
Product Lines, Features, and MDD1

Bruno González-Baixauli, Miguel A. Laguna, Yania Crespo

Department of Computer Science, University of Valladolid,
Campus M. Delibes, 47011 Valladolid, Spain

{bbaixauli, mlaguna, yania}@infor.uva.es

Abstract: One of the most important factors of success in the development of a
software product line is the elicitation, management, and representation of the
variability. In this context, this article explores the advantages of adopting the
Model Driven Development (MDD) paradigm in the variability management,
including the transformation of feature graphs into UML models. The global
picture involves a sequence of models from requirements to features and from
both to the architecture (a UML model). The conclusion is positive as the
introduction of MDD ideas raises the abstraction level in the instantiation
process of the product line. More effort is needed to further evaluate some of
the ideas related to MDD transformations: in particular, traceability register is
essential if we want to exploit their benefits.

1 Introduction

Product lines (PL) have become the most successful approach in the reuse field, but is
a very complex concept that requires a great effort in both technical [2, 4] and
organizational [1] dimensions. Our previous work intends to define a PL development
process that requires less investment and presents results earlier than more traditional
product line methods, by adapting a conventional process [12]. In this paper we focus
on the ideas of Model Driven Development (MDD) and, in particular, Model Driven
Architecture (MDA) that can help this development process. MDA was introduced by
the Object Management Group (OMG) and is based on the Platform Independent
Model (PIM) concept. The PIM is a specification of a system in terms of domain
concepts and independently of platforms. The system can then transform the PIM into
a Platform Specific Model (PSM) [14]. MDD has a wider vision and is founded on
well-established practices of software reuse field. As the main strength of MDA is the
transformation of different models and feature models are the basis of our process, it
is worth exploring the relations of these models with UML conventional models. The
next section briefly introduces Product Line Requirements Engineering and discusses
the benefits that MDA/MDD can bring to this product line approach, including the
definition and implementation of the transformation of feature graphs into UML
models. Section 3 concludes the paper and proposes additional work.

1 This work has been supported by the Spanish MEC/FEDER (TIN2004-03145).

2 MDD and Product Line Requirements Engineering

The Product Line Requirements Engineering discipline, as defined in our process,
includes several activities. The main activity involves the specification of the domain
model, which consists in the domain features. The design of a solution for these
requirements constitutes the architectural asset base of the product line (typically
implemented as an OO Framework). Later, in the application engineering process, an
application model must be derived from the domain model. In this process alternative
concepts are selected based on customer functional and non-functional requirements.
This activity is essentially a transformation process where a set of decisions taken by
the application engineer generates the initial feature product model and, consequently,
via traceability links, the initial architecture of the product. The variation points are
selected on the conceptual level on the basis of a rationale provided by functional and
non-functional requirements.

One of the most critical points is the elicitation and analysis of requirements
variability. In addition to the information that expresses the requirements themselves,
it is important to know the variability of the requirements, and the dependencies
between them. Our proposal was initially based on the work of the SEI on use cases
and features [3]. To represent this kind of information, the requirements are usually
structured in feature hierarchies [9, 10]. Thus, each user requirement is an identifiable
functional abstraction, or feature. The features are organized by a graphical AND/OR
hierarchical diagram, i.e. the feature graph, which captures the logical structural
relationships between requirements. Although its effectiveness has been proven in
many projects, we think that this strategy has an intrinsic weakness: it is oriented to
the solution more than to the requirements. We therefore believe that specific
requirements engineering techniques can help. Not only the functionality but also
non-functional requirements (NFR) must be taken into account. This has led us to
consider other possibilities such as Goal Oriented Requirements Engineering [13] as a
way of introducing intentionality in the elicitation and analysis of the requirements
variability.

It is worth analyzing the possibilities that the MDD/MDA ideas can bring to this
field. Essentially we are searching for an (ideally automated) derivation of an optimal
specific product in a product line, while taking into consideration functional and non-
functional requirements and using the goals and feature models and their correlations
as the starting point. A set of transformations between these models can actually be
carried out. The general schema is presented in Figure 1. The interest of using our
complementary goal/feature model is twofold: a) it allows the application engineer to
deduce (if the traceability links are carefully established) what features are needed to
reach the selected goals (or functional requirements), and b) which is the optimal set
of goals/features in the context of a set of NFR (expressed as soft-goals) of a
determined priority that provides the rationale of the selection. In practice, this
supposes a rise in the abstraction level of the variants selection process, making the
selection in the requirements level instead of in the feature level. The novelty with
MDA is the possibility of the automation of some of the transformations of Figure 1.

