
Requirements variability support through MDD
and graph transformation1

F. Javier Pérez García2, Miguel A. Laguna2,
Yania Crespo González-Carvajal2 and Bruno González-Baixauli2

Departamento de Informática
Universidad de Valladolid

Valladolid, Spain

Abstract

One of the most important factors of success in the development of a software product line
is the elicitation, management, and representation of variability. Feature models, are used
as a key artifact to express requirements variability and are the basis for the domain archi-
tecture design. In this context, this article explores the possible advantages of Model Driven
Engineering (MDE) and shows an automated transformation from the feature model to the
architecture model. This transformation is understood as a graph transformation process
because it offers a natural way to represent model transformations. The transformation is
applied by the definition of a simple context-free graph grammar where production rules
are obtained from metamodels of both feature and architecture models.

Key words: MDE, Requirements variability, Feature Model, MDATM ,
Graph Transformation, Layered Graph Grammars

1 Introduction

Product lines (PL) have become the most successful approach in the reuse field,
due to the combination of coarse-grained components, i.e. software architectures
and software components, with a top-down systematic approach, where the soft-
ware components are integrated in a high-level structure. However, product lines
is a very complex concept that requires a great effort in both technical architecture
definition, development, usage and instantiation [2,4] and organizational business
view [1] dimensions. In addition, the standard proposals of the software devel-
opment process traditionally ignore reuse issues, in spite of their recognized ad-

1 This work has been supported by the Spanish MEC/FEDER (TIN2004-03145)
2 Email: {jperez,mlaguna,yania,bbaixauli}@infor.uva.es

Preprint submitted to Elsevier Preprint 29 July 2005



vantages [12]. Our proposal is to introduce a reuse approach based on product
lines that requires less investment and presents results earlier than more traditional
product line methods [14]. This proposal incorporates the best practices in reuse
approaches, mainly from the domain engineering process, into conventional disci-
plines of the application engineering process. The first point we focus on, as it is
one of the most critical, is the elicitation and analysis of variability in the product
line requirements. We have explored two techniques: Goal Oriented Requirements
Engineering and Model Driven Architecture (MDATM). The goal approach to vari-
able requirements elicitation has been treated in detail elsewhere [8,9]. In this paper
we focus on Model Driven Architecture.

Model Driven Architecture (MDATM) was introduced by the Object Manage-
ment Group (OMG) and is based on the Platform Independent Model (PIM) con-
cept. The PIM is a specification of a system in terms of domain concepts and with
independence of platforms (e.g. CORBA, .NET, or J2EE) [10]. The system can
then transform the PIM into a Platform Specific Model (PSM) [10]. As the main
strength of MDATM is the manipulation and transformation of different models and
feature and goal models are introduced in our process, it is worth exploring the
relations of these models with UML conventional models in the MDATMcontext.
Transformations from feature and goal models to UML class diagram are given.
The transformation rules are explained and later modeled as graph transforma-
tions. Graph rewriting rules are specified on metamodels. The starting graph is
an instance of a Feature metamodel and the final graph is an instance of the UML
metamodel.

The rest of the paper is as follows: The next section (Section 2) discusses the
benefits that MDATMcan bring to the product line approach and address the trans-
formation from feature and goal models to an UML class diagram representing part
of a simple framework design. Later, Section 3 shows how to implement the trans-
formation with graph and graph rewriting formalism and tools. Section 4 concludes
the paper and proposes additional work.

2 MDA TM and Product Line Requirements Engineering

The OMG site refers to some successful experiences with MDATM . Yet, with re-
spect to the application of MDATM to product line development, the pertinent ques-
tion is: What degree of real freedom exists at the time of creating a PIM? As a
typical example, in the book by Kleppe et al. [13] a translation of a PIM is a set of
three PSM which are predefined concrete solutions: a PSM based on Web technol-
ogy, another supported by java beans technology and the third based on relational
databases. Another approach, the executable UML paradigm [15] is specific to a
certain kind of system and requires a precise definition of the classes and operations
(using an action semantic language very close to conventional code). Nevertheless,
when a product line requirements model is specified, its creation is accompanied



by other requirements of quality, security, etc. These non-functional requirements
influence the type of architectural solution and technologies that must be applied.
The assumption is that, in the previous examples, there is a hidden set of NFR that
are not specified in the PIM. In spite of these inconveniences, it is worth analyzing
the possibilities that the MDATM ideas can bring to this field. Essentially we are
searching for an (ideally automated) derivation of an optimal specific product in a
product line, while taking into consideration functional and non-functional require-
ments and using the goals/soft-goals and feature models and their correlations as
the starting point. A set of transformations between these models can actually be
carried out.

