First Results in Supporting Automated Elaboration of
Refactoring Plans

Javier Pérez, Yania Crespo

Universidad de Valladolid
(jperez,yania)@infor.uva.es

1 Introduction to Refactoring Plans

Current approaches to refactoring automation [1] are focused on finding and apply-
ing each individual transformation step. When decided which and where a refactoring
opportunity exists, development tools are used to automatically apply the refactoring
and test its effects. This kind of methodologies are directed to improve certain design
characteristics. In some cases deeper redesigning is needed because wider architectural
changes are planned. Other refactoring methodologies must be used. Refactorings must
be directed to a full system new design proposal. Starting a framework based product-
line from legacy software systems is a good example of this.

A sketch of a desirable system design can be obtained from a wide variety of tech-
niques such as Formal Concept Analysis, metii¢s [2], or just the proposal of skilled
software designers. This work assumes that this sketch of the desirable system design
exists and explores how to check if the new design could be derived from the original
system using an available set of defined refactorings. A small example is presented to
show how the full transformation step sequence could be obtained in case it exists.

The transformation sequence is understood as a chain of refactorings that builds
up a "Refactoring Plan". This work aims to support the automation of this refactoring
process which can be overviewed in Figuye 1.

2 Refactoring Plans Issues

The problem of finding the transformation steps that turn a state into another, is seen as
a formal language problem. Representing software, specially its inner structural rela-

tionships, is straightforward with graphs, so graphs, Graph Grammars (GG) and Graph
Rewriting Systems (GRS) seems a natural way to formalize the problem.

The Refactoring Plan can be worked out with a graph grammar where the software
system is the starting node, refactorings are the production rules and the desirable de-
sign is a “word” formed by the available symbols (classes, fields, methods, . ..). While
the research being at a first stage, this “word” is expected to be a new design, where the
Refactoring Plan has already been executed, that includes the whole amount of infor-
mation (all elements) from the current one.

To generate Refactoring Plans automatically, two problems needs to be solved:

System Analysis

Legacy System

Refactoring Analysis

Desirable System

Fig. 1. Overview of the elaboration of Refactoring Plans

Refactoring Plan Execution

— Validating the desirable design:ito check whether it could be derived or not from
the original system, using the available set of defined refactorings. This problem
can be seen as the membership problem of formal language theory.

— Obtaining the Refactoring Plan: Find the sequence of refactorings that must be
performed to redesign the system. This is like obtaining the derivation sequence.

3 Formalizing the problem with Graph Transformations

To formalize refactorings, a formal graph representation of Object-Oriented (OO) soft-
ware is needed. It must support elements of OO paradigm (classes, fields, methods,
...) and their structural relationships. In order to represent refactorings below method
signature level, also method bodies must be represented. The chosen forrnalism [3],
presents a GRS based on directed typed graphs which is already aimed at formaliza-
tion of refactorings. This formalism defines a representation of refactorings as graph
transformation rules. As an important feature related to refactorings, it is designed to
allow representation of behavior preserving invariants too. Syntactic correctness of the
generated graphs are assured with the use of constraints and well formedness rules.
To allow representation of refactoring transformations which must appear in a specific
context to be performed, it supports the specification of context-sensitive rules through
the definition of negative application conditions, node embeddings and the use of path
expressions. The type graph of this proposal, a graph defining the syntactically correct
graphs, is shown in figufg 2.

An approach to the membership problem and to the finding of the derivation se-
quence, is searched in the world of GGs. A key goal of this work is finding a kind of
GG for which the membership problem is solved and define refactoring transforma-
tions, with the other chosen formalisfd [3], within this grammars. A possibly adequate
GG family is defined by Layered Graph Grammars [4] (LGGs), and their extension

String name| "

Fig. 2. Type Graph

Contextual Layered Graph Grammalrs [5] (CLGGs). In CLGGs, the set of available
rules are classified in different subsets of ordered layers. To parse a graph, rules are
restricted to be applied in the order given by the layers. The membership problem can
be managed mainly because application of rules layer by layer reduce the graph and
therefore, the space of search is also reduced in each layer step. Rules of a greater layer
can only be applied after no more rules of a lower layer can be applied, this assures that
the set of applicable rules is also being reduced with each transformation.

