” and we will use “cur-
rent” to refer to the state being explored at a certain point. The “current” state will represent a
system that is being transformed into the new version during the searching process.

We propose a basic search algorithm to search for refactoring sequences (see Figure 5). In
order to allow some kind of guided search and the future addition of heuristics, we use precon-
ditions and postconditions of refactorings. So our approach needs refactoring definitions which
include preconditions and postconditions, as they are used in [KK04].

5 Implementation in the AGG graph transformation tool

We have prepared a prototype with version 1.6.0 of AGG [ERT99]. AGG is a rule based visual
language, and tool, supporting an algebraic approach to graph transformation 2. We have chosen
AGG mainly because it allows rapid prototyping of graph transformation systems. Additionally,
it supports graph parsing, what can be used to perform depth first search with backtracking,
allowing us to explore our algorithm straightly, with little implementation effort.

2 AGG home page, graph grammar group, Technische Universität Berlin: http://tfs.cs.tu-berlin.de/agg

5 / 10 Volume X (2007)

http://tfs.cs.tu-berlin.de/agg


Exploring a Method to Detect Behaviour-Preserving Evolution Using Graph Transformation

Graph source, current, target
List rules_to_apply, ruleset, sequence
Rule rule; Pair(Graph, List) node; Stack stack

initialise source, target, ruleset

copy source to current
rules_to_apply = find_rules(current,target,ruleset)
rule = rules_to_apply.remove_first
sequence = empty

while current is not isomorphic to target and
rules_to_apply is not empty

do
if rule is not empty then // candidate rule
sequence.add_last(rule)
current = apply_rule(current,rule)
rules_to_apply = find_rules(current,target,ruleset)
rule = rules_to_apply.remove_first
stack.push(node(current,rules_to_apply)) // state
else
sequence.remove_last
node = stack.pop // recover a previous state
if node is not empty then
current = node.graph; rules_to_apply = node.rules
rule = rules_to_apply.remove_last

end //if
end //if

end //while
if current is isomorphic to target then
return sequence //success

else
return empty //fail

end //if

List find_rules(Graph source, Grah target, List ruleset)
do
List rules_to_apply = empty;
Rule rule;

foreach rule in ruleset do
if rule.precondition holds in source and

rule.postcondition holds in target
then
rules_to_apply.add_last(rule)
end //if

end //foreach
sort(rules_to_apply,random)
return rules_to_apply

end //find_rules

Figure 5: Basic refactoring searching algorithm

AGG graph parsing, which is mainly oriented to visual languages parsing [RS97], allows
checking whether a particular graph belongs to the graph language generated by a graph grammar
or not. A graph grammar includes an initial graph and a set of graph transformation rules. The
set of graphs generated by a graph grammar defines a graph language. To perform graph parsing,
AGG needs a “parsing grammar”, a grammar whose transformation rules are reversed so they
can transform a given graph to reduce it to the initial graph of the grammar. The tool needs at
least: a set of graph transformation rules, the graph to be transformed, called “host graph” and
the initial graph, called a “stop graph”. The parsing process is based on a simple backtracking
algorithm. The tool randomly chooses graph transformation rules from the parsing grammar and
iteratively applies them to the host graph. The process stops when there are no more applicable
rules or when the host and stop graphs become isomorphic.

To implement our method we use the source system representation as the host graph, and the
target system representation as the stop graph. The host graph also acts as the “current” graph,
the graph being transformed during the searching process. To guide the search, we have added
another subgraph to the host and to the stop graph: a guidance graph which is another copy of the
target system graph. This graph allows to prioritise the selection of refactorings whose “effects”
or postconditions can be found within the target system. Each iteration, to select a refactoring
for the sequence, its preconditions are searched within the “current” graph and its postconditions
within the guidance graph, which does not change during the parsing process. To distinguish
both subgraphs, we have added the prefix s: to labels in the source and target system graph, and
t: to labels in the guidance graph.

