
Analysis and Definition of a Language
Independent Refactoring Catalog

Raúl Marticorena

University of Burgos
Languages and Informatic Systems

rmartico@ubu.es

Abstract. Refactoring is an emergent trend in software evolution. There
are activities and work lines not yet covered in this process. Assistance
to refactoring with a certain language independence is one of them.
This work presents a proposal to the refactoring process definition based
on a model language, with the aim of establishing a solid base to the
development of software tools, which use refactoring with a language
independence.
In particular, we pretend to refactor in the context of object-oriented
languages, statically typed with advanced inheritance and genericity.

Key words: refactoring, language independence, model language, object
oriented programming.

1 Context

A research trend in refactoring process definition, analysis and automation, is
to reach a certain language independence [1, 2]. This aim is twofold. On one
side, refactoring tools are software systems we want to reuse. Adapting to new
source languages and/or new refactoring operations from previous efforts in the
definition and implementation.

On the other side, the modern software systems often requires different mod-
ules developed in different languages. Therefore integrated development envi-
ronments with multiple language support are demanded and this also applies to
incorporated refactoring tools.

Refactoring definition in a language independent way offers a solution to
the reuse possibilities in the development of the refactoring tools when they are
adapted to new languages. With this approach, the effort of defining refactor-
ings in a general way guarantees a recovery of the initial effort and its future
application in new languages.

This work presents an overview of the current research in refactoring as well
as the opened work lines. Concretely, we establish a doctoral work to obtain a
solution to the problem of language independence, cited by [3].

This paper is organized as follows: Section 2 presents the current state of
the art in refactoring software, from the beginnings until the present work lines.
In Section 3 we explain the problem definition. Section 4 establishs the aims



and goals, and in Section 5, we introduce the expected solution to the problem.
Finally, in Section 6, we describe the current progress and the work to be done.

2 State of the Art

2.1 Refactoring

In his works [4–6] E.Casais presents the problem of the absence of methodologies
and tools to modify source code. His works describe change operations on object-
oriented software. The author proposes the definition of software transformation
primitives in an informal manner. On the base of these low level operations
defines high level transformations and restructurings (applying the Demeter’s
Law, transforming the inheritance hierarchies, etc). In order to perform the
transformation, he proposes a solution based on an algorithm. The algorithm is
described in a formal way, in which all actions have associated a set of conditions.
The practical work of the algorithm application is achieved with Eiffel classes.

In [7] W. Opdyke analyzes the problem of software maintenance, focusing
on the modification tasks. From previous works on software evolution, schema
evolution in object-oriented databases and class reuse, he presents refactoring
as “restructuring plans which support changes to an intermediate level”. About
the design problem and the maintenance complexity, he defends the automatic
support to the software modification through tools (from design as well as code).
He describes an approach to the automatic support and restructuring of object-
oriented software.

A basic feature of the new concept of refactoring is that it must preserve the
program behavior. Refactoring supports the changes in such a way that improves
the later comprehension and evolution of the software system. With respect to
when we must refactor, he suggests the necessity of rules that allow a certain
inference. Respect to where we must refactor, he exposes the necessity to carry
out at least one or more interactions with the designer or programmer.

In [8] M.Fowler, retakes the concept of refactoring. The author’s definition
is: “Refactoring is to restructure software by applying a series of refactorings
without changing its observable behavior.” His basic objective is to improve the
software structure. He proposes the idea of guarantee the behaviour through unit
testing. This work contains also a refactoring catalog. The main problem of the
refactoring definitions in this catalog is its informal definition. The operations
are described in a free way, like a list of stages to achieve on the source code. The
exposition is similar to other books following a structure of cook books like [9],
where description and solution of the problem is posed in an informal manner,
using in this case examples in Java language.

Problem of automatic software transformation, preserving the behavior, is
showed also in [10]. The basic aim is the formal definition of refactorings, easy
to automate through a first-order logic. Reusing the proposal of [7] and his defi-
nition of low level operations, the author propose the definition of preconditions
and postconditions in each refactoring. Behavior preservation is based on the



postcondition verification. This work studies a dynamically typed language like
Smalltalk. The implementation of his work is collected in the Refactoring
Brower tool1.

