
Automated Elaboration of Refactoring Plans

F. Javier Pérez García

Universidad de Valladolid
jperez@infor.uva.es

1 Introduction

Current approaches to refactoring automation [1] are focused on finding and applying
each individual transformation step. When decided which and where a refactoring op-
portunity exists, development tools are used to automatically apply the refactoring and
test its effects. This kind of methodologies are design improvement oriented. If deeper
redesigning is needed, for example when starting a framework based product-line from
legacy software, refactorings must be directed to a full system new design proposal.
Assuming that a sketch of the desirable system design exists, this work explores how
to check if the new design could be derived from the original system using the avail-
able set of defined refactorings. A small example is presented to show how the full
transformation step sequence could be obtained in case it exists.

The transformation sequence is understood as a chain of refactorings that builds
up a "Refactoring Plan". This work aims to support the automation of this refactoring
process.

2 Refactoring Plan Issues

The problem of finding the transformation steps that turn a state into another, is seen as
a formal language problem. Representing software, specially its structural relationships,
is straightforward with graphs, so graphs, Graph Grammars (GG) and Graph Rewriting
Systems (GRS) seems a natural way to formalize the problem.

The Refactoring Plan can be worked out with a graph grammar where the software
system is the starting node, refactorings are the production rules and the desirable de-
sign is a “word” formed by the available symbols (classes, fields, methods, . . . ). While
the research being at a first stage, this “word” is expected to be a new design, that in-
cludes all elements from the current one, where the Refactoring Plan has already been
executed. Validating if the desirable design state could be derived from the original sys-
tem, using the available set of defined refactorings, is similar to the membership prob-
lem. Obtaining the Refactoring Plan, is the same problem as obtaining the derivation
sequence.

3 Approach and Example

To formalize refactorings, a formal graph representation of Object-Oriented (OO) soft-
ware is needed. It must support elements of OO paradigm and their structural relation-
ships. The chosen formalism [2], presents a GRS based on directed typed graphs and is



already aimed at formalization of refactorings. This formalism defines a representation
of refactorings as graph transformation rules and it is designed to represent also key
concepts such as positive application conditions, negative application conditions and
behavior preserving invariants.

An approach to the membership problem and to the finding of the derivation se-
quence, is searched in the world of GGs. The main purpose of this work is to find a
GG for which the membership problem is solved and represent refactorings, with the
other chosen formalism [2], within this grammar. A possibly adequate GG is defined by
Layered Graph Grammars [3](LGGs), and their extension Contextual Layered Graph
Grammars [4] (CLGGs). In CLGGs, the set of available rules are divided in different
subsets classified in ordered layers. To parse a graph, rules are restricted to be applied
in the order given by the layers. In addition, application of rules layer by layer, reduce
the graph and consequently, the space of search is also reduced in each layer step.

The approach presented in this work is inspired by the way that CLGGs behave.
A set of refactorings are ordered and assigned different layers. To be sure that these
transformations lead to a some kind of reduction of the graph, “normal” refactorings
are decomposed into micro-refactorings, based on Opdyke’s low-level refactorings [5].
Micro-refactorings perform small behavior preserving operations such as creation, dele-
tion, renaming and moving of classes, fields and methods. Micro-refactorings are lay-
ered to state an application order. To avoid infinite application of canceling micro-
refactorings, for example, moving a method back and forth between two classes, some
restrictions are applied. For example, a micro-refactoring that moves a method can only
be applied once on that method.

4 Results and Future Work

This work present a starting step in researching to support the automated elaboration
of Refactoring Plans. Small examples are used to explore the formalisms that can be
applied to support this process.

Next steps include extending the set of refactorings supported. It must be checked
if it is true that every refactoring can be represented as a chain of micro-refactorings. It
must be proven that composing micro-refactorings is equivalent to executing “normal”
refactorings. The interpretation of the proposed technique as a CLGGs must be formal-
ized too. Validating the process through tools like AGG [6] or FUJABA [7], will be a
main issue to support automated elaboration of Refactoring Plans. If needed, extensions
to available tools must be developed.

References

1. T Mens and T. Tourwé. A survey of software refactoring.IEEE Trans. Softw. Eng., 30(2):126–
139, 2004.

2. Tom Mens, Serge Demeyer, and D Janssens. Formilising behaviour preserving program trans-
formations. InGraph Transformation - 1st International Conference on Graph Transforma-
tion, volume 2505 ofLecture Notes in Computer Science, pages 286–301. Springer-Verlag,
2002.



3. J. Rekers and Andy Schurr. Defining and parsing visual languages with layered graph gram-
mars.Journal of Visual Languages and Computing, 8(1):27–55, 1997.

4. Paolo Bottoni, Gabriele Taentzer, and Andy Schürr. Efficient parsing of visual languages
based on critical pair analysis and contextual layered graph transformation. InVL ’00: Pro-
ceedings of the 2000 IEEE International Symposium on Visual Languages (VL’00), page 59,
Washington, DC, USA, 2000. IEEE Computer Society.

5. W.F. Opdyke.Refactoring Object-Oriented Frameworks. PhD thesis, Department of Com-
puter Science, University of Illinois at Urbana-Champaign, 1992. also Technical Report
UIUCDCS-R-92-1759.

6. Gabriele Taentzer. Agg: A graph transformation environment for modeling and validation of
software. InAGTIVE, pages 446–453, 2003.

7. Ulrich Nickel, Jörg Niere, and Albert Zündorf. The fujaba environment. InICSE, pages
742–745, 2000.


	Automated Elaboration of Refactoring Plans
	F. Javier Pérez García