The approach presented in this work is inspired by the way that CLGGs behave.
A set of refactorings are ordered and assigned different layers. To be sure that these
transformations lead to a some kind of reduction of the graph, “normal” refactorings
are decomposed into micro-refactorings, based on Opdyke’s low-level refactarings [6].
Micro-refactorings perform small behavior preserving operations such as creation, dele-
tion, renaming and moving of classes, fields and methods. Micro-refactorings are lay-
ered to state an application order. To avoid infinite application of canceling micro-
refactorings, for example, moving a method back and forth between two classes, some
restrictions are applied. For example, a micro-refactoring that moves a method can only
be applied once on that method.

4 Example

To explore and explain this approach a simple example is shown. A few rules have been
defined, and a small system, with its original and its desirable design, is presented. A
graph parser must be fed with rules and both designs, then it will find the rule sequence
to transform a design into another.

A small set of rules that perform some micro-refactorings are defined first, repre-
sented with the formalism of [3]. A key feature of this rule set is that each rule must
create, move or delete a single element of a specific type.

— Create unreferenced empty ClassAs seen in figl B, a new class is introduced in
the system if it doesn't exist.

— Create unreferenced empty Method:This rule in fig[4, a new method is intro-
duced within a class if it doesn’t contain a method with the same signature.

— Move method to empty method:As defined in fig] b, a method body can be moved
from a method to another if the target method doesn’t have a body itself. Micro-
refactorings have been defined to perform a single step transformation, so, in this

Hac 1_| createClass of micro-rafactorings
¥

it
c ¥
name=a :

Hac 1_| CreateMethods of micro-refactorings
¥ L

ald
k| (1:Counter [
i [classes=c-1 name=a

Fig. 3. Create Class

J:Counter
methods=m

-

4

3:.Counter K[| 3:Counter
methods=m il [methods=m-1

name=x name=x

Fig. 4. Create Method

case, the source method signature is preserved and the source body method is re-
placed by a call to the target method. Another rule would be needed to remove
this delegating methods, but this set of rules will be enough for the purpose of the
example.

Some mechanisms are established in order to progressively reduce the applicable set
of rules. Specific counters are defined for each rule and are used to control the number
of times a rule can be applied. Counters are initialized with the estimated times the
designer consider that the rule will be applied. Each rule application decrements the
corresponding counter, and can only be performed if the counter is above zero. Rules
are ordered with layers with the following guidelines:

— Create new elementsFirst of all, every element of the desirable design which
doesn’t appear on the source design must be created. Classes are created first, then
methods and fields are created last.

— Move elements:Elements are moved within the system with no specific prece-
dence over class, methods of fields.

— Delete empty and elementsFinally, empty and unreferenced elements can be
deleted. Methods and fields are removed first and Classes are removed last.

With this principles, the rule set of the example can be orde&Zeshte Classs assigned
layer O, Crete Methods assignedayer 1, andMove Methods classified inayer 2.

The system to be redesigned is presented in figure 6. It consist just of three classes
and two methods within each class.

The desirable design of the system, in figure 7, shows up that a newGdasect
has been created and that a couple of methpragpcol and connection have been
moved. Counters are initialized to allow application biCreate Class rule 2 Create
Method rules, and2 Move Method rules

Figure[presents the initial state of the system once it has been represented with the
formalism of [3]. Successful application of rules by the parser will lead to the creation
of the new class, as showed up in figufe 9, the creation of the two new methods (see fig.

Nac

1:Counter

maoveMethods=mm

111

=

| ¥

4]

|| moveMethod of micro-refactorings
"

1:Counter
movelMethods=mm

1:Counter

|

¢||moveMethods=mm-1

-

Fig. 5. Move Method

Preferences

Address

protocol ()
printMe ()

connection()
printMe ()

—

SetUp

settings()

Fig. 6. Start Design

[10) and the reallocation of the two moved method bodies within the recently created
empty methods (see fig.[11).