There are basically two kinds of transformation: horizontal and vertical. Horizontal
transformations derive a subset of the main model by means of manual selection in
the goal level, configuration in the feature level and instantiation in the architecture

level. The first one must be done by the domain analyst from the user goals, but the
others can be automatized if we have trazability from the goals to the features that
implement them and from features to derived architectural classes (integrated in the
vertical transformations).

PL Architecture
(OO Framework)

Application
Feature

Sub-Model

Application
Model

Application EJB

PIM to PSM
transformations

Application .NET

PIM to PIM
Transformations?

Application
Goal/soft-goal

Model

Instantiation

SelectionSelection
Goal/soft-goal

Model

ConfigurationConfiguration
Feature
Model

Rationale

Definition

Fig. 1 Product line engineering and MDA and the scope of this study. Left and right parts of

the Figure refer to Product Line and Application processes respectively.

We focus in this paper on vertical transformations, where the changes are in the
abstraction level. In particular, we center on the PL Feature Model to PL Architecture
transformation, obtaining the architecture skeleton from the features. The method we
have chosen is based on the meta-model mapping approach [6]. The work consists in
defining a set of transformations between the elements of variability in the feature
models and the architectural solutions (really each kind of variability in the feature
model can be implemented by more than one technique [5]).

Fig. 2 Feature simplified meta-model, adapted from Czarnecki et al. [7]

FeatureGroup
groupCardinality

GroupedFeature

1..*
SolitaryFeature

featureCardinality

Feature

0..*

0..*1..* 0..*

0..*

RootFeature

FeatureModel

1..*1..*

FeatureGroup
groupCardinality

GroupedFeature

1..*
SolitaryFeature

featureCardinality

Feature

0..*

0..*1..* 0..*

0..*

RootFeature

FeatureModel

1..*1..*

The way to define a transformation is to select an element of the feature meta-
model and give one or several equivalences in the UML meta-model. This implies
that an annotation is needed in the feature model to select one of the possible design
mechanisms. As we need a precise definition of the meta-models, the first
consideration is to answer the question about the meta-model compatibility of these
different models. It is clear that the PL Architecture meta-model is the UML meta-
model. The feature models (and sub-models) are built using other concepts but several
studies have specified different meta-models using MOF. We have explored these
meta-models as the election influences greatly the transformation process. The meta-
model proposed by Czarnecki et al. [7], has been selected because the simplicity of
the related transformation. In this approach, three types of features are differentiated
and the distinctive property of the relationships is the cardinality (Figure 2).

The strategy of transformation is based in the three subtypes of Feature. The root
of every tree in a Feature model (RootFeature) is transformed in a class and a
recursive transformation of Solitary Features and Feature Groups linked to every
feature is carried out. The presence of a group implies a class associated to the parent
feature that is specialized into several subtypes (one per alternative feature).

Figure 3 shows partially the graphically expressed transformation (using the last
QVT submission syntax [15]) of a Model Feature into a UML/XMI model. In fact,
the transformation is most interesting if we consider that the framework obtained (and
completed by the designer but with the links saved) can be used to automatically
derive the application model by selecting the desired goal/features, as mentioned
above. This possibility compensates the overcharge of complexity of the goal/feature
traceability management in the architectural model.

Fig. 3 Transformation definition of a Feature model into a UML/XMI model

Concerning the implementation details, the most common representation format of
feature models is based in XML. In the UML side, the use of XMI is more and more

where
GroupedFeatureToClass(fg,cg);

FeatureGroupToClass

f:Feature
<<domain>>

fg:FeatureGroup

uml, efm, c

name=gn
groupCardinality=gc

c:Class
<<domain>>

a:Association

ae2:AssociationEnd

multiplicity=gc

ae1:AssociationEnd

multiplicity=“1..1”

cg:Class

name=gn

where
GroupedFeatureToClass(fg,cg);

FeatureGroupToClass

f:Feature
<<domain>>

fg:FeatureGroup

uml, efm, c uml, efm, c

name=gn
groupCardinality=gc

c:Class
<<domain>>

a:Association

ae2:AssociationEnd

multiplicity=gc

ae1:AssociationEnd

multiplicity=“1..1”

cg:Class

name=gn

where
SolitaryFeatureToClass(f,c)
FeatureGroupToClass(f,c)

