
Overview of the Refactoring Discovering Problem

Javier Pérez
jperez@infor.uva.es

Universidad de Valladolid

ECOOP 2006, Doctoral Symposium and PhD Students Workshop

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 1 / 42



1 Introduction

2 Refactoring Plans
Defining Refactoring Plans
The Problem of Automatic Generation of Refactoring Plans
Research Strategy

3 Problem Formalization
Rule Driven Systems
Programmed Graph Rewriting Systems

4 Software Representation

5 Refactoring Rules Description

6 Refactoring Sequences Discovering Algorithm
Basic Algorithm
Algorithm Heuristics

7 Conclusions and Future Work

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 2 / 42



Introduction

Introduction

Refactorings are structural transformations that can be applied to a
software system to perform design changes without modifying its
behaviour.
Current approaches to improve a system design with refactorings
focus in:

Individual refactoring steps.

Detecting refactoring opportunities.

Executing the refactoring with a tool.

Some techniques can suggest wider design changes:

Formal Concept Analysis to propose hierarchy reorganization
(Prieto et al., 2003).

Metrics to detect Bad Smells (Crespo et al., 2005).

They require sequences of refactorings to perform the proposed
change.

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 3 / 42



Introduction

Introduction

Refactorings are structural transformations that can be applied to a
software system to perform design changes without modifying its
behaviour.
Current approaches to improve a system design with refactorings
focus in:

Individual refactoring steps.

Detecting refactoring opportunities.

Executing the refactoring with a tool.

Some techniques can suggest wider design changes:

Formal Concept Analysis to propose hierarchy reorganization
(Prieto et al., 2003).

Metrics to detect Bad Smells (Crespo et al., 2005).

They require sequences of refactorings to perform the proposed
change.

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 3 / 42



Introduction

Introduction

Refactorings are structural transformations that can be applied to a
software system to perform design changes without modifying its
behaviour.
Current approaches to improve a system design with refactorings
focus in:

Individual refactoring steps.

Detecting refactoring opportunities.

Executing the refactoring with a tool.

Some techniques can suggest wider design changes:

Formal Concept Analysis to propose hierarchy reorganization
(Prieto et al., 2003).

Metrics to detect Bad Smells (Crespo et al., 2005).

They require sequences of refactorings to perform the proposed
change.

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 3 / 42



Introduction

Introduction

Refactorings are structural transformations that can be applied to a
software system to perform design changes without modifying its
behaviour.
Current approaches to improve a system design with refactorings
focus in:

Individual refactoring steps.

Detecting refactoring opportunities.

Executing the refactoring with a tool.

Some techniques can suggest wider design changes:

Formal Concept Analysis to propose hierarchy reorganization
(Prieto et al., 2003).

Metrics to detect Bad Smells (Crespo et al., 2005).

They require sequences of refactorings to perform the proposed
change.

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 3 / 42



Introduction

Main Goals

1 To automatically and dinamically generate refactoring
sequences (refactoring plans) that can transform a system,
following a redesing proposal, and preserving the system’s
behaviour.

2 To provide very high level (big) refactorings for design
improvement, using refactoring plan generation altogether with
analysis techniques that suggest redesign proposals.

3 To support this “refactoring plan” technique with tool
prototypes to provide it as a regular design improving
development technique.

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 4 / 42



Introduction

Main Goals

1 To automatically and dinamically generate refactoring
sequences (refactoring plans) that can transform a system,
following a redesing proposal, and preserving the system’s
behaviour.

2 To provide very high level (big) refactorings for design
improvement, using refactoring plan generation altogether with
analysis techniques that suggest redesign proposals.

3 To support this “refactoring plan” technique with tool
prototypes to provide it as a regular design improving
development technique.

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 4 / 42



Introduction

Main Goals

1 To automatically and dinamically generate refactoring
sequences (refactoring plans) that can transform a system,
following a redesing proposal, and preserving the system’s
behaviour.

2 To provide very high level (big) refactorings for design
improvement, using refactoring plan generation altogether with
analysis techniques that suggest redesign proposals.

3 To support this “refactoring plan” technique with tool
prototypes to provide it as a regular design improving
development technique.

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 4 / 42



Introduction

Refactoring Sequences Problem Overview

System Analysis

Refactoring Plan Execution

Refactoring Analysis

Current System System Redesign Proposal

Refactoring Plan

Desirable System

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 5 / 42



Introduction

Refactoring Sequences Problem Overview

System Analysis

Refactoring Plan Execution

Refactoring Analysis

Current System System Redesign Proposal

Refactoring Plan

Desirable System

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 5 / 42



Introduction

Refactoring Sequences Problem Overview

System Analysis

Refactoring Plan Execution

Refactoring Analysis

Current System System Redesign Proposal

Refactoring Plan

Desirable System

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 5 / 42



Introduction

Refactoring Sequences Problem Overview

System Analysis

Refactoring Plan Execution

Refactoring Analysis

Current System System Redesign Proposal

Refactoring Plan

Desirable System

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 5 / 42



Refactoring Plans Defining Refactoring Plans

Refactoring Plans

We pretend to introduce a new concept: Refactoring Plans

Definition
A Refactoring Plan will be a specification of a refactoring sequence
which matches a system redesign proposal, so that it can be
automatically executed to modify the system in order to obtain that
desirable system redesign without changing the system’s behaviour.