This can be seen in the rule of Figure 4. First, we implement a refactoring operation by spec-
ifying the transformation source and context in the left-hand side of the rule and the result on
the right-hand side. These elements have their type labels prefixed with s: (see Figure 4(c).
Additional refactoring preconditions, which do not form part of the refactoring context, must be
expressed as NACs formulated over the current graph (see Figure 4(b)). Refactoring postcondi-

Proc. Software Evolution 2007 6 / 10



ECEASST

tions are specified as conditions over the guidance graph. Positive postconditions are included
within the left-hand side of the rule, while negative postconditions must be expressed as NACs.
Figure 4(a) express that the removed method does not exist in the target system graph.

6 Parsing the example

We launch the parser using the graph representation of the old system (see Figure Figure 3) as the
host graph, the graph representation of the modified system as the stop graph, and the search rules
for the refactorings mentioned in Section 2 as parsing rules. In order to explore our approach,
we have only implemented the rules needed by the example. Given the small complexity of
experiment, the state space resulted is finite and thus the parser does not have problems finding
a valid sequence. Termination of the algorithm depends on the size of the state space, which we
believe can be restricted with the use of refactoring postconditions in the searching process.

To test our approach we just needed a raw output from the parser. We obtained the parser’s
debugging information to know which rules have been applied, when backtracking occurs, the
intermediate graphs, etc. From that debugging information, we have extracted that the parser has
found the refactoring sequence: 1→ 4→ 3→ 2→ 5→ 6. This sequence differs from the one we
proposed in Section 2 but it is an equivalent one for our purposes, and thus is a valid result. The
main goal of our approach was not to find the exact refactoring sequence which was originally
applied. Our goal is to find wether the system evolution was behaviour-preserving and to try to
formulate this evolution in terms of a suitable refactoring sequence.

This result is enough to detect the functional equivalence and to document the general inten-
tion of the changes applied. Even if the developer does not know to have applied a behaviour-
preserving sequence of changes, if this has been the case, it can be revealed. More experiments,
with more refactoring rules, bigger systems, and different graph transformation tools are planned,
to test the scalability and obtain the performance details of the approach.

7 Discussion

7.1 Related work

As far as we know, there are not many works dealing with finding refactorings, and the efforts
have been mainly addressed to mining refactorings that occur mixed with other changes which
are not behaviour-preserving. Our approach focuses on computing if a refactoring sequence
exists between two versions of a software systems or not. What we offer, through this refactoring
sequence calculation, is a kind of test for functional equivalence between systems as long as the
refactorings we support assure behaviour preservation.

Demeyer et al. [DDN00] use metrics to reveal refactorings with the purpose of helping a
programmer to understand the evolution of a system. Their technique applies to a scenario
where human examination of the source code is performed after the automatic analysis. The
main problems of the approach are that it does not behave well with renamings and that it looses
effectiveness when many changes have been applied to the same piece of code.

With our approach, multiple refactorings executed over the same element can be found easily.

7 / 10 Volume X (2007)



Exploring a Method to Detect Behaviour-Preserving Evolution Using Graph Transformation

To apply a refactoring searching rule we initially impose the condition of finding the refactoring
postcondition in the refactored system graph. Refactoring postconditions included in the rule
definition can be more or less restrictive. Less restrictive postconditions allow the rule to be
applied whether the refactoring immediate result can be observed on the refactored system graph
or not. The more restrictive postconditions we include in the refactoring searching rules defini-
tions, the smaller the state space to search is. We can fine-tune the refactoring searching rules to
balance state space size against searching capability.

Handling renamings is not a problem either in our approach. The previous argumentation
applies in this case too. Renamings are expressed in the same way as any other refactoring, and
we can increase the capability of finding renamings making their postconditions less restrictive.

Görg and Weißgerber [GW05] present an approach to find refactorings from consecutive trans-
actions in CVS repositories. A transaction, in this context, is each new version of a system
submitted to the repository. This work is based in pairing and comparing elements (classes and
methods) between consecutive transactions, using element attributes such as name, parameters,
return type, visibility, etc. The method presents good empirical results, but can not detect refac-
torings when more than one change has been applied to a program element. This work also
shows an interesting technique of change visualisation that helps in software comprehension.

