
Extending a Taxonomy of Bad Code Smells
with Metrics

Raúl Marticorena1, Carlos López1, and Yania Crespo2

1 University of Burgos
Area of Languages and Computer Systems, Burgos (Spain)

{rmartico, clopezno}@ubu.es
2 University of Valladolid

Department of Computer Science, Valladolid (Spain)
yania@infor.uva.es

Abstract. Bad Smells define in an informal way code flaws, in order
to suggest refactorings, their aim is to improve the design of the code.
Current taxonomies group code smells, making use of similarity or cor-
relation criteria between them, and leading to a manual revision of the
code. By other side, it is suggested the assistance of using metrics in the
detection of bad smells. Metrics can be collected automatically helping
to suggest the presence of flaws. Nevertheless, current taxonomies do not
link these concepts.
This work tries to establish additional criteria when we want to classify
bad smells. These criteria are also related to metric features. Following
the current classifications, we propose a method to evaluate the suitabil-
ity of the tools assisting bad code smell detection, as well as selection
and implementation of metrics linked with bad code smells.

Key Words: metrics, refactoring, taxonomy, flaw design, bad smell

1 Introduction

Bad smells are defined as symptoms that point the need of refactoring [4]. Fowler
gives his definitions in a descriptive way, suggesting hints that could show the
presence of flaws. Bad smells collect design or code flaws , but their detection is
based on certain programmer intuition.

An approach to the definition of bad smells is tackled using metrics and
heuristics. However, current taxonomies do not settle relations between bad smell
groups and used metrics. It seems interesting, at the moment of estimating the
usefulness of a collecting metric tool, that we could establish the number of
detected smells.

Until now, it is not used additional information in the taxonomies, grouping
bad smells depending of certain similarity, more or less subjective. Adding ad-
ditional features that allow to match bad smells and metrics, could aid to the
construction of metric collecting module and selecting them for their implemen-
tation.



The remainder of this work is organized as follows: Sec. 2 shows the current
works in the bad smell detection and taxonomies, Sec. 3 shows the added criteria
to the taxonomy. Sec. 4 establishes some examples applying the extended taxo-
nomy combining it with metrics. We finish in Sec. 5, giving some conclusions of
the proposed solution.

2 Related Works

First bad smell definitions were fulfilled in a descriptive way [4], following the
style of other “cook books”. This presentation enumerates the list of bad smells,
without giving a classification or clustering criterion. The author proposes that
“In our experience no set of metrics rivals informed human intuition.”. However,
in the presence of a big volume of code, is difficult to manage a manual detection
process of bad code smells, based on the intuition. Currently, there is available in
the web 3 a simple classification in “within classes” and “between classes”. This
is the first division that we find in [8], although this author subdivides them into
a bigger number of groups, since he adds a great number of smells not included
in [4]. He focuses on heuristics for their detection.

In [5], Mantyla proposes other taxonomy based on similarity criteria on smells
defined in [4], and validated with the survey results of several programmers. From
six categories at the beginning, currently it has been reduced to five groups:
Bloaters, Object-Oriented Abusers, Change Preventers, Dispensables and Cou-
plers. It is specially interesting that he proposes the use of metrics in the detec-
tion of some bad code smells.

Other works, using as basis the bad smell definition in [4], propose the use of
queries on logic predicates [2], or queries on a database [6] to detect code flaws.
Again in these works, it is settled the use of metrics, although not a guide to
their selection, since it is not used any bad smell taxonomy.

Therefore, from previous taxonomies and attempts of using metric for their
detection, we want to extend that taxonomy with additional features, making
easier selection processes.

3 Extended Taxonomy of Bad Smells

From the previous taxonomy in [5], we keep its groups, although choosing the
last version by simplicity. In that taxonomy, it is not taken into account features
that will be pointed in the extended taxonomy. It allows us to cross the data
from metrics.

3.1 New Features to Apply

Features not explicitly included in the previous taxonomy are:

3 http://wiki.java.net/bin/view/People/SmellsToRefactorings



Granularity size of the component that suggests bad code smells. In the case
of object-oriented languages, we can classify the following levels: system
(package, namespace, cluster, etc.), class and method.

