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Introduction

= Refactoring

= Bad Smells, i.e., collect design or
code flaws

» but ...

» ...their detection is based on certain
programmer intuition

m current taxonomies do not settle
relations between bad smell groups and
used metrics

= Until now, grouping bad smells depending of
certain similarity, more or less subjective




Related Works

= Fowler’s Refactoring book.

= "“no set of metrics rivals human intuition”

= but with large amounts of code, intuition can be
difficult

m Taxonomies
m  “within classes” and “"between classes”.

n http://wiki.java.net/bin/view/People/SmellsToRefactorings

= Mantyla -> based on similarity criteria:

= Bloaters, Object-Oriented Abusers, Change
Preventers, Dispensables and Couplers.

= Also, metrics for detecting bad smells
= Munoz -> queries on logic predicates
= Marinescu -> queries on a database



http://wiki.java.net/bin/view/People/SmellsToRefactorings

Extended Taxonomy of Bad Smells

= Extending and Crossing Mantyla taxonomy
with metrics:

= Granularity - size of the component. In OO:
= following levels: system class and method.

m Intra vs. Inter-relations (Intra) the bad smell
could be observed from the individual
observation (intra) of the component

= Inheritance (IH) information about inheritance
hierarchy is needed to suggest the bad smells.

= Access Madifiers (Acc) access level among the
components.

= Crossing
= With software metrics and specially OO metrics
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Usability Example of the Extended Taxonomy
Mixing Metrics

= which tool can help us to suggest the
presence of a greater number of bad
code smells?

= Metrics-1.3.6, Refactorlt 2.5, DMS
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= Refactorlt is the most adequate to
detect bad code smells




Conclusions and Future Work

= Presente_d an extension to current
taxonomies

= Metrics are useful for detecting bad
code smells

= Decision system that can be improved
with heuristics in future works.
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