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 6 / 42



Refactoring Plans Defining Refactoring Plans

Refactoring Plans

We pretend to introduce a new concept: Refactoring Plans

Definition
A Refactoring Plan will be a specification of a refactoring sequence
which matches a system redesign proposal, so that it can be
automatically executed to modify the system in order to obtain that
desirable system redesign without changing the system’s behaviour.

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 6 / 42



Refactoring Plans Defining Refactoring Plans

Refactoring Plans

We pretend to introduce a new concept: Refactoring Plans

Definition
A Refactoring Plan will be a specification of a refactoring sequence
which matches a system redesign proposal, so that it can be
automatically executed to modify the system in order to obtain that
desirable system redesign without changing the system’s behaviour.

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 6 / 42



Refactoring Plans Defining Refactoring Plans

Refactoring Plans

We pretend to introduce a new concept: Refactoring Plans

Definition
A Refactoring Plan will be a specification of a refactoring sequence
which matches a system redesign proposal, so that it can be
automatically executed to modify the system in order to obtain that
desirable system redesign without changing the system’s behaviour.

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 6 / 42



Refactoring Plans Defining Refactoring Plans

Refactoring Plans

We pretend to introduce a new concept: Refactoring Plans

Definition
A Refactoring Plan will be a specification of a refactoring sequence
which matches a system redesign proposal, so that it can be
automatically executed to modify the system in order to obtain that
desirable system redesign without changing the system’s behaviour.

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 6 / 42



Refactoring Plans Defining Refactoring Plans

Refactoring Plans

We pretend to introduce a new concept: Refactoring Plans

Definition
A Refactoring Plan will be a specification of a refactoring sequence
which matches a system redesign proposal, so that it can be
automatically executed to modify the system in order to obtain that
desirable system redesign without changing the system’s behaviour.

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 6 / 42



Refactoring Plans Defining Refactoring Plans

Refactoring Plans

We pretend to introduce a new concept: Refactoring Plans

Definition
A Refactoring Plan will be a specification of a refactoring sequence
which matches a system redesign proposal, so that it can be
automatically executed to modify the system in order to obtain that
desirable system redesign without changing the system’s behaviour.

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 6 / 42



Refactoring Plans The Problem of Automatic Generation of Refactoring Plans

Refactoring Plan Questions

Given a software system as the source of the transformation, a
redesign proposal, and a set of refactorings that can be used as
transformation operations:

1 Does a refactoring plan, which transforms the source, according to
the redesign proposal, using the provided refactorings, exist?

2 When a refactoring plan exists, can it be generated and executed
automatically?

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 7 / 42



Refactoring Plans The Problem of Automatic Generation of Refactoring Plans

Refactoring Plan Questions

Given a software system as the source of the transformation, a
redesign proposal, and a set of refactorings that can be used as
transformation operations:

1 Does a refactoring plan, which transforms the source, according to
the redesign proposal, using the provided refactorings, exist?

2 When a refactoring plan exists, can it be generated and executed
automatically?

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 7 / 42



Refactoring Plans The Problem of Automatic Generation of Refactoring Plans

Refactoring Plan Questions

Given a software system as the source of the transformation, a
redesign proposal, and a set of refactorings that can be used as
transformation operations:

1 Does a refactoring plan, which transforms the source, according to
the redesign proposal, using the provided refactorings, exist?

2 When a refactoring plan exists, can it be generated and executed
automatically?

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 7 / 42



Refactoring Plans The Problem of Automatic Generation of Refactoring Plans

Subproblems

We have divided the problem of automatic generation of refactoring
plans in:

Definition and formalization of the “Refactoring Plan” concept

Representation of Software

Formalization of Refactorings

Elaboration of a “refactoring sequences” discovering algorithm

Validation of proposed subproblem solutions through existing tools
and prototype implementation

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 8 / 42



Refactoring Plans Research Strategy

Research Strategy

To reduce the problem complexity given by:

differences between source and redesign proposal representation
type, abstraction level, description language, . . .

uncertainty about what kind of redesign proposal descriptions will
we be capable to deal with.

We have planned the research to progress through two stages:

First, we will apply some restrictions to the problem and propose a
restricted solution.

Then, we will “open up” those restrictions to find a more general
solution.