GroupedFeatureToClass

fg:FeatureGroup
<<domain>>

f:Feature

gc:Class
<<domain>>

uml, efm, c uml, efm, c

name=fn

c:Class

name=fn

g:Generalization

parent

child

frequent, in spite of compatibility issues. Therefore, XML is the basis of the
representation and the transformation mechanism. The most straightforward
implementations will use XLST style sheets or java tools to translate XML files
directly or via DOM trees. The diversity and volatility of feature meta-models is an
important issue. For this reason we have selected the XFeature (available in
http://www.pnp-software.com/XFeature/) tool. It has some advantages, as the use of
standard technology (XML and Eclipse) or the customizability of the feature meta-
model (the tool allows users to define their own meta-models). The resulting UML
model must be XMI-based; therefore any UML compliant case tool could be a valid
option. A first implementation, using a XML style sheet, is given in [11]. The Figure
4 shows a feature model expressed with the XFeature tool, and the class diagram
obtained from the resulting XMI file, after the application of the style sheet. The
generated XMI file is imported into the Together CASE tool in a straightforward way.
As XFeature, Together and the XSLT transformation engine are plug-ins of Eclipse,
the integration of these tools is immediate. The image of Figure 4 shows the Together
perspective. A simple change of perspective allows working with XSLT or
XML/XMI files directly.

Fig. 4 A Feature model in XFeature tool and the Framework (automatically obtained using the

implemented XML style sheet), integrated in the Eclipse platform

3 Conclusions and future work

In this article, the possibilities provided by new technologies such as MDA/MDD in
the process of requirements elicitation and analysis are discussed in the context of

product line development. The transformation of feature models in UML models has
shown its possibilities.

The most immediate pending work comprises the inclusion of explicit traceability
in the transformation specification and implementation. This approach implies in
consequence the enhancement of the supporting meta-models.

References

1. Bass, L., Clements, P., Donohoe, P., McGregor, J. and Northrop, L. “Fourth Product Line
Practice Workshop Report”. Technical Report CMU/SEI-2000-TR-002 (ESC-TR-2000-
002), Software Engineering Institute. Carnegie Mellon University, Pittsburgh,
Pennsylvania 15213 (USA). 2000.

2. Bosch, J. “Design & Use of Software Architectures. Adopting and Evolving a Product-
Line Approach”. Addison-Wesley. 2000.

3. Chastek, G., Donohoe, P., Kang, K. C., Thiel, S. “Product Line Analysis: A Practical
Introduction”. Technical Report CMU/SEI-2001-TR-001 ESC-TR-2001-001, Software
Engineering Institute (Carnegie Mellon), Pittsburgh, PA 15213

4. Clements, Paul C. and Northrop, Linda. “Software Product Lines: Practices and
Patterns”. SEI Series in Software Engineering, Addison-Wesley. 2001.

5. Krzystof Czarnecki and Ulrich W. Eisenecker, “Generative Programming: Methods,
Tools, and Applications”, Addison-Wesley, 2000

6. Krzysztof Czarnecki, Simon Helsen. “Classification of Model Transformation
Approaches”. OOPSLA'03 Workshop on Generative Techniques in the Context of Model-
Driven Architecture, 2003.

7. K. Czarnecki, S. Helsen, and U. Eisenecker. “Staged Configuration Through
Specialization and Multi-Level Configuration of Feature Models”. To appear in Software
Process Improvement and Practice, 10(2), 2005.

8. García, F. J., Barras, J. A., Laguna, M.A., and Marqués, J. M. “Product Line Variability
Support by FORM and Mecano Model Integration”. In ACM Software Engineering Notes.
27(1);35-38. January 2002.

9. Kang, K. C., Kim, S., Lee, J. y Kim, K. “FORM: A Feature-Oriented Reuse Method with
Domain-Specific Reference Architectures”. Annals of Software Engineering, 5:143-168.
1998.

10. K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson. “Feature-Oriented Domain
Analysis (FODA) Feasibility Study”. Technical Report, CMU/SEI-90-TR-21, Software
Engineering Institute (Carnegie Mellon), Pittsburgh, PA 15213

11. Miguel A. Laguna, and Bruno González-Baixauli, “Goals and MDA in Product Line
Requirements Engineering”, Technical Report GIRO-2005-01, available in
http://giro.infor.uva.es/docpub/giro-05-01.pdf

12. Miguel A. Laguna, Bruno González, Oscar López, F. J. García, “Introducing Systematic
Reuse in Mainstream Software Process”, IEEE Proocedings of EUROMICRO'2003,
Antalya, Turkey, 2003.

13. J. Mylopoulos, L. Chung, and E. Yu. “From object-oriented to goal-oriented requirements
analysis”. Communications of the ACM, 42(1):31–37, Jan. 1999.

14. Object Management Group, “MDA Guide Version 1.0”, 2003
15. Object Management Group and QVT-Merge Group , “Revised submission for MOF 2.0

Query/View/Transformation version 2.0” Object Management Group doc. ad/2005-03-02,
2005.