2.2 Language Independence

In the line of language independence refactoring, in [1,11] is defined the FAMIX
model like a metamodel to storage information with the aim of integrate seve-
ral development environments, together with a tool to assist refactoring named
MOOSE [12]. Like starting point to define the model, it is centered in the study of
two languages with different features like Smalltalk and Java. It does not take
account complex features in strongly typed languages, aim of our previous studies
[13,14], nor aspects of advanced inheritance and genericity. MOOSE adopts like
technique the use of asserts [7, 10] using the information from metamodel to
validate the preconditions of the refactorings. Based on the validation of the
preconditions, they warrant the behavior preservation, without provide a support
to undo the last changes of a refactoring when there are possible exceptions in
the execution of a transformation.

By other side, the associated transformation of the refactoring are achieved
directly on the original code. This alternative forces to implement transformers
of specific code for each language. These code transformers use an approach
based on text using regular expressions. In these works they propose a future
line including abstract syntax trees (AST).

About the software transformation with certain independence language, there
are works like [15] oriented to the generation of parsers with the aim to define
new transformations on the code.

2.3 Refactoring Opportunities Detection

Other authors look for a language independence representation with object-
oriented code. In [16], the authors work in this line using logic programming
languages on meta language. The logic predicates are used to check and recover
information from a meta language. In this case, the aim of the authors is the
identification of “Bad Smells” [8]. From a database of logic facts which map the
information in the code, they suggest refactorings to erase the “Bad Smells”.
To define these refactorings, they [17] propose a serie of transformations on the
elements that conform the code. With the aim of preserve the transformation
correctness, the preconditions are verified, similar to the proposal of [7, 10]. Al-
though their works suggest a possible language independence, their works and
prototypes are based on Smalltalk.

Other proposals, in the definition of models to describe object-oriented lan-
guages, even though different aims, use technics based on frameworks like OFL
(Open Flexible Languages) [18], or based on a graph software representation,
like [19] whose aim is to obtain metrics with language independence.

1 Available in http://wiki.cs.uiuc.edu/RefactoringBrowser. Ĺast visit 2nd May 2005



Finally, there is a proposal more ambitious in [20] to define generic refactoring
with certain independence of programming paradigm.

3 Problem Definition

The effort made in the refactoring definition is not being reused currently. So-
lutions proposed to refactor demand a particular analysis and implementation
for each object-oriented programming language (i.e. C++ [7], Smalltalk [10],
Java [8], etc.)

Current integrated development environments that include refactorings (i.e.
IntelliJ IDEA, Eclipse, etc.) are a clear example. Other solutions are specific
tools to refactor (i.e. Refactoring Browser, JRefactory, etc.) All these tools ap-
proach the implementation and execution of refactorings from the scratch, with
a solution based on customized libraries, not supporting reuse to compose and
run refactorings on other languages with similar features.

The problem comes from an absence of refactoring definition with certain in-
dependence language, exposing the common elements to several languages and
allowing their implementation and reuse later. Particularly, this PhD thesis pro-
posal is focused in the problem of the refactoring definition on a object-oriented
language suite, statically typed, considering the complex features like advanced
inheritance (multiple inheritance) and generic classes.

With this aim, we take the model language MOON2. It was defined as a
minimal notation to support most of abstract concepts included in a big family
of strongly typed object-oriented languages [2]. It includes concepts as types,
parametric types, classes, generic classes, inheritance, etc. This model language
was also defined with the goal of support the refactoring definitions obtaining a
certain language independence. The aim is to analyze and define a refactoring
catalog on MOON:

– Identify under which situations (symptoms) must be initiated a refactoring.
From a reactive viewpoint (under demand), where the programmer detects
the suitable refactoring or from a proactive approach (inference) where the
systems detects and marks the convenience or necessity of refactoring.

– Define the refactoring from a point of view of language independence. All the
elements that compose a refactoring must be common to a language family.
This is guaranteed by defining refactoring from the available information in
MOON and supplying extension points to particular languages.

– Guarantee the behavior preservation. From an approach based on contracts
(pre, postconditions and invariants) and checking that the system follows
generating the same observable results, once carried out the refactoring (us-
ing testings, in the line of black box testing [8].)

– Refactoring application. Manual, semi-automatic (partially assisted by tools)
or automatic, from the point of view of the programmer.

2 MOON is an acronym of Minimal Object-Oriented Notation.



– Consequences for client classes. Pointing out the effects of the refactoring
execution for the classes.

– Consequences for objects. Showing the effects of the refactoring on the pre-
vious persistent objects.

