Extending a Taxonomy
d Code Smells

R Marticorena, C Lopez, The University of Burgos
Y Crespo, University of Valladolid

Presented by D Rodriguez, The University of Reading

N

Outline

= Introduction
» Related Works

= Extended Taxonomy of Bad Smells
= New Features to Apply
= Metric Feature

= Usability Example of the Extended
Taxonomy Mixing Metrics

m Conclusions and Future Works

Introduction

= Refactoring

= Bad Smells, i.e., collect design or
code flaws

» but ...

» ...their detection is based on certain
programmer intuition

m current taxonomies do not settle
relations between bad smell groups and
used metrics

= Until now, grouping bad smells depending of
certain similarity, more or less subjective

Related Works

= Fowler’s Refactoring book.

= "“no set of metrics rivals human intuition”

= but with large amounts of code, intuition can be
difficult

m Taxonomies
m “within classes” and “"between classes”.

n http://wiki.java.net/bin/view/People/SmellsToRefactorings

= Mantyla -> based on similarity criteria:

= Bloaters, Object-Oriented Abusers, Change
Preventers, Dispensables and Couplers.

= Also, metrics for detecting bad smells
= Munoz -> queries on logic predicates
= Marinescu -> queries on a database

http://wiki.java.net/bin/view/People/SmellsToRefactorings

Extended Taxonomy of Bad Smells

= Extending and Crossing Mantyla taxonomy
with metrics:

= Granularity - size of the component. In OO:
= following levels: system class and method.

m Intra vs. Inter-relations (Intra) the bad smell
could be observed from the individual
observation (intra) of the component

= Inheritance (IH) information about inheritance
hierarchy is needed to suggest the bad smells.

= Access Madifiers (Acc) access level among the
components.

= Crossing
= With software metrics and specially OO metrics

Example

LEH:[Smell

Group Gran. (IntrallH[Ac

[lata Clumpe Bloater Class | N [N | I
Large Class Bloater Class | ¥ [N | I
Long Method Bloaters Method| ¥ [N | I
Long Parameter List Bloaters Method| ¥ [N [I
Primitive Chhasssion Bloaters Method] N [N | I
ATternative Ulasses with Tife- A A 4o wloatoal s Iar | om
Metric|Deasc. Gran. | Intra|lnh|Ac
CLOC [Clomment Linea of Code laz= by N | N
VIiE) | MeCabe's Ciclomatic Complexaty |[Method| Y N | N

MNF MNumber of Parameters DMethod| Y N | N
T Diepth of Inheritance Tree Clazs [N ¥ | N
EFC |Hesponse for Class Clazs ™ N | N

Usability Example of the Extended Taxonomy
Mixing Metrics

= which tool can help us to suggest the
presence of a greater number of bad
code smells?

= Metrics-1.3.6, Refactorlt 2.5, DMS

} Not covarad |[[Not coverad| [Not covaradl
CGrroup BS MNumber

[Eclipse) (Retactorlt) (DS
Bloaters b 2 I 2
-0 Abusers 4 1 1 2
_hange Preventers 3 2 I} 3
[hepensables 4 1 1 2
Conplers 4 4 2
Mot Defined 2 1 1 1

= Refactorlt is the most adequate to
detect bad code smells

Conclusions and Future Work

= Presente_d an extension to current
taxonomies

= Metrics are useful for detecting bad
code smells

= Decision system that can be improved
with heuristics in future works.

	Extending a Taxonomy of Bad Code Smellswith Metrics
	Outline
	Introduction
	Related Works
	Extended Taxonomy of Bad Smells
	Example
	Usability Example of the Extended Taxonomy Mixing Metrics
	Conclusions and Future Work