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 9 / 42



Refactoring Plans Research Strategy

Research Strategy

To reduce the problem complexity given by:

differences between source and redesign proposal representation
type, abstraction level, description language, . . .

uncertainty about what kind of redesign proposal descriptions will
we be capable to deal with.

We have planned the research to progress through two stages:

First, we will apply some restrictions to the problem and propose a
restricted solution.

Then, we will “open up” those restrictions to find a more general
solution.

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 9 / 42



Refactoring Plans Research Strategy

Research Strategy

To reduce the problem complexity given by:

differences between source and redesign proposal representation
type, abstraction level, description language, . . .

uncertainty about what kind of redesign proposal descriptions will
we be capable to deal with.

We have planned the research to progress through two stages:

First, we will apply some restrictions to the problem and propose a
restricted solution.

Then, we will “open up” those restrictions to find a more general
solution.

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 9 / 42



Refactoring Plans Research Strategy

Research Strategy

To reduce the problem complexity given by:

differences between source and redesign proposal representation
type, abstraction level, description language, . . .

uncertainty about what kind of redesign proposal descriptions will
we be capable to deal with.

We have planned the research to progress through two stages:

First, we will apply some restrictions to the problem and propose a
restricted solution.

Then, we will “open up” those restrictions to find a more general
solution.

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 9 / 42



Refactoring Plans Research Strategy

Research Strategy

To reduce the problem complexity given by:

differences between source and redesign proposal representation
type, abstraction level, description language, . . .

uncertainty about what kind of redesign proposal descriptions will
we be capable to deal with.

We have planned the research to progress through two stages:

First, we will apply some restrictions to the problem and propose a
restricted solution.

Then, we will “open up” those restrictions to find a more general
solution.

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 9 / 42



Refactoring Plans Research Strategy

Research Strategy

To reduce the problem complexity given by:

differences between source and redesign proposal representation
type, abstraction level, description language, . . .

uncertainty about what kind of redesign proposal descriptions will
we be capable to deal with.

We have planned the research to progress through two stages:

First, we will apply some restrictions to the problem and propose a
restricted solution.

Then, we will “open up” those restrictions to find a more general
solution.

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 9 / 42



Refactoring Plans Research Strategy

Research Strategy: First Stage

We apply some restrictions to reduce complexity:

The transformation source is the current system code.

The redesign proposal is the modified system code.

Goals of this stage are:

To propose a solution to the restricted refactoring plan problem.

To validate this solution.

Results obtained so far can be applied to other problems:

testing if an evolved system preserves the behaviour of the
original system.

documenting refactoring changes performed in a redesigned
system.

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 10 / 42



Refactoring Plans Research Strategy

Research Strategy: First Stage

We apply some restrictions to reduce complexity:

The transformation source is the current system code.

The redesign proposal is the modified system code.

Goals of this stage are:

To propose a solution to the restricted refactoring plan problem.

To validate this solution.

Results obtained so far can be applied to other problems:

testing if an evolved system preserves the behaviour of the
original system.

documenting refactoring changes performed in a redesigned
system.

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 10 / 42



Refactoring Plans Research Strategy

Research Strategy: First Stage

We apply some restrictions to reduce complexity:

The transformation source is the current system code.

The redesign proposal is the modified system code.

Goals of this stage are:

To propose a solution to the restricted refactoring plan problem.

To validate this solution.

Results obtained so far can be applied to other problems:

testing if an evolved system preserves the behaviour of the
original system.

documenting refactoring changes performed in a redesigned
system.

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 10 / 42



Refactoring Plans Research Strategy

Research Strategy: First Stage

We apply some restrictions to reduce complexity:

The transformation source is the current system code.

The redesign proposal is the modified system code.

Goals of this stage are:

To propose a solution to the restricted refactoring plan problem.

To validate this solution.

Results obtained so far can be applied to other problems:

testing if an evolved system preserves the behaviour of the
original system.

documenting refactoring changes performed in a redesigned
system.

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 10 / 42



Refactoring Plans Research Strategy

Research Strategy: First Stage

We apply some restrictions to reduce complexity:

The transformation source is the current system code.

The redesign proposal is the modified system code.

Goals of this stage are:

To propose a solution to the restricted refactoring plan problem.

To validate this solution.

Results obtained so far can be applied to other problems:

testing if an evolved system preserves the behaviour of the
original system.

documenting refactoring changes performed in a redesigned
system.

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 10 / 42



Refactoring Plans Research Strategy

Research Strategy: First Stage

We apply some restrictions to reduce complexity:

The transformation source is the current system code.

The redesign proposal is the modified system code.

Goals of this stage are:

To propose a solution to the restricted refactoring plan problem.

To validate this solution.

Results obtained so far can be applied to other problems:

testing if an evolved system preserves the behaviour of the
original system.

documenting refactoring changes performed in a redesigned
system.

