
Reuse approaches

Systematic

Transformational

Automated refactoring tools
Reuse refactoring definitions when adapting to

new source language

Reuse Based Refactoring Tools
Authors:
Raúl Marticorena

Yania Crespo

Carlos López

Francisco Javier Pérez

July-August 2007

Solution
MOON as model language for defining refactorings and reuse based on frameworks

Refactoring is important in software reuse and
software reuse is important for refactoring

Goals
Language definition - independent refactorings

Object-Oriented programming languages: statically
typed with or without genericity

Software support definition

Language Independence – MOON Framework
Core – common language contructions

Model syntactic and semantic language rules
Define refactoring basic operations

Extensions – language variable constructions
Refactoring Run Enviroment – Engine Framework

Core
Provide template method to complete refactoring by checking preconditions,

executing actions...
Extension

Concrete refactoring definitions based on concrete predicates, actions and functions.

Framework Support

1

2

3

4

Refactoring Tool

Conditions to check after running refactoringa. They are defined with
predicates and functions on model language MOON

Postconditions

Set of edition primitives defined on MOON elements. They transform
the model instances.

Actions

Conditions to check before running refactorings. They are defined with
predicates and functions on model language MOON

Preconditions

Inputs parameters supported in the MOON model languageInputs

When refactoring can be usefulMotivation

A brief description explaining the refactoringDescription

Refactoring Analysis on Model Language: Template

Refactoring Set
Add Parameter
Rename Parameter
Remove Parameter
Move Attribute
Move Method
Rename Class
Rename Method
Other generic refactorings

Current State

Java partial support
Including generic classes

Engine Framework Core

3

Function

<<abstract>> getValue()
<<abstract>> getCollection()

<<abstract>>

Action

<<abstract>> run()
<<abstract>> undo()

<<abstract>>

Predicate

<<abstract>> isValid()

<<abstract>>

0..*0..*
defined_by

0..*0..*

Refactoring
name : String
description : String
motivation : String

runActions()
undoActions()
validatePreconditions()
validatePostconditions()
addPrecondition()
addPostcondition()
addAction()
run()

<<abstract>>

0..*0..*

perform

{ordered}

0..*

+preconditions

0..*
{ordered}

0..*0..*

+postconditions

Future Work

.NET support
Validate architecture
New refactorings
XML refactoring definition
Metric independent support

D

LANGUAGE INDEPENDENT
REFACTORING FRAMEWORK

ENGINE REPOSITORY

Meta Model
 MOON
(Minimal
Object

Oriented
Notation)

JAVA
EXTENSION

Java Code

ENGINE CORE

JAVA PARSER

A BA
REFACTORING

ENGINE

CODE REGENERATE

Specific Features

BAD SMELLS
INFERENCE

METRICS COLLECTOR

BAD SMELLS
DETECTION

METAMODEL
QUERIES and
TRAVERSE

C

D

JAVA QUERIES
and

TRAVERSE

Specific Queries and Traverse

JAVA
REPOSITORY

B

Specific Refactoring
Transformations

Module Dependencies

Framework Extensions

MOON
CORE

concretepredicate
(from repository)

concreteaction
(from repository)

concretefunction
(from repository)

core
(from engine)

concreterefactoring
(from repository)

repository
(from engine)

engine

JAVA
EXTENSION

1

2

4