Intra vs. Inter-relations (Intra) the bad smell could be observed from the
individual observation (intra) of the component, without having available
information of other related components.

Inheritance (IH) information about inheritance hierarchy is needed to suggest
the bad smells.

Access Modifiers (Acc) access level among the components.

Using these new features, we extend the existing taxonomies (see Table. 1),
to obtain a new extended taxonomy where is pointed out the presence or absence
of each feature (Yes/No). How we can observe, some of the criteria are partially
applicable. In the case of the granularity, almost all defined bad code smells are
focused in class and method flaws, so the system level is not applicable at this
moment.

Table 1. Extended Taxonomy

Bad Smell Group Gran. Intra IH Acc

Data Clumps Bloater Class N N N

Large Class Bloater Class Y N N

Long Method Bloaters Method Y N N

Long Parameter List Bloaters Method Y N N

Primitive Obsession Bloaters Method N N N
Alternative Classes with Diffe-
rent Interfaces

O-O Abusers Method N N N

Refused Bequest O-O Abusers Class N Y N

Switch Statements O-O Abusers Method Y N N

Temporary Field O-O Abusers Class Y N N

Divergent Change Change Preventers Class N N N

Parallel Inheritance Hierarchies Change Preventers Class N Y N

Shotgun Surgery Change Preventers Class N N N

Data Class Dispensables Class Y N N

Duplicate Code Dispensables Method N N N

Lazy Class Dispensables Class Y N N

Speculative Generality Dispensables Class Y Y N

Feature Envy Couplers Method N N Y

Inappropriate Intimacy Couplers Class N N Y

Message Chains Couplers Class N N N

Middle Man Couplers Class N N N

Comments Not Defined Class N N N

Incomplete Library Not Defined Class N N N



3.2 Metric Features

Software metrics are widely extended, from a theoretic and practical point of
view. Most of development tools include metric collection to aid the audit of the
system.

In our particular case, we only focus on applicable metrics with code, and
specially with object-oriented metrics. We can apply the selected features related
to bad smells on these metrics: Granularity, Coupling (Intra. vs. Inter-Classes),
Inheritance, Access and Abstractness.

For instance, taking metrics of a tool as RefactorIt [1], that allows to refactor
java code using metrics, and following its own classification, we have 4:

Table 2. Metric Classification

Metric Desc. Gran. Intra Inh Acc

CLOC Comment Lines of Code Class Y N N

V(G) McCabe’s Ciclomatic Complexity Method Y N N

NP Number of Parameters Method Y N N

DIT Depth of Inheritance Tree Class N Y N

RFC Response for Class Class N N N

... ... ... ... ... ...

4 Usability Example of the Extended Taxonomy Mixing
Metrics

The problem to be solved is: with current taxonomies and different metric col-
lection tools, which tool can help us to suggest the presence of a greater
number of bad code smells?

So far, this selection was based on the human intuition. New added features
should help to the user to chose one or other tool. In our case, we compare an
Eclipse plugin to obtain metrics (Metrics-1.3.6), a refactoring tool that includes
metric calculation (RefactorIt 2.5) and a reengineering software tool as DMS
(Semantic Design), that includes the retrieval of a metric set.

The process is as follows: we build a general table as in Table. 2, with metric
definitions. For each one of these tools, we complete their own list of metrics
linking them with the general definition, solving possible name conflicts. For
example: Number of Parameters is NP in RefactorIt and NOP in Eclipse, but
both of them should share their features.

These data are crossed (using a SQL join between tables, comparing the
defined properties and foreign keys). As final result, we obtain an association
4 For shake of brevity, we omit all metrics. A larger description is available in

http://www.refactorit.com/?id=1376



between bad code smells and metrics. Each bad smell is linked with a metric set
of which features could help to detect them.