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 10 / 42



Refactoring Plans Research Strategy

Research Strategy: Second Stage

After validating the first stage restricted solution, we will reduce
restrictions to generalize the problem:

The transformation source will still be the current system code.

The redesign proposal will be allowed to be of different type,
abstraction level, description language, . . . , than the source.

Redesign proposals in the second stage will contain less
information than redesign proposal in the first stage (modified
system code).

Goals of this stage are:

To specify which kind of descriptions will we be capable to deal
with and would be allowed as redesign proposals.

To propose a general solution to the problem of automatic
elaboration of refactoring plans.

To develop tool prototypes.

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 11 / 42



Refactoring Plans Research Strategy

Research Strategy: Second Stage

After validating the first stage restricted solution, we will reduce
restrictions to generalize the problem:

The transformation source will still be the current system code.

The redesign proposal will be allowed to be of different type,
abstraction level, description language, . . . , than the source.

Redesign proposals in the second stage will contain less
information than redesign proposal in the first stage (modified
system code).

Goals of this stage are:

To specify which kind of descriptions will we be capable to deal
with and would be allowed as redesign proposals.

To propose a general solution to the problem of automatic
elaboration of refactoring plans.

To develop tool prototypes.

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 11 / 42



Refactoring Plans Research Strategy

Research Strategy: Second Stage

After validating the first stage restricted solution, we will reduce
restrictions to generalize the problem:

The transformation source will still be the current system code.

The redesign proposal will be allowed to be of different type,
abstraction level, description language, . . . , than the source.

Redesign proposals in the second stage will contain less
information than redesign proposal in the first stage (modified
system code).

Goals of this stage are:

To specify which kind of descriptions will we be capable to deal
with and would be allowed as redesign proposals.

To propose a general solution to the problem of automatic
elaboration of refactoring plans.

To develop tool prototypes.

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 11 / 42



Refactoring Plans Research Strategy

Research Strategy: Second Stage

After validating the first stage restricted solution, we will reduce
restrictions to generalize the problem:

The transformation source will still be the current system code.

The redesign proposal will be allowed to be of different type,
abstraction level, description language, . . . , than the source.

Redesign proposals in the second stage will contain less
information than redesign proposal in the first stage (modified
system code).

Goals of this stage are:

To specify which kind of descriptions will we be capable to deal
with and would be allowed as redesign proposals.

To propose a general solution to the problem of automatic
elaboration of refactoring plans.

To develop tool prototypes.

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 11 / 42



Refactoring Plans Research Strategy

Research Strategy: Progress so far

We are at the first stage of the research, and working on these
subproblems:

Software representation

Refactoring formalization

“refactoring sequences discovering” algorithm

This presentation introduces the current progress of each one.

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 12 / 42



Problem Formalization

Refactoring Formalization

Any refactoring formalization method must allow:

to deal with system structure.

to check behaviour preserving conditions.

We will use Graph Transformations because:

Representing and managing structural information is
straightforward with graphs.

This approach has already been validated (Mens et al., 2005).

With Graph Transformation:

Software is represented as graphs.

Refactorings are represented as graph transformation rules.

Other refactoring formalization approaches:

First Order Logic (Köch, 2002).

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 13 / 42



Problem Formalization

Example of a Graph Transformation Rule

C

P
2

4

M
1

p

t

I
3

i*

C

P
2

4

M
1

p t

I
3

i*

Left Hand Side Right Hand Side

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 14 / 42



Problem Formalization

Refactoring and Graph Transformation

We have found two main directions within the field of graph
transformations, that can be useful:

Rule Driven Systems

Programmed Graph Rewriting Systems

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 15 / 42



Problem Formalization Rule Driven Systems

Rule Driven Systems

Rule Driven Systems are graph rewriting systems where:

transformation rules are described by a graph grammar

transformations follow known derivation sequences

rules are randomly selected to automatically transform a graph

The problem was modeled as a formal language problem:

Current system ⇒ starting node

Refactorings ⇒ production rules

Desirable system ⇒ final node

Does the plan exist? ⇒ membership problem

Refactoring plan ⇒ derivation sequence

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 16 / 42



Problem Formalization Rule Driven Systems

Rule Driven Systems

Rule Driven Systems are graph rewriting systems where:

transformation rules are described by a graph grammar

transformations follow known derivation sequences

rules are randomly selected to automatically transform a graph

The problem was modeled as a formal language problem:

Current system ⇒ starting node

Refactorings ⇒ production rules

Desirable system ⇒ final node

Does the plan exist? ⇒ membership problem

Refactoring plan ⇒ derivation sequence

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 16 / 42



Problem Formalization Rule Driven Systems

Rule Driven Systems

We explored this approach and found some issues:

This approach deals well with problems for which derivation paths
are well defined (e.g. visual language parsing).