The Product Line Requirements Engineering discipline includes several activ-
ities. The main activity involves the specification of the domain model, which
consists of the domain features. The design of a solution for these requirements
constitutes the architectural asset base of the product line (typically implemented
as an OO Framework).

Later, in the application engineering process, an application model must be de-
rived from the domain model. In this process, alternative concepts are selected
based on customer functional and non-functional requirements. This activity is
essentially a transformation process where a set of decisions taken by the appli-
cation engineer generates the initial feature product model and, consequently, via
traceability links, the initial architecture of the product. The variation points are
selected on the conceptual level on the basis of a rationale provided by functional
and non-functional requirements.

The novelty with MDE (particularly MDATM) is the possibility of the automa-
tion of the transformations that specify how instances of the domain feature model
are converted into a working application. A pre-requisite of the applicability of
MDA TM is to have a metamodel of each technique. In Figure3, a feature meta-
model is presented. The transformation definition can be seen in its more mature
state as a compiler for a domain specific language. The feature/goal models com-
bination would be compiled into a working application using the transformation
definition, the asset base and the customer requirements.

In [4] MDA TM is presented as an approach to derive products in a specific type
of product lines, configurable families. The authors main idea is that a software
system that is specified according to the MDATM approach is a particular case of
product line where the most characteristic variation point consists of products that
implement the same functionality on different platforms. The choice for the alter-
native platforms is a variation point in such a product line. This variation point
can be separated from the specification models and managed in the transformation
definition itself. The main benefit of MDATM compared to traditional development,
is that the management of the platform variation point is handled automatically by
the transformation step and is not a concern for the product engineer.

However the final platform for a product is not the only variation point that



Fig. 1. Product line engineering and MDATM and the scope of this study. Left and right
parts of the figure refer to Product Line and Application processes respectively

needs to be managed in a product line. The various product line members differ in
both their functional and non-functional requirements.

The central question is if MDATM can easily accommodate these variable re-
quirements by adding the information that specifies places where alternative con-
cepts can be selected. Selection of different concepts from this domain model
then results in different PIMs, specific to an application, which, provided that the
adequate transformation definitions are implemented, can be automatically trans-
formed into PSMs using the MDATM approach. The general schema is presented in
Figure1.

From an application model to specific platforms (.NET or EJB), a conventional
PIM to PSM transformation can be defined and this is the only typical MDATM

transformation, where the initial application model obtained from the feature model
and the asset base (and manually completed) is transformed to a specific PSM or
set of PSMs. The rest of the models in Figure1 can be considered as PIMs.

These PIMs can be related via automated or non-automated transformations.
The possibilities MDATM offers must be examined in detail. There are basically
two kinds of transformation:

• Horizontal: selection of goals/soft-goals combination, feature model configura-
tion, and framework instantiation

• Vertical: PL Goal model to PL Feature model transformation, PL Feature model
to PL Architecture (Domain framework) transformation, and the parallel Appli-
cation equivalents.



Some feature models can incorporate platform or context information (such as
variability points) but as we use the soft-goal model to express non-functional vari-
able requirements, the feature model is basically functionally oriented. Inspecting
the Figure1 and from the horizontal point of view, we can extract some conclu-
sions, independently of the automation degree of the transformations.

The conventional configuration step of a feature model consists of imposing a
set of constraints which originates the selection of a sub-graph of features, possibly
with some alternative variants deferred to execution time (Czarnecki differentiates
configuration from specialization mechanisms of derivation of feature sub models
[7] but we only contemplate configuration as an horizontal transformation for the
sake of simplicity). There are several kinds of tools to select the variants, such
as wizards or graph-like languages and their use guides the instantiation of the
particular application model. The difficulty is that the combination of features must
be decided by a domain expert based in his experience and not in objective data.