Moreover, in previous works [21], we observed an absence of works and cata-
logs on generic refactorings, with the exception of parameterize refactoring [2].
The present incorporation of the concept of parametric types and generic classes
in widely extended languages as Java and C#, is a very interesting field to
extend the works initiated in [14, 21], developing a subcatalog of refactorings
related to generic aspects.

4 Goals

From the information available in the model language MOON, we propose a
research of a refactoring catalog from the taxonomies proposed by [3, 22].

This analysis must obtain:

– A formal support to the definition of those refactoring that can be achieved
with language independence, preserving the behavior. Identifying “when” and
“how” to accomplish the refactoring with OOL independence, as well as
those language dependent factors which block the refactoring execution:
• Support to obtain metric measures.
• Metric selection associated to bad smells.
• Refactoring inference based on metric values and bad smells.
• Analysis of the refactoring elements.
• Refactoring definition with certain language independence.

– Definition of the refactoring elements, taking MOON as support. The aim is
to implement these detected elements integrated in the refactoring definition:
• Support to refactoring implementation.
• Reuse of the refactoring elements.

– Measure the software quality improvement. We must justify refactoring from
metric observations:
• Improvement or change of metric values after refactoring.

A new approach detecting refactoring opportunities is reached using language
independent metrics and other techniques. Recommended metric values will be
fixed by programmer or application domain.

By other side, once this aims have been reached, we have a solid base to sup-
port a tool that allows to reuse the effort achieved in the independent language
definition refactoring. This can be used in IDEs with multilanguage support, and
also in refactoring tools applied to different languages. Analyzed refactorings
could be executed in a set of object oriented language that could be projected
on MOON. It is not necessary to repeat the whole process again.



5 Approach

To carry forward this work, it is necessary to select those refactoring from
Fowler’s catalog [8] included currently in the most widely used IDEs, and by
other side, work in a new refactoring catalog related with generic aspects on
object-oriented languages.

From the refactoring analysis, the result of this work gives a solid base to
develop a prototype that includes the next features:

1. Identify when achieve the analyzed refactorings.
2. Assist to the refactoring in an automatic mode, or partially assisted by the

programmer, preserving the behavior.
3. Implement the analyzed refactoring, using an approach with and for reuse

from the elements defined in refactoring. Also we must supply some mecha-
nisms to undo the refactoring effect.

4. Set a software quality metric to measure the improvement after refactor.

To establish the results obtained with this prototype, we pretend to compare
the common refactorings in the current IDEs that work in statically typed object-
oriented languages more extended (Java, C#, Eiffel), analyzing in which points
we have improved the results, following the taxonomies in [3, 22]. Also we must
take into account the number of languages that supports this proposal.

The final result must be a prototype that include refactoring on a wide set
of codes, as well as a saving of time in the development of tools with the same
set of refactoring on similar languages.

6 Current Progress

We accomplish the refactoring definition on the model language according to
a template [8, 23]. The template is composed by a name, a brief description,
motivation, inputs, preconditions, actions and postconditions.

The preconditions and postconditions are defined on the basis of a set of
logical predicates and functions. It is necessary that all the definition of precon-
ditions, functions, actions and postconditions can be expressed on the basis of
the information represented in the model language MOON.

Some of them depend on a concrete language peculiarity, so they are analyzed
and extended, if it is possible. In other case, they are classified as “not possible
to be defined”.

Once this process is finished on a subset of refactoring [21], we can discover
which refactoring operations can be independently performed of the source lan-
guage.

The prototype that supports this refactoring definition needs parsers from a
concrete language to MOON. For now, we have a basic parser from Java 1.4 to
MOON, and the prototype is able to achieve some simple refactorings, including
some refactoring based on generic features (using GJ [24]).



Our work follows this line, developing more parsers (Java 1.5 and C# 2.0
could be the obvious candidates) and reusing the previous refactoring definition.
Our next step must be also introduce metrics on MOON, referencing to “Bad
Smells” [8], to evaluate when, how and why we must refactor with language
independence.

References

1. Sander Tichelaar, Stéphane Ducasse, Serge Demeyer, and Oscar Nierstrasz. A
meta-model for language-independent refactoring. In Proceedings ISPSE 2000,
pages 157–167. IEEE, 2000.

2. Yania Crespo. Incremento del potencial de reutilización del software mediante
refactorizaciones. PhD thesis, Universidad de Valladolid, 2000. Available at
http://giro.infor.uva.es/docpub/crespo-phd.ps.