A well known derivation tree for refactoring sequences should be
needed

The number of refactorings which can be applied for each
derivation step is unpredictable

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 17 / 42



Problem Formalization Programmed Graph Rewriting Systems

Programmed Graph Rewriting Systems

PGR Systems present a more general graph rewriting approach:

graph grammars are also used

they include structured programming

transformations can be programmed and organized in modules

The problem can be seen as a state space search problem:

Current system ⇒ starting state

Refactorings ⇒ state changing operations

Desirable System ⇒ a desired state

Does the plan exist? ⇒ reachability of the desired state

Refactoring Plan ⇒ path to the final state

Issues found so far:

the combinatorial explosion

the need to develop heuristics

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 18 / 42



Problem Formalization Programmed Graph Rewriting Systems

Programmed Graph Rewriting Systems

PGR Systems present a more general graph rewriting approach:

graph grammars are also used

they include structured programming

transformations can be programmed and organized in modules

The problem can be seen as a state space search problem:

Current system ⇒ starting state

Refactorings ⇒ state changing operations

Desirable System ⇒ a desired state

Does the plan exist? ⇒ reachability of the desired state

Refactoring Plan ⇒ path to the final state

Issues found so far:

the combinatorial explosion

the need to develop heuristics

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 18 / 42



Problem Formalization Programmed Graph Rewriting Systems

Programmed Graph Rewriting Systems

PGR Systems present a more general graph rewriting approach:

graph grammars are also used

they include structured programming

transformations can be programmed and organized in modules

The problem can be seen as a state space search problem:

Current system ⇒ starting state

Refactorings ⇒ state changing operations

Desirable System ⇒ a desired state

Does the plan exist? ⇒ reachability of the desired state

Refactoring Plan ⇒ path to the final state

Issues found so far:

the combinatorial explosion

the need to develop heuristics

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 18 / 42



Problem Formalization Programmed Graph Rewriting Systems

Refactoring Formalization with PGR Systems

We have chosen Programmed Graph Rewriting Systems because:

they offer programmable control over the graph transformation
process

they offer more expressiveness than the grammar based
systems

refactorings which take multiple transformation steps are
very difficult to describe with Rule Driven Systems, and they can
be described easily with PGR Systems

In the first stage of the research we are addressing the already
mentioned subproblems according to the PGR systems paradigm.

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 19 / 42



Problem Formalization Programmed Graph Rewriting Systems

Refactoring Formalization with PGR Systems

We have chosen Programmed Graph Rewriting Systems because:

they offer programmable control over the graph transformation
process

they offer more expressiveness than the grammar based
systems

refactorings which take multiple transformation steps are
very difficult to describe with Rule Driven Systems, and they can
be described easily with PGR Systems

In the first stage of the research we are addressing the already
mentioned subproblems according to the PGR systems paradigm.

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 19 / 42



Software Representation

Software Representation: Program Graphs

A graph representation for Object-Oriented Software is needed. We
must represent:

elements of OO paradigm (classes, fields, methods, ...)

structural relationships

method bodies

We have chosen the software representation part from the refactoring
formalization of (Mens et al., 2005). This representation:

uses directed type graphs.

is language independent, lacking specific language constructions.

has been simplified to be as flexible as possible.

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 20 / 42



Software Representation

Software Representation: Program Graphs

A graph representation for Object-Oriented Software is needed. We
must represent:

elements of OO paradigm (classes, fields, methods, ...)

structural relationships

method bodies

We have chosen the software representation part from the refactoring
formalization of (Mens et al., 2005). This representation:

uses directed type graphs.

is language independent, lacking specific language constructions.

has been simplified to be as flexible as possible.

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 20 / 42



Software Representation

Software Representation: Java Program Graphs

For real systems, it is necessary to extend the graph format, adding:

elements for specific languages

more detailed representation of method bodies

We have extended program graphs for Java: Java Program Graphs.
Our graph representation format adds:

Java concepts such as visibility, interfaces, packages, . . .

More detailed representation of method bodies, with new node
types, attributes and relationships.

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 21 / 42



Software Representation

Software Representation: Java Program Graphs

For real systems, it is necessary to extend the graph format, adding:

elements for specific languages

more detailed representation of method bodies

We have extended program graphs for Java: Java Program Graphs.
Our graph representation format adds:

Java concepts such as visibility, interfaces, packages, . . .

More detailed representation of method bodies, with new node
types, attributes and relationships.

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 21 / 42



Software Representation

Software Representation: Java Program Graphs

For real systems, it is necessary to extend the graph format, adding:

elements for specific languages

more detailed representation of method bodies

We have extended program graphs for Java: Java Program Graphs.
Our graph representation format adds:

Java concepts such as visibility, interfaces, packages, . . .