The importance of using our complementary goal/soft-goal model is two fold:
a) it allows the application engineer to deduce (if the traceability links are carefully
established) what features are needed to reach the selected goals (or functional
requirements), and b) which is the optimal set of goals/features in the context of
a set of soft-goals (or NFR) of a determined priority that provides the rationale
of the selection. In practice, this supposes a rise in the abstraction level of the
variants selection process, making the selection in the requirements level instead
of in the feature level. As a conclusion, these horizontal transformations can be
automated, but not in the MDATM sense. This line of work can be supported by
the tool described in [8] and, despite its scalability problem, the obtained results
are promising. In the rest of this section we will focus on the vertical possibilities
of Figure 1, basically the steps from the PL Goal model to the PL architecture.
The Application Goal, Feature and Architecture models can be better derived as
instances of their PL corresponding models (the horizontal transformation), instead
of using a vertical approach.

The relation between PL Goal and Feature models cannot easily be considered
as an MDATM-like transformation because of the different objectives and building
methods. Goal models determine the variability of the different ways to achieve
these goals (expressed as a tree of sub-goals and tasks that operationalize these
goals), while feature models separate the common from the variable part of the
systems. This characteristic implies that, until this moment, the two models (three,
if we consider the soft-goal model) must be built manually, but not independently,
by the domain engineer. As a working hypothesis, a constraint imposing that a
Task must be implemented only by one Feature will facilitate the traceability and
the selection of components from a goal configuration and also a possible derivation
of an initial PL Feature model from the PL Goal model.

From the point of view of the PL Feature model to PL Architecture transfor-
mation, the method we have chosen is based on the metamodel mapping approach



Fig. 2. Feature model in the domain of communication for handicapped people and a simple
solution using composition, association, and specialization

[6]. The work consists of defining a set of transformations between the elements
of variability in the feature models and the architectural solutions (really each kind
of variability in the feature model can be implemented by more than one technique
[5]). An example can be seen in Figure2: a feature model is transformed into a
model that represents part of a simple framework design.

The way to define a transformation is to select an element of the feature meta-
model and give one or several equivalences in the UML metamodel. This implies
that an annotation is needed in the feature model to select one of the possible design
mechanisms. As we need a precise definition of the metamodels, the first consider-
ation is to answer the question about the metamodel compatibility of these different
models. It is clear that the Application metamodel is the UML metamodel. In the
case of the PL Architecture, the UML metamodel is also used. (Some authors pro-
pose extensions or profiles to complete the information about the variability that
can be used to support traceability.) The Feature models (and sub-models) are built
using other concepts but several studies have specified different metamodels using
MOF. We have explored these metamodels and conclude that the election influences
greatly the transformation process. The Massen proposal [17] was used initially but
finally the recently proposed by Czarnecki et al. [7], has been selected because the
simplicity of the related transformation. In this approach, the distinctive property of
the relationships is the cardinality. In the metamodel of Figure3, the relationships
are implicit and the source of the transformation must be the cardinality attribute
of the features and group of features.

3 An example transformation: PL Feature model to PL Archi-
tecture model

Figures3 and4 show the Feature and the partial UML Metamodels respectively.
Transformation rules are graphically expressed using the latest QVT submission
syntax [11] in Figure 5. The main interest of this transformation is that once it’s
defined, the generated framework can be used to automatically derive the applica-
tion model by selecting the desired features, as mentioned above.



Fig. 3. Feature simplified metamodel, adapted from Czarnecki et al.

Fig. 4. partial UML metamodel

The strategy is to order transformations, from root to leaf nodes of the fea-
ture tree diagram, considering each feature subtype involved. First, Feature Model
is translated to a Namespace. Afterwards Root Feature nodes are converted, and
cyclic transformations of Solitary Features and Feature Groups are finally carried
out.

4 Implementing metamodel mapping through graph transfor-
mations

Once the metamodels and transformation rules are selected, a formal foundation
is needed to support their implementation in CASE/MDE enabled tools. Since the
models involved are represented with graphs, graph transformation formalisms sup-
port these transformations straightforward. Contextual Layered Graph Grammars
(CLGGs [3]) are chosen because they allow to specify a rule ordering. In CLGGs,
the set of available rules are divided in different subsets classified in ordered layers.
To transform a graph, rules must be executed layer by layer. Before a rule belong-
ing to an upper layer can be applied, there can not be an applicable rule available
on the lower layer. We use a tool called AGG [16] that supports CLGGs and At-



Fig. 5. Transformation definition of a Feature model into a UML metamodel

tributed Graph Grammars (grammars that allow the use of attributes, cardinalities,
for example). AGG can be used without its GUI, as a separate graph transformation
engine, that can be integrated into dedicated tool. This makes AGG a good tool to
implement our MDE transformations.

