
Parallel Inheritance Hierarchy: Detection from
a Static View of the System

Raúl Marticorena1, Carlos López1, and Yania Crespo2

1 University of Burgos, Area of Language and Informatic Systems
{rmartico, clopezno}@ubu.es

2 University of Valladolid, Department of Computer Science
yania@infor.uva.es

Abstract. We expose a case study of a bad smell detection through
metrics. In practice, bad smell detection emerges from human observa-
tions. Metrics allow to obtain an objective view of the software, so they
must be used as instruments to detect bad smells.
Concretely, we focus in the bad smell: Parallel Inheritance Hierarchy,
using a metric subset. Although it is not a serious bad smell, however
its detection is difficult in large and medium size systems. Besides, it
is usually necessary to have several versions of the system to detect its
presence.
We define a process to manage the big amount of data extracted from a
system to determine where exists this bad smell, only with an available
version. The saving of time and effort in this process is showed as an
advantage opposite to other solutions.

Key Words: bad smell, metrics, refactoring inference, software evolu-
tion.

1 Introduction

Bad smell detection can be driven by metrics or human intuitions. Meanwhile the
former solution seems objective, the second solution is subjective and difficult to
automate. In our current research work, we are looking for an objective process
to determine when and where the software system presents a bad smell. The aim
is to define a process with a certain language independence so the process could
be applied to a big family of object-oriented languages.

To obtain this aim, we must select the more adequate metrics to each bad
smell, explaining a process to detect it from metric values. Two strict conditions
are fixed in the proposal. We can only use language independent metrics and
we have only one static view of the system (only one version of the system is
available for the analysis).

From different products as library classes and frameworks we extract class
metrics for each one of them. Using these values, and analyzing them with data
mining techniques, we try to deduce where exist bad smells, therefore we will
get refactoring opportunities.



The remainder of this paper is structured as follows: Section 2 presents the
state of the art of the current problem, from metrics and refactoring inference to
works connecting both subjects. In Section 3 we describe the process to detect a
concrete bad smell: Parallel Inheritance Hierarchy. In Section 4 we show a case
study applying the process previously established, and analysing the obtained
results. Finally, in Section 5, we finish with conclusions and future work.

2 State of the Art and Current Trends

Bad smell detection based on metrics is established in [4] but in some cases it is
difficult to fix a metric set for each bad smell. Other works [1] use combinations
of metrics and other symptoms through logic meta-programming. The suitable
refactorings for each bad smell are described in [2].

One of the current trends is to study the changes among several versions of
the same system to detect bad smells as Shotgun Surgery, Divergent Changes
and Parallel Inheritance Hierarchy [2]. Although there are works which detect
this kind of situation, they need to observe several versions of the system [5, 6]
inferring their results from the evolution of several versions.

Our proposal improves the previous works because it only needs one version.
From one system static view, we can detect the presence of the bad smell Parallel
Inheritance Hierarchy.

3 Process Definition

We detail the process stages to determine parallel inheritance hierarchies.

1. Obtain the class metric values of DIT (Depth Inheritance Hierarchy) and
NOC (Number Of Children) [3] for each one of the classes.

2. Apply data mining to associate classes with related values obtaining clusters.
3. Observe the medium values and standard deviation which characterize each

class cluster.
4. From the selected clusters, it is applied a filter on the DIT and NOC metric

values taking those classes with similar or equal values. We also take those
classes whose names have the same prefix, as [2] suggests.

5. Inspect the selected classes and their children to confirm the presence of the
bad smell.

The process is not completely automatic, so it needs the human interaction
in step 5. As follows, we present three different cases in which we apply this
process. We also comment the obtained results.

4 Case Study

We have selected three different projects in Java: two libraries (JFreeChart and
jcoverage) and one framework (JUnit). Metrics has been collected using the



Metrics 3 plug-in for Eclipse. Lately, we use Weka 4 (version 3.4) as data mining
tool to determine clusters and membership of each class.

Taking classes with equal values and similar prefixes, we achieve a manual
inspection of the suspect classes.

4.1 Case 1: JFreeChart Class Library

From a jfreechart 1.0.0 pre2 version, with 629 classes, we extract metrics
for each class. We establish the use of the two metrics (DIT and NOC) to detect
this bad smell. Depending on the depth of inheritance tree and the number
of children, we use these values as indicators of parallel inheritance hierarchies
existence. More concretely, we choose classes with a number of children greater
than 1, so the inheritance hierarchies are obviously complex.

Collecting the metric values and applying clustering techniques with Weka,
we found four clusters (see Table 1).

Table 1. JFreeChart-1.0.0 pre2 - Clusters

Cluster Num.Classes % Mean DIT St.Dev Mean NOC St.Dev

0 410 65% 2.8592 0.5164 0 1.4839

1 64 10% 5.1989 0.7940 0.1642 0.3704

2 128 20% 1.0478 0.2198 0.0921 0.3133

3 27 4% 1.9991 0.9162 4.0688 3.4295

Studying the different mean values and standard deviation for each cluster,
we only focus in classes taking into account the mean values of DIT and NOC.
We are looking for classes at the top of the inheritance hierarchy (DIT between
1 to 3) with a medium number of children (NOC greater than 4 in this case).

The rest of the clusters contain classes with high depth and without children
(Cluster 0), very deep with few children (Cluster 1) or low depth with few
children (Cluster 2). These three last clusters do not seem suitable to find parallel
hierarchies.