More detailed representation of method bodies, with new node
types, attributes and relationships.

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 21 / 42



Refactoring Rules Description

Refactoring Rules Description

Refactorings will be formalized for PGR, by splitting its descriptions:

pre and postconditions

transformation process (the refactoring itself)

transformation relationships between pre and post conditions.

Programmed Graph Rewritings will allow to:

Use each refactoring description part when it’s needed.

Describe structured conditions:
if...then...else

Algorithmically describe refactorings that take multiple
transformation steps:
Pull Up Method

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 23 / 42



Refactoring Rules Description

Refactoring Rules Description

Refactorings will be formalized for PGR, by splitting its descriptions:

pre and postconditions

transformation process (the refactoring itself)

transformation relationships between pre and post conditions.

Programmed Graph Rewritings will allow to:

Use each refactoring description part when it’s needed.

Describe structured conditions:
if...then...else

Algorithmically describe refactorings that take multiple
transformation steps:
Pull Up Method

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 23 / 42



Refactoring Rules Description

Example: Change Interface Type Parameter

M
1

Preconditions:

Postconditions:

Transformation:

1) 2)

5)

6)

4)

3)

5)4)

I C

I

P
2

3

M
1

p t

C

P
2

4

M
1

p t

I
3

C
4

i*

I

P
2

3

M
1

p tX

I
3

C
4

i*

C

P
2

4

M
1

p

t

I
3

i*

C

P
2

4

M
1

p t

I
3

i*

M
11) 2) 3)

I C

3

3

4

4

5

4,5

1

2

3

1

2

3

4

6

pre post

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 24 / 42



Refactoring Sequences Discovering Algorithm

Refactoring Sequences Discovering Algorithm

A basic state space search algorithm is being developed.

It needs refactoring descriptions to be expressed in terms of
preconditions, transformations and postconditions.

It needs the expressiveness and execution control of programmed
graph rewriting.
The algorithm main keys are:

The Algorithm is guided by pre and postconditions.
To look for preconditions in the source graph in order to reveal
which refactorings can be applied.
To look for postconditions in the target graph in order to find
which refactorings are more likely to be part of the sequence.
The source graph gets transformed progressively into the target
graph.

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 25 / 42



Refactoring Sequences Discovering Algorithm

Refactoring Sequences Discovering Algorithm

A basic state space search algorithm is being developed.

It needs refactoring descriptions to be expressed in terms of
preconditions, transformations and postconditions.

It needs the expressiveness and execution control of programmed
graph rewriting.
The algorithm main keys are:

The Algorithm is guided by pre and postconditions.
To look for preconditions in the source graph in order to reveal
which refactorings can be applied.
To look for postconditions in the target graph in order to find
which refactorings are more likely to be part of the sequence.
The source graph gets transformed progressively into the target
graph.

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 25 / 42



Refactoring Sequences Discovering Algorithm

Refactoring Sequences Discovering Algorithm

A basic state space search algorithm is being developed.

It needs refactoring descriptions to be expressed in terms of
preconditions, transformations and postconditions.

It needs the expressiveness and execution control of programmed
graph rewriting.
The algorithm main keys are:

The Algorithm is guided by pre and postconditions.
To look for preconditions in the source graph in order to reveal
which refactorings can be applied.
To look for postconditions in the target graph in order to find
which refactorings are more likely to be part of the sequence.
The source graph gets transformed progressively into the target
graph.

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 25 / 42



Refactoring Sequences Discovering Algorithm

Refactoring Sequences Discovering Algorithm

A basic state space search algorithm is being developed.

It needs refactoring descriptions to be expressed in terms of
preconditions, transformations and postconditions.

It needs the expressiveness and execution control of programmed
graph rewriting.
The algorithm main keys are:

The Algorithm is guided by pre and postconditions.
To look for preconditions in the source graph in order to reveal
which refactorings can be applied.
To look for postconditions in the target graph in order to find
which refactorings are more likely to be part of the sequence.
The source graph gets transformed progressively into the target
graph.

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 25 / 42



Refactoring Sequences Discovering Algorithm

Refactoring Sequences Discovering Algorithm

A basic state space search algorithm is being developed.

It needs refactoring descriptions to be expressed in terms of
preconditions, transformations and postconditions.

It needs the expressiveness and execution control of programmed
graph rewriting.
The algorithm main keys are:

The Algorithm is guided by pre and postconditions.
To look for preconditions in the source graph in order to reveal
which refactorings can be applied.
To look for postconditions in the target graph in order to find
which refactorings are more likely to be part of the sequence.
The source graph gets transformed progressively into the target
graph.

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 25 / 42



Refactoring Sequences Discovering Algorithm

Refactoring Sequences Discovering Algorithm

A basic state space search algorithm is being developed.

It needs refactoring descriptions to be expressed in terms of
preconditions, transformations and postconditions.