5 Results and Future Work

This work present the first results to support the automated elaboration of Refactoring
Plans. The main requirements of the problem have been stated. Small examples are used
to explore the formalisms that can be applied to support this process. It has been found
that graph transformations offer good mechanisms to be used as the relying formalism.
To represent software design and specially software refactorings, the formalism pre-
sented by([B], can successfully fulfill our requirements. The refactoring plan problem
has been identified as the membership problem, which seems to be a promising ap-
proach, because graph grammars for which the problem has already been solved, can
be used.

Next steps include extending the set of refactorings supported. It must be checked
if it is true that every refactoring can be represented as a chain of micro-refactorings. It
must be proven that composing micro-refactorings is equivalent to executing “normal”
refactorings. The interpretation of the proposed technique as a CLGGs must be formal-
ized too. Validating the process through tools like AGG [7], FUJABA [8] or PROGRES
[9], will be a main issue to support automated elaboration of Refactoring Plans. AGG

Preferences Address
protocol () connection()
printMe () printMe ()
SetUp
settings()
protocol {pref:Preferences) L
Connect

connection{addr:iddress)

Fig. 7. Desirable Design

c____
name="Preferences"

C C

name="Address" name="Setlp"
T &

M
__Iname="printMe" [~

m
name="protocal"

M
name="connection"

name="String" name="settings"

Fig. 8. Initial state of the system. No rules have been applied yet.

seems to be the right tool to use, because it directly supports graph parsing. If needed,
extensions to available tools must be developed.

References

1. Mens, T., Tourwé, T.: A survey of software refactoring. IEEE Trans. Softw. B¢e004)
126-139

2. Crespo, Y., Lépez, C., Manso, E., Marticorena, R.: From bad smells to refactoring, met-
rics smoothing the way. In: Object-Oriented Design Knowledge: Principles, Heuristics, Best
Practices, ... Idea Group Inc (2005) xx to appear.

3. Mens, T., Eetvelde, N.V., Demeyer, S., Janssens, D.: Formalizing refactorings with graph
transformations: Research articles. J. Softw. Maint. EL6(2005) 247-276

4. Rekers, J., Schurr, A.: Defining and parsing visual languages with layered graph grammars.
Journal of Visual Languages and Comput§{L997) 27-55

5. Bottoni, P., Taentzer, G., Schrr, A.: Efficient parsing of visual languages based on critical pair
analysis and contextual layered graph transformation. In: VL '00: Proceedings of the 2000

[ee]

C

name="Preferences" € € c

name="Address"| |name="SetUp" name="Connect"
M | T T
__{name="printMe" [~

M
- name="protocal"

name="String" name="settings"

Fig. 9. Class Created

c
name="Preferences” < c [
name="Address" name="getlp" name="Connect'
M T v T Z
| -
__{name="printhMe" |- _
MD| |
—Iu T B m [up]
name="protocol’ —
—— E -
M
name="connection”
alE
/
v t)
~
f‘_,_ﬂ-ﬂ'””:.
c " M
name="String" name="settings"

Fig. 10.Method Created

IEEE International Symposium on Visual Languages (VL'00), Washington, DC, USA, IEEE
Computer Society (2000) 59

. Opdyke, W.: Refactoring Object-Oriented Frameworks. PhD thesis, Department of Com-

puter Science, University of lllinois at Urbana-Champaign (1992) also Technical Report
UIUCDCS-R-92-1759.

. Taentzer, G.: Agg: A graph transformation environment for modeling and validation of soft-

ware. In: AGTIVE. (2003) 446-453

. Nickel, U., Niere, J., Zindorf, A.: The fujaba environment. In: ICSE. (2000) 742—-745
. Munch, M.: Programmed graph rewriting system progres. In: AGTIVE. (1999) 441-448

[
— 0 [C C
name="Preferences
khhh“x—____ name="Address" t___‘, name="SetlIp" name="Connect'

_{name="printMe"

name="protocol"

M
name="connection"

name="settings" name="string"

Fig. 11.Methods Moved

	First Results in Supporting Automated Elaboration of Refactoring Plans
	Javier Pérez