Therefore, we take Cluster 3 with its 27 classes. To find parallel inheritance
hierarchies we establish that classes must have values of DIT and NOC very
similar. Also we added the criteria that class names must have similar prefixes.

By means of this process, we have detected three parallel hierarchies. We
show the root classes and their metric values:

– Hierarchy 1
• Tick (DIT=1, NOC=2)

3 Available at http://metrics.sourceforge.net/
4 Available at http://www.cs.waikato.ac.nz/ ml/index.html



• TickUnit (DIT=1, NOC=2)
– Hierarchy 2

• AbstractCategoryItemLabelGenerator (DIT=1, NOC=4)
• AbstractPieItemLabelGenerator (DIT=1, NOC=2)
• AbstractXYItemLabelGenerator (DIT=1, NOC=2)

– Hierarchy 3
• RenderederState (DIT=1, NOC=3)
• Plot (DIT=1, NOC=12)

In Hierarchy 2, the NOC value includes two inner classes that they must
not be considered to find the bad smell. In Hierarchy 3, similarity has been
obtained by similar prefixes. Besides, the other nine child classes of Plot have
not descendants, the other three classes have an association one to one with
descendants of RendererState class.

4.2 Case 2: jcoverage Class Library

We repeat the process with a class library for white-box testing: jcoverage-1.0.5.
It contains a number of 89 classes. Taking again the DIT and NOC metrics
we obtain only one cluster due to the similarity among classes. We repeat the
clustering, adjusting the number of clusters to two (see Table 2).

Table 2. jcoverage-1.0.5 - Clusters

Cluster Num.Classes % Mean DIT St.Dev Mean NOC St.Dev

0 9 10% 1.6249 0.9918 2.1823 1.0775

1 80 90% 1.8083 1.0555 0 0.9608

Cluster 1 brings together classes with few or none children, so we choose
Cluster 0. We apply the prefix criteria locating 9 classes with a NOC mean
value greater than 2. We inspect the code to reject the false positives. Finally
we obtain:

– Hierarchy 1
• AbstractLine (DIT=1, NOC=3)
• AbstractPage (DIT=1, NOC=3)

4.3 Case 3: JUnit framework

We repeat the complete experiment. Again we are interested in classes with a
NOC greater than 1 (complex hierarchies). We obtain the following clusters (see
Table 3).



Table 3. JUnit-3.8.1 - Clusters

Cluster Num.Classes % Mean DIT St.Dev Mean NOC St.Dev

0 29 63% 1.8397 0.8793 0 0.7200

1 12 26% 5.6438 0.4825 0.0001 0.0110

2 5 11% 1.5712 0.7282 1.8568 0.6394

We take the Cluster 2 with 5 classes. We look for classes with similar values
and prefixes. There is a false positive between TestCase and TestDecorator
with equal values of DIT and NOC. But the value NOC of TestCase includes the
number of inner classes. There is not parallelism among their children. Probably,
it also indicates that design patterns could generate false positives.

4.4 Strength and Weakness

Although the process shows some flaws, there are some main advantages. In the
first case study, with a total of 629 classes, we have discarded the 96% of classes.
In the second case study, we have discarded the 90% but we need to adjust the
number of clusters. The reason could be the uniformity of the DIT and NOC
values (greatest NOC value is 4 in the library).

In the last example, we discarded the 89% of classes, taking only 5 classes.
JUnit is a framework very stable. It could be the main reason so we have not
found any parallel hierarchy.

5 Conclusions and Future Works

The process presents a method to detect parallel inheritance hierarchies using
a static view of a software system. We discard a big number of classes to be
inspected using metrics, data mining and name convention filter and do not
need several versions of the same system to detect this kind of bad smell.

If we try to achieve this process by human observation, it finally would be
hard task. One of the main advantage of this proposal is the saving of time.

We must introduce new improvements. By example, we must not consider
classes in the same branch of the inheritance hierarchy. All these kind of im-
provement will reduce the number of false positives and tune the process.

By other side, we must stand out a language independence. DIT and NOC
metrics are applied to a big number of object-oriented languages so this process
could be widely applied.

In our future works, we propose to increase the number of case studies, to
determine for which domains (class library vs. frameworks) is a good solution.



References

1. Francisca Muñoz Bravo. A Logic Meta-Programming Framework for Supporting the
Refactoring Process. PhD thesis, Vrije Universiteit Brussel, Belgium, 2003.

2. Martin Fowler. Refactoring. Improving the Design of Existing Code. Addison Wesley,
2000.

3. Martin Hitz and Behzad Montazeri. Chidamber and kemerer’s metrics suite: A
measurement theory perspective. Software Engineering, 22(4):267–271, 1996.

4. Mika Mantyla. Bad Smells in Software - a Taxonomy and an Empirical Study. PhD
thesis, Helsinki University of Technology, 2003.

5. Radu Marinescu Tudor Gı̂rba, Stéphane Ducasse and Daniel Ratiu. Identifying
entities that change together. In Ninth IEEE Workshop on Empirical Studies of
Software Maintenance, 2004.

6. Zhenchang Xing and Eleni Stroulia. Data-mining in support of detecting class co-
evolution. In 16th International Conference on Software Engineering and Knowledge
Engineering, pages 123–128. Banff, Alberta, Canada, June 20-24, 2004.