For example, if we select the “Switch Statements” bad smell, Mantyla [5]
proposes to use of NLOC (Number of Lines of Code) and V(G) (Cyclomatic
Complexity) to detect it. When our method is applied, obtained metric set is
greater than his suggestion, including metrics (taking the three tools) as: Num-
ber of Parameters, Nested Block Depth, Halstead Measures, NLOC and V(G).
Although there are metrics not useful to suggest the bad smell, other metrics,
as Nested Block Depth, could improve its detection.

In not ideal situations, some bad smells will not have metrics that could
help to suggest them. In the following table (see Table. 3), we show the results,
comparing the number of bad code smells not detected in each group (following
the initial taxonomy in [5]).

Table 3. Bad Smell Coverage with Metrics

Group BS Number
Not covered
(Eclipse)

Not covered
(RefactorIt)

Not covered
(DMS)

Bloaters 5 2 0 2

O-O Abusers 4 1 1 2

Change Preventers 3 2 0 3

Dispensables 4 1 1 2

Couplers 4 4 2 4

Not Defined 2 1 1 1

The resultant comparative shows us that metric set in RefactorIt seems the
most adequate set to detect smells. It is not surprising, since these metrics are
integrated in a refactoring tool (from the first moment, the tool was designed
with this aim), while Eclipse plugin does not have this as its main aim, and DMS
tool does not focus on refactorings as fundamental aspect of its design, seeing
that its functionality is wider.

This process could be improved in several ways. First of all, new features
could be added to smells and metrics. The number of bad smells can be increased,
and new smells could need these new features. We should mark that current
solution is easily extendable to these new properties. By other side, we compare
the number of bad smells not covered. More accurate analyses need to detach the
metrics associated to each one, as well as their suitability to detect the concrete
bad code smell.

5 Conclusions and Future Works

Admitting the usefulness of current taxonomies, we try to contribute with other
criteria and methods to select metric collection tools. In this work, we also con-



sider metrics as way to suggest smells that could drive to refactorings. By means
of this procedure, we can cover a reengineering process, integrating all these
elements. Obviously, the procedure is not finished, it is a first approximation
of selecting metrics and relate them to smells. By other side, applying of this
method lead us to choose more useful metric sets in the construction of tools,
using them as support.

In previous works [3, 7], we showed the usefulness of using metrics in this
process, and the need to integrate modules collecting metrics. However, metric
selection to be implemented is not closed yet.

The proposed method establishes a decision system, although could be im-
proved. This procedure is not only applicable to metrics, but we can combine it
with other related terms, heuristics, in future works.

References

1. Refactorit - java refactoring tool. http://www.refactorit.com, 2006. Web Resource.
2. Francisca Muñoz Bravo. A Logic Meta-Programming Framework for Supporting the

Refactoring Process. PhD thesis, Vrije Universiteit Brussel, Belgium, 2003.
3. Yania Crespo, Carlos López, Raul Marticorena, and Esperanza Manso. Language in-

dependent metrics support towards refactoring inference. In 9th ECOOP Workshop
on QAOOSE 05 (Quantitative Approaches in Object-Oriented Software Engineer-
ing). Glasgow, UK. ISBN: 2-89522-065-4, pages 18–29, jul 2005.

4. Martin Fowler. Refactoring. Improving the Design of Existing Code. Number 0-201-
48567-2. Addison-Wesley, 2000.

5. Mika Mäntylä. Bad Smells in Software - a Taxonomy and an Empirical Study. PhD
thesis, Helsinki University of Technology, 2003.

6. Radu Marinescu. Detecting design flaws via metrics in object-oriented systems. In
Proceedings of the TOOLS, USA 39, Santa Barbara, USA, 2001.

7. Raul Marticorena, Carlos López, and Yania Crespo. Parallel inheritance hier-
archy: Detection from a static view of the system. In 6th International Work-
shop on Object Oriented Reenginering (WOOR), Glasgow, UK., page 6, jul 2005.
http://smallwiki.unibe.ch/woor/workshopparticipants/.

8. William C. Wake. Refactoring Workbook. Addison-Wesley, 2003.