3. Tom Mens and Tom Tourwé. A survey of software refactoring. IEEE Trans. Softw.
Eng., 30(2):126–139, 2004.

4. Eduardo Casais. Managing class evolution in object-oriented systems. Technical
report, Centre Universitaire dInformatique, University of Geneve, 1990.

5. Eduardo Casais. An Incremental Class Reorganization Approach, volume LCNS
615, pages 114–132. Springer-Verlag, 1992.

6. Eduardo Casais. Automatic reorganization of object-oriented hierarchies: a case
study, pages 95–115. Springer-Verlag, 1994.

7. William F. Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis, Uni-
versity of Illinois at Urbana-Champaign, IL, USA, 1992.

8. Martin Fowler. Refactoring. Improving the Design of Existing Code. Addison
Wesley, 2000.

9. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns.
Elements of Reusable Object-Oriented Software. Addison Wesley, 1995.

10. Donald Bradley Roberts. Practical Analysis for Refactoring. PhD thesis, University
of Illinois at Urbana-Champaign, IL, USA, 1999.

11. Sander Tichelaar. Modeling Object-Oriented Software for Reverse Engineering and
Refactoring. PhD thesis, University of Bern, 2001.

12. Stéphane Ducasse, Michele Lanza, and Sander Tichelaar. MOOSE: an extensi-
ble language-independent environment for reengineering object-oriented systems.
In Proceedings of the Second International Symposium on Constructing Software
Engineering Tools (CoSET 2000), 2000.

13. Carlos López, Raúl Marticorena, and Yania Crespo. Hacia una solución basada en
frameworks para la definición de refactorizaciones con independencia del lenguaje.
In Actas JISBD’03, Alicante, España, November 2003.

14. Raúl Marticorena, Carlos López, and Yania Crespo. Refactorizaciones de especial-
ización en cuanto a genericidad. Definición para una familia de lenguajes y soporte
basado en frameworks. In Actas PROLE’03, Alicante, España, November 2003.

15. Alex Sellink and Chris Verhoef. Generation of software renovation factories from
compilers. In ICSM, pages 245–255, 1999.

16. Tom Tourwé and Tom Mens. Identifying Refactoring Opportunities Using Logic
Meta Programming. In Proc. 7th European Conf. on Software Maintenance and
Reengineering, pages 91 – 100, Benvento, Italy, 2003. IEEE Computer Society.

17. Tom Tourwé and Tom Mens. Automated Support for Framework-Based Software
Evolution. In Proc. Int’l Conf. Software Maintenance, 2003.



18. Pierre Crescenzo and Philippe Lahire. Customisation of inheritance. In Inheritance
Workshop at ECOOP 2002, pages 23–29. Black et al. Eds, Information Technology
Research Institute, Jyvaskyla University Press, 2002.

19. Tom Mens and Michele Lanza. A graph-based metamodel for object-oriented soft-
ware metrics. In Tom Mens, Andy Schürr, and Gabriele Taentzer, editors, Elec-
tronic Notes in Theoretical Computer Science, volume 72. Elsevier, 2002.

20. Ralf Lämmel. Towards Generic Refactoring. In Proc. of Third ACM SIGPLAN
Workshop on Rule-Based Programming RULE’02, Pittsburgh, USA, October5
2002. ACM Press. 14 pages.

21. Raúl Marticorena and Yania Crespo. Refactorizaciones de especialización so-
bre el lenguaje modelo MOON. Technical Report DI-2003-02, Departamento
de Informática. Universidad de Valladolid, septiembre 2003. Available at
http://giro.infor.uva.es/docpub/marticorena-tr2003-02.pdf.

22. Yania Crespo and José Manuel Marqués. Definición de un marco de trabajo para
el análisis de refactorizaciones de software. Actas VI Jornadas de Ingenieŕıa del
Software y Bases de Datos, pages 297–310, 2001.

23. Lance Tokuda and Don S. Batory. Evolving object-oriented designs with refac-
torings. Journal of Automated Software Engineering, 8:89–120, 2001. This is an
enlarged version of ASE Conference paper, October 1999.

24. Gilad Bracha, Norman Cohen, Christian Kemper, Steve Marx, Martin Odersky,
Sven-Eric Panitz, David Stoutamire, Kresten Thorup, and Philip Wadler. Adding
generics to the java programming language: Participant draft specification, 2001.