QVT rules have been implemented in AGG. Each transformation rule definition



is translated to a set of rules that implement it. Different layers are assigned to each
set of rules related to each QVT definition. This guarantees that rules are applied
in the same order established by the metamodel mapping definition.

Graph transformation rules consist of three parts: a left side, or positive appli-
cation condition, a right side, and a set of negative application conditions. The left
side of the rule states a morphism that must be found in the graph to apply that
rule. The right side of the rule defines which elements of the left side are deleted,
which ones are preserved and what new elements must be created in the resulting
graph. The negative application conditions define subgraphs that must not exist in
the graph to be able to apply the rule. Some additional restrictions must be con-
sidered in the graph transformation rules. For example, deletion of nodes are not
allowed to leave dangling edges in the resulting graph.

Because of these restrictions, each single QVT definition must be translated to
a set of graph transformation rules. This set can be seen as a three-stage transfor-
mation process.

Create classesOne rule is needed to create the PL architecture classes from the
corresponding PL Feature node. Negative application conditions must be de-
clared to assure the execution of exactly one transformation per feature.

Move children One or more rules are needed to move all links between the feature
node and its children nodes. Relationships are moved from the feature node to
the class node. One rule per children node type is defined.

Deletion of feature node Finally, the feature node is deleted from the graph. No
node with children links can be deleted because of the dangling edge restriction.

Layering rules let us to define the same execution order defined in the QVT
transformations. SoFeatureModelToNamespacerules are assigned layer 0,Root-
FeatureToClassrules correspond to layer 1,SolitaryFeatureToClassto layer 2,Fea-
tureGroupToClassto layer 3, andGroupedFeatureToClassto layer 4. This transfor-
mation process is stated to cycle through the last three rules. This is also managed
by AGG, that allows to “loop over layers”.

As an example, we show in Figure6 the set of rules that implement theRootFea-
tureToClasstransformation definition. To simplify the example, a single link type
is used for each model, and cardinalities are not used. Both can be easily added as
node/edge attributes. Inrule 1, for eachRootFeaturenode the corresponding class
is created. Notice thatNamespacehas already been created during application of
layer 0 rules. Relationships betweenRootFeatureclass andNamespaceare also
created. A negative application condition (left most part of the figure), is defined
to avoid creating more than one class for eachRootFeaturenode. Inrules 1 and 2,
links from children nodes are moved to the translatedRootFeatureclass node. One
rule per children node type is needed. Inrule 3, a singleRootFeaturenode appears
on the left side, and the right side is empty. The application of this rule leads to
deletion of theRootFeaturenode.



Fig. 6. Graph transformation rules forRootFeatureQVT

Fig. 7. Initial graph: a simple feature metamodel instance

Fig. 8. Resulting graph: the corresponding framework architecture

The example previously introduced in Figure2 is used in Figure7 to show how
the feature model is represented as a graph (the starting graph). Once the defined
rewriting rules are applied, we obtain the resulting PL Architecture graph in Figure
8 as an instance of the partial UML metamodel.



5 Conclusions and Future Work

This paper presents an approach on the use of MDE to support requirements vari-
ability. More precisely, it explores the transformation of feature models into archi-
tecture models. Transformation are defined in terms of QVT mapping rules that
link feature and UML metamodels elements respectively. This transformation has
been formalized and implemented through graph transformations. Representation
of models to be transformed, have been defined as their metamodels instances with
directed typed graphs. Transformation rules have been implemented through Con-
textual Layered Graph Grammars [3]. The process has been supported by the graph
rewriting tool AGG which can be used without its GUI and can be integrated as a
graph transformation engine in the future in our own MDE tools.

In this article, the possibilities provided by new technologies such as MDATM in
the process of requirements elicitation and analysis are discussed in the context of
product line development. The solution that we envision would happen in several
steps:

(i) To separate different aspects of the requirements in an explicit form, using
goals and soft-goals models (as PIMs) to finally build the product line feature
model.