As already said, our approach allows to fine-tune the searching rules to maximise the searching
capability. We can adjust a rule so it can be selected even if the effects of a refactoring are
overridden by another one making the first disappear from the refactored system graph.

Dig et al. [DCMJ06] have developed an effective approach which has been proved to offer
good empirical results. Their technique of shingles computing is oriented to find refactorings
that affect software APIs and behaves well at that level of detail. The limitation suffered by this
method is that it can not deal with changes performed within method bodies.

The advantage of our approach relies on its graph transformation basis. Our graph transforma-
tion approach is based on a structural representation of the source code which can be as detailed
as needed in order to support refactorings at any detail level.

7.2 Known problems and limitations

Our approach presents a technique that aids to check the functional equivalence between two ver-
sions of a software system. A parsing analysis having an affirmative result will reveal behaviour
preservation between two versions of a system and will generate a refactoring sequence. The
main limitation of our approach arrives when analysing two versions which are not functionally
equivalent, because the state space we search is probably not finite. Our searching algorithm
is only partially correct. An affirmative result will undoubtedly generate a valid refactoring se-
quence, but it is not complete because termination can not be guaranteed. Our parsing grammar
does not belong to a graph grammar category with termination condition, such as layered graph
grammars [EEL+05]. So, it is not guaranteed that our searching method terminates. We believe
that this can be overcome if we formulate the refactoring searching rules in a way they could
restrict the search space to a finite state space.

In spite of the parsing support provided by AGG, this tool lacks some key features in order
to be able to fully specify any refactoring searching rule. The rules that we have presented are
sufficient to show the validity of our method, but it is quite obvious that they did not fully conform

Proc. Software Evolution 2007 8 / 10



ECEASST

to “real” refactoring operations implemented in a development tool. In rule removeMethod (see
Figure 4), e.g. a method is specified just by its name, and its context is defined just by its
container class (which is also identified just by its name). This problem appears because the
AGG graph language allows to specify only one context per rule. We need to be able to specify
a set of contexts within a single rule, and more expressiveness is needed for that. This can be
achieved using, for example, path expressions as they are supported on the PROGRES graph
transformation tool [Mün99].

It has also been difficult to represent some kind of rules in AGG, those with an iterative nature,
which take an undetermined number of steps to be executed. The transformation control that
AGG has been supporting was based in rule layering and this is not sufficient to formulate that
kind of rules. More complex execution control has been recently implemented in the last versions
of AGG, that allows to gather a set of rules and to designate a main rule to fire them.

8 Results and future work

We have presented a technique based on graph transformation to find whether a refactoring se-
quence exists between two versions of a software system or not. Despite of showing some
limitations, the sample implementation that has been reviewed can be seen as a proof of concept,
and it offers very promising results.

The main limitation of our approach is that our searching method is only partially correct, and
it could not terminate in certain cases. In order to solve this problem an exhaustive analysis of
the state space must be done. We must determine if we can formulate the refactoring searching
rules to restrict the search space to a finite state space.

Once we have proved the validity of our approach, our immediate objective is to implement
refactoring searching rules to support more refactoring operations and to measure the scalability
of our technique over industrial-size systems. This will include improving rule descriptions to
take benefit of features in the newest versions of the AGG tool.

From the raw information the parser outputs we are able to identify the refactoring sequence
it finds, but this is only valid for the purpose of testing our approach. There is a clear need to
develop a front-end tool to show up the refactoring sequence in a more convenient way. We
also believe that building tool is a fundamental step to demonstrate an approach. Thus this is
planned to be provided as a plugin for the Eclipse Development Platform, which has a strong
refactoring support. Up to date, we have already developed an initial Eclipse plugin [MA06] to
automatically obtain a Java program graph representation and to show the parser results.

Bibliography

[DCMJ06] D. Dig, C. Comertoglu, D. Marinov, R. Johnson. Automatic Detection of Refactor-
ings in Evolving Components. In ECOOP 2006 - Object-Oriented Programming;
20th European Conference, Nantes, France, July 2006, Proceedings. 2006.