It needs the expressiveness and execution control of programmed
graph rewriting.
The algorithm main keys are:

The Algorithm is guided by pre and postconditions.
To look for preconditions in the source graph in order to reveal
which refactorings can be applied.
To look for postconditions in the target graph in order to find
which refactorings are more likely to be part of the sequence.
The source graph gets transformed progressively into the target
graph.

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 25 / 42



Refactoring Sequences Discovering Algorithm

Refactoring Sequences Discovering Algorithm

A basic state space search algorithm is being developed.

It needs refactoring descriptions to be expressed in terms of
preconditions, transformations and postconditions.

It needs the expressiveness and execution control of programmed
graph rewriting.
The algorithm main keys are:

The Algorithm is guided by pre and postconditions.
To look for preconditions in the source graph in order to reveal
which refactorings can be applied.
To look for postconditions in the target graph in order to find
which refactorings are more likely to be part of the sequence.
The source graph gets transformed progressively into the target
graph.

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 25 / 42



Refactoring Sequences Discovering Algorithm

Refactoring Sequences Discovering Algorithm

A basic state space search algorithm is being developed.

It needs refactoring descriptions to be expressed in terms of
preconditions, transformations and postconditions.

It needs the expressiveness and execution control of programmed
graph rewriting.
The algorithm main keys are:

The Algorithm is guided by pre and postconditions.
To look for preconditions in the source graph in order to reveal
which refactorings can be applied.
To look for postconditions in the target graph in order to find
which refactorings are more likely to be part of the sequence.
The source graph gets transformed progressively into the target
graph.

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 25 / 42



Refactoring Sequences Discovering Algorithm Basic Algorithm

Refactoring Sequences Discovering Algorithm

TargetSource 0

R1 R2 R3 R4

Available Refactorings Refactoring Plan

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 26 / 42



Refactoring Sequences Discovering Algorithm Basic Algorithm

Refactoring Sequences Discovering Algorithm

TargetSource 0

R1 R2 R3 R4

Available Refactorings Refactoring Plan

Pre

Post

Post

Post

R1

R3Pre

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 27 / 42



Refactoring Sequences Discovering Algorithm Basic Algorithm

Refactoring Sequences Discovering Algorithm

TargetSource 1

R1 R2 R3 R4

Available Refactorings

R1

Refactoring Plan

Pre

Post

Post

R1

PostR3Pre

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 28 / 42



Refactoring Sequences Discovering Algorithm Basic Algorithm

Refactoring Sequences Discovering Algorithm

TargetSource 2

R1 R2 R3 R4

Available Refactorings

R1 R1

Refactoring Plan

Post

R4Pre

PostR3Pre

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 29 / 42



Refactoring Sequences Discovering Algorithm Basic Algorithm

Refactoring Sequences Discovering Algorithm

TargetSource 3

R1 R2 R3 R4

Available Refactorings

R1 R1 R3

Refactoring Plan

Pre

PostR2

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 30 / 42



Refactoring Sequences Discovering Algorithm Basic Algorithm

Refactoring Sequences Discovering Algorithm

TargetSource 4

R1 R2 R3 R4

Available Refactorings

R1 R1 R3 R2

Refactoring Plan

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 31 / 42



Refactoring Sequences Discovering Algorithm Algorithm Heuristics

“Postcondition” Heuristic

Prioritize refactorings whose postconditions hold on the target
graph.

TargetSource 2

R1 R2 R3 R4

Available Refactorings

R1 R1

Refactoring Plan

Pre Post

Post Post

R3

R4

Pre

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 32 / 42



Refactoring Sequences Discovering Algorithm Algorithm Heuristics

“Postcondition” Heuristic

Prioritize refactorings whose postconditions hold on the target
graph.

TargetSource 3

R1 R2 R3 R4

Available Refactorings

R1 R1

Refactoring Plan

R3

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 33 / 42



Refactoring Sequences Discovering Algorithm Algorithm Heuristics

“Awaiting Postcondition” Heuristic

Prioritize refactorings which make that the previous selected.
refactorings can hold their awaiting postconditions

TargetSourceSource 3Source 1

Pre Post

Post

R1

PostR3Pre

Post

Post

2

Pre PostR2

Post

Post

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 34 / 42



Refactoring Sequences Discovering Algorithm Algorithm Heuristics

“Awaiting Postcondition” Heuristic

Prioritize refactorings which make that the previous selected.
refactorings can hold their awaiting postconditions

Target1

Pre Post

Post

R1

R1 R2 R3 R4

Available Refactorings Refactoring Plan

Source

R1

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 35 / 42



Refactoring Sequences Discovering Algorithm Algorithm Heuristics

“Awaiting Postcondition” Heuristic

Prioritize refactorings which make that the previous selected.
refactorings can hold their awaiting postconditions

