Reuse based refactoring tools

Raul Marticorena, Carlos Lépez

Area of Languages and Computer Systems

University of Burgos (Spain)
{rmartico, clopezno}Qubu.es

Abstract

Current refactoring tools work on a particular lan-
guage. Fach time it is intended to provide refactoring
support for new languages, the same refactoring opera-
tions are defined and implemented again from scratch.
This approach ignores reuse opportunities in this
matter. It is possible to define a way of collecting code
information suited for several languages (a family of
languages) and define refactoring operations over that
representation. On the other hand, it is also possible
to define and implement each refactoring operation by
composing previously defined and developed elements.
In this paper we show the current implementation of a
reuse oriented refactoring engine and its specialization
for a particular language.

Key Words: refactoring,
language-independence

reuse, composition,

1 Introduction

One of the open trends in refactoring [2] is the construc-
tion of language-independent refactoring tools. Lan-
guage independence, or at least certain language inde-
pendence, allows to reuse previous efforts in defining
and implementing refactoring when support for a new
language must be provided. It is also aimed at obtai-
ning a rational solution to provide refactoring opera-
tions for development environments, specially for those
which support several languages.

We present a refactoring tool, using a framework
based on a Minimal Object-Oriented Notation, named
MOON. The use of this minimal notation allows to
abstract the main concepts over a set of object-oriented
languages. Language particularities must be provided
by framework specialization and extension.

A refactoring engine, based on the MOON core and
extensions, is responsible of checking and executing the

Yania Crespo, Francisco Javier Pérez
Deparment of Computer Science
University of Valladolid (Spain)

{vania, jperez}Q@infor.uva.es

refactoring elements on the code. Finally, the refacto-
red code is generated. In order to provide more power-
ful reuse capabilities, refactoring operations are defined
by composition. A refactoring is composed of precon-
ditions, actions and postconditions (following [3], [4]).
On the one hand, conditions allow to check applica-
bility from the point of view of behavior preservation.
On the other hand, actions transform the code, chan-
ging its current state through add, remove and rename
operations. Pre and postconditions are functions and
predicates that query the model and actions are model
transformers. Each pre, postcontion or action is stored
in a repository to be reused when defining new refac-
toring operations. We have built an extension of the
MOON framework core to deal with Java code infor-
mation, in order to manage all the information of the
source code.

1.1 Refactoring Engine

The refactoring engine runs the refactoring definitions
and obtains a new object model with the new state. A
framework definition has been used to allow a simple
scheme of reuse, as can be seen in Fig. 1.

<<abstract>>
Refactoring
hame : String

description : String
0.0 : String _
<<abstract>> 0.* erform "
Predicate _ |e JrunActions() ’ Action

—<abstract-> isValid() undoActions() {orderedjo..{ <<aPstract=>run(

one el ) undo(
de“"ed—bd/ 0. addPrecondition()
0. {ordered} addPostcondition()
<<abstract>> addAction()
Function run()
<<abstract>> getValue()
<<abstract>> getCollection(

Figure 1. Refactoring Engine Framework

Using the Template Method Pattern Design [1], each
refactoring has to be defined with stages, using the
repository content.



1.2 Refactoring Repository

Refactoring elements are implemented as classes (see
Fig. 2). These classes query or transform the current
model instance. Although the model extension con-
tains the information of real code (i.e. Java), most
of the classes work with the MOON metamodel abs-
tractions. This proposal allows to reuse the same
query or action, when the related concepts are the
same in several languages. For example, the precon-
dition ExistParameterWithName or the action Move-
AttributeAction, stored in the repository, are reusable
for several languages.

repository
(from engine)

concreterefactoring

L1 (from repository)

MOON CORE core
,,,,, > < L] (from engine)

- s 1 "

(from repository) }W,m> (from repository)

(from repository)

Figure 2. Repository Architecture Overview

2 Current State

The current version of the tool implements eleven re-
factoring operations (Fig. 3):

- add, rename and remove parameter.

rename classes and methods.

- move attributes and methods.

- four refactoring operations, we have defined, on ge-
neric classes.

Figure 3. Refactoring Tool

Each one of these refactorings are implemented as
concrete classes (extending the Refactoring abstract
class as can be seen in Fig. 1). The refactorings are

built from instances of pre and postconditions classes
and action classes, using the corresponding add met-
hods of the template (Fig. 1).

The repository contains the implementation of
these elements, allowing the programmer to compose
the refactoring. If the element is not available, the
programmer should add the new code needed to the
repository. Hence, last refactorings to be added are
implemented with a minor effort, because the complete
set of their elements is already available in the reposi-
tory in order to be reuse.

3 Future Works

We have presented a refactoring tool which intents to
provide some advantages: certain language indepen-
dence, which allows to reuse the same refactoring im-
plementation (or a very similar one) for different lan-
guages and refactoring construction by composition,
which allows to implement new refactorings from pieces
already available from previously introduced refacto-
ring operations. The current version of the tool allows
to run the refactorings over a simple set of toy codes.
The Java parser is being completed to support com-
mercial code, and a C# parser (with its own framework
extension) is under development to validate the solu-
tion.

We are also currently working on a declarative de-
finition of refactorings using XML. This makes easy
to compose refactorings from the repository elements
using a graphical interface. Since specialization could
be necessary, the declarative definition could be also
specialized for different languages with a high degree
of reuse.

References

[1] Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides. Design Patterns. Elements of Reu-
sable Object-Oriented Software. Addison Wesley,
1995.

[2] Tom Mens and Tom Tourwé. A survey of software
refactoring. IEEE Trans. Softw. Eng., 30(2):126—
139, 2004.

[3] William F. Opdyke. Refactoring Object-Oriented
Frameworks. PhD thesis, University of Illinois at
Urbana-Champaign, IL, USA, 1992.

[4] Donald Bradley Roberts. Practical Analysis for
Refactoring. PhD thesis, University of Illinois at
Urbana-Champaign, I, USA, 1999.