(ii) To transform this set of PIMs into a new PIM that represents the initial PL Ar-
chitecture (in the form of an object-oriented framework) and complete it man-
ually with design details (but saving the traceability links with the goal/feature
variation points).

(iii) To derive an optimal sub-graph of features to solve a concrete problem in the
product line, using the goal/soft-goal model as a reference (and with a tool
like that described in ]).

(iv) To build the architectural PIM for the new application from the product line
architecture as a framework instantiation, using the goal/feature sub-model as
a guide.

The most immediate pending work comprises the inclusion of explicit traceabil-
ity in the transformation specification and implementation. This approach implies
in consequence the enhancement of the supporting meta-models.

References

[1] L. Bass, P. Clements, P. Donohoe, J. McGregor, and L. Northrop. Fourth product
line practice workshop report. Technical Report CMU/SEI-2000-TR-002 (ESC-TR-
2000-002), Software Engineering Institute. Carnegie Mellon University, Pittsburgh,
Pennsylvania 15213 (USA), 2000.

[2] J. Bosch.Design & Use of Software Architecture. Adopting and Evolving a Product-
Line Approach. Addison-Wesley, 2000.



[3] Paolo Bottoni, Gabriele Taentzer, and Andy Schrr. Efficient parsing of visual
languages based on critical pair analysis and contextual layered graph transformation.
In VL ’00: Proceedings of the 2000 IEEE International Symposium on Visual
Languages (VL’00), page 59, Washington, DC, USA, 2000. IEEE Computer Society.

[4] P.C. Clements and L. Northrop.Software Product Lines: Practices and Patterns. SEI
Series in Software Engineering. Addison-Wesley, 2001.

[5] K. Czarnecki and U.W. Eisenecker.Generative Programming: Methods, Tools, and
Applications.Addison-Wesley, 2000.

[6] K. Czarnecki and S. Helsen. Classification of model transformation approaches. In
OOPSLA’03 Workshop on Generative Techniques in the Context of Model-Driven
Architecture, 2003.

[7] K. Czarnecki, S. Helsen, and U. Eisenecker. Staged configuration through
specialization and multi-level configuration of feature models.Software Process
Improvement and Practice, 10(2), 2005.

[8] B. González-Baixauli, Leite J.C.S.P., and J. Mylopoulos. Visual variability analysis
with goal models. InProc. of the RE 2004, pages 198–207. Kyoto, Japan, IEEE
Computer Society, Sept. 2004.

[9] B. González-Baixauli, M.A. Laguna, and J.C.S.P Leite. Análisis de variabilidad con
modelos de objetivos. InVII Workshop on Requirements Engineering (WER-2004).
Anais do WER04, pages 77–87, 2004.

[10] Object Management Group.MDA Guide Version 1.0, 2003.

[11] Object Management Group and QVT-Merge Group.Revised submission for MOF 2.0
Query/View/Transformation version 2.0. Object Management Group doc. ad/2005-03-
02, 2005.

[12] I. Jacobson, G. Booch, and J. Rumbaugh.The Unified Software Development Process.
Object Technology series. Addison-Wesley, 1999.

[13] A. Kleppe, J. Warmer, and W. Bast.MDA Explained: The Model Driven Architecture:
Practice and Promise. Addison Wesley, 2003.

[14] MA. Laguna, B. González-Baixauli, O. López, and F.J. García. Introducing systematic
reuse in mainstream software. InIEEE Proocedings of EUROMICRO’2003, Antalya,
Turkey, 2003.

[15] S.J. Mellor and M. J. Balcer.Executable UML A foundation for the Model-Driven
Architecture. Addison Wesley Professional, 2002.

[16] Gabriele Taentzer. Agg: A graph transformation environment for modeling and
validation of software. InAGTIVE 2003, pages 446–453, 2003.

[17] T. von der Massen and H. Lichter. Requiline: A requirements engineering tool for
software product lines. InSoftware Product-Family Engineering, PFE 2003, pages
168–180. Siena, Italy, LNCS 3014, Springer-Verlag, 2003.


	Introduction
	MDAtm and Product Line Requirements Engineering
	An example transformation: PL Feature model to PL Architecture model
	Implementing metamodel mapping through graph transformations
	Conclusions and Future Work
	References