Target2

Awaiting Post

R1 R2 R3 R4

Available Refactorings

Source

R1 R1

Refactoring Plan

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 36 / 42



Refactoring Sequences Discovering Algorithm Algorithm Heuristics

“Awaiting Postcondition” Heuristic

Prioritize refactorings which make that the previous selected.
refactorings can hold their awaiting postconditions

SourceSource 2

PostR3Pre

3

Awaiting Post Awaiting Post

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 37 / 42



Refactoring Sequences Discovering Algorithm Algorithm Heuristics

“Awaiting Postcondition” Heuristic

Prioritize refactorings which make that the previous selected.
refactorings can hold their awaiting postconditions

Target3

R1 R2 R3 R4

Available Refactorings

Source

Refactoring Plan

R1 R1 R3

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 38 / 42



Conclusions and Future Work

Conclusions

Automatic generation of refactoring plans will provide very high
level refactorings to improve the design of existing code.

The Main subproblems and the research strategy have been
introduced.
Graph transformation can be used as the underlying formalism,
specifically the programmed graph rewriting approach.

Representing Java programs with Java Program Graphs.
Describing refactoring rules with programmed graph transformation
rules in terms of pre, postconditions and transformations.

The problem can be modeled as a state space search problem.
Using a “refactoring sequences discovering” algorithm guided by
pre and postconditions, to find a refactoring plan, .
Using heuristics to guide the algorithm.

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 39 / 42



Conclusions and Future Work

Conclusions

Automatic generation of refactoring plans will provide very high
level refactorings to improve the design of existing code.

The Main subproblems and the research strategy have been
introduced.
Graph transformation can be used as the underlying formalism,
specifically the programmed graph rewriting approach.

Representing Java programs with Java Program Graphs.
Describing refactoring rules with programmed graph transformation
rules in terms of pre, postconditions and transformations.

The problem can be modeled as a state space search problem.
Using a “refactoring sequences discovering” algorithm guided by
pre and postconditions, to find a refactoring plan, .
Using heuristics to guide the algorithm.

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 39 / 42



Conclusions and Future Work

Conclusions

Automatic generation of refactoring plans will provide very high
level refactorings to improve the design of existing code.

The Main subproblems and the research strategy have been
introduced.
Graph transformation can be used as the underlying formalism,
specifically the programmed graph rewriting approach.

Representing Java programs with Java Program Graphs.
Describing refactoring rules with programmed graph transformation
rules in terms of pre, postconditions and transformations.

The problem can be modeled as a state space search problem.
Using a “refactoring sequences discovering” algorithm guided by
pre and postconditions, to find a refactoring plan, .
Using heuristics to guide the algorithm.

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 39 / 42



Conclusions and Future Work

Conclusions

Automatic generation of refactoring plans will provide very high
level refactorings to improve the design of existing code.

The Main subproblems and the research strategy have been
introduced.
Graph transformation can be used as the underlying formalism,
specifically the programmed graph rewriting approach.

Representing Java programs with Java Program Graphs.
Describing refactoring rules with programmed graph transformation
rules in terms of pre, postconditions and transformations.

The problem can be modeled as a state space search problem.
Using a “refactoring sequences discovering” algorithm guided by
pre and postconditions, to find a refactoring plan, .
Using heuristics to guide the algorithm.

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 39 / 42



Conclusions and Future Work

Detected Problems

Correction and completeness of the algorithm:

Heuristics could not be enough to prevent the algorithm getting
lost in the search.

The number of applicable refactorings on each step is expectable
to be very big.

The algorithm can get stuck selecting “wrong” refactorings.

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 40 / 42



Conclusions and Future Work

Future Work

Main future tasks will be directed to:

Further definition of the “Refactoring Plan” concept.

Extend the available set of formalized refactorings.

Validate proposals implementing the algorithm with a PGR tool.

Analyse termination and correctness conditions of the refactoring
discovering algorithm.

Analyse, improve and extend heuristics of the state space search
algorithm.

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 41 / 42



Conclusions and Future Work

Overview of the Refactoring Discovering Problem

Javier Pérez
jperez@infor.uva.es

Universidad de Valladolid

ECOOP 2006, Doctoral Symposium and PhD Students Workshop

Javier Pérez (Universidad de Valladolid) The Refactoring Discovering Problem ECOOP’06 PhD S. Workshop 42 / 42


	Introduction
	Refactoring Plans
	Defining Refactoring Plans
	The Problem of Automatic Generation of Refactoring Plans
	Research Strategy

	Problem Formalization
	Rule Driven Systems
	Programmed Graph Rewriting Systems

	Software Representation
	Refactoring Rules Description
	Refactoring Sequences Discovering Algorithm
	Basic Algorithm
	Algorithm Heuristics

	Conclusions and Future Work