[DDN00] S. Demeyer, S. Ducasse, O. Nierstrasz. Finding refactorings via change metrics. In
OOPSLA. Pp. 166–177. 2000.

9 / 10 Volume X (2007)



Exploring a Method to Detect Behaviour-Preserving Evolution Using Graph Transformation

[EEKR99] H. Ehrig, G. Engels, H.-J. Kreowski, G. Rozenberg (eds.). Handbook of Graph
Grammars and Computing by Graph Transformations, Volume II: Applications,
Languages and Tools. Volume 2. World Scientific, 1999.

[EEL+05] H. Ehrig, K. Ehrig, J. de Lara, G. Taentzer, D. Varró, S. Varró-Gyapay. Termination
Criteria for Model Transformation. In Cerioli (ed.), FASE. Lecture Notes in Com-
puter Science 3442, pp. 49–63. Springer, 2005.

[EJ05] N. V. Eetvelde, D. Janssens. Refactorings as Graph Transformations. Technical re-
port, Universiteit Antwerpen, 2005.

[ERT99] C. Ermel, M. Rudolf, G. Taentzer. The AGG approach: language and environment.
Volume 2 in [EEKR99], chapter 14, pp. 551–603, 1999.

[FBB+99] M. Fowler, K. Beck, J. Brant, W. Opdyke, D. Roberts. Refactoring: Improving the
Design of Existing Code. Object Technology Series. Addison-Wesley, 1999.

[GW05] C. Görg, P. Weißgerber. Detecting and Visualizing Refactorings from Software
Archives. In IWPC. Pp. 205–214. 2005.

[JDM03] D. Janssens, S. Demeyer, T. Mens. Case Study: Simulation of a LAN. Electr. Notes
Theor. Comput. Sci. 72(4), 2003.

[KK04] G. Kniesel, H. Koch. Static Composition of Refactorings. Science of Computer Pro-
gramming 52(1-3):9–51, 2004. Special issue on Program Transformation, edited by
Ralf Lämmel, ISSN: 0167-6423, http://dx.doi.org/10.1016/j.scico.2004.03.002.

[MA06] B. Martı́n Arranz. Conversor de Java a grafos AGG para Eclipse. Master’s thesis, Es-
cuela Ténica Superior de Ingenierı́a Informática, Universidad de Valladolid, Septem-
ber 2006.

[MT04] T. Mens, T. Tourwé. A Survey of Software Refactoring. IEEE Transactions on Soft-
ware Engineering 30(2):126–139, 2004.

[Mün99] M. Münch. PROgrammed Graph REwriting System PROGRES. In Nagl et al. (eds.),
AGTIVE. Lecture Notes in Computer Science 1779, pp. 441–448. Springer, 1999.

[MVDJ05] T. Mens, N. Van Eetvelde, S. Demeyer, D. Janssens. Formalizing refactorings with
graph transformations. Journal on Software Maintenance and Evolution: Research
and Practice 17(4):247–276, July/August 2005.

[Opd92] W. Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis, Department of
Computer Science, University of Illinois at Urbana-Champaign, 1992. also Techni-
cal Report UIUCDCS-R-92-1759.

[Roz97] G. Rozenberg (ed.). Handbook of Graph Grammars and Computing by Graph Trans-
formations, Volume I: Foundations. Volume 1. World Scientific, 1997.

[RS97] J. Rekers, A. Schürr. Defining and Parsing Visual Languages with Layered Graph
Grammars. J. Vis. Lang. Comput. 8(1):27–55, 1997.

Proc. Software Evolution 2007 10 / 10

http://dx.doi.org/10.1016/j.scico.2004.03.002

	Introduction
	A short example
	Representing refactorings with graph transformation
	Java programs as graphs
	Refactorings as graph transformation rules

	A method to detect refactoring sequences
	Implementation in the AGG graph transformation tool
	Parsing the example
	Discussion
	Related work
	Known problems and limitations

	Results and future work

