
QAOOSE 2005
9th Workshop on Quantitative Approaches in
Object-Oriented Software Engineering

Language Independent Metric
Support towards Refactoring
Inference
Yania Crespo1, Carlos López2, Esperanza Manso1, Raúl Marticorena2

1University of Valladolid, Spain
{yania, manso}@infor.uva.es

2University of Burgos, Spain
{clopezno, rmartico}@ubu.es

Research Group

mailto:

2
QAOOSE 2005

Outline

Initial Context
State of the Art and Current Trends
Bad Smell and Metric Relations
Support Based on Frameworks
Conclusions and Future Works

3
QAOOSE 2005

Initial Context
Key subject

When and where refactor?

Symptoms / stinks Bad Smells
“certain structures in the code that suggest
the possibility of refactoring” [Fowler, 2000]

detection achieved from “the programmer
intuition and experience”

4
QAOOSE 2005

Initial Context
Large number of IDEs include

refactoring capabilities
E.g: Eclipse, NetBeans, Visual Studio .NET

metrics plug-ins / tools
E.g: Metrics (Eclipse), JDepend, NDepend

Problems

5
QAOOSE 2005

Initial Context
Two main points:

use metrics as clues of bad smells
define a language independent metric
collection support

using frameworks
aims:

reuse in IDEs
multi-language environment

in accord with a current trend on language
independent refactoring

6
QAOOSE 2005

State of the Art and Current Trends
Bad smells

Defined 22 in Fowler’s book [Fowler, 2000]

each bad smell is associated to a set of refactorings
Taxonomies [Mäntylä. 2004]

Bloaters
Object-Oriented Abusers
Change Preventers
Dispensables
Encapsulators
Couplers
Others

Current Problem
Subjective relation between metrics and bad smells

7
QAOOSE 2005

State of the Art and Current Trends
Other proposals

change metrics used among different versions to
detect which refactorings (and where) have been
applied [Demeyer et al., 2000] [Gîrba et al., 2004]

heuristics to detect refactorings opportunities
logic meta-programming environment [Tourwé et al.,
2003] [Muñoz, 2003]

Other trends
collect metrics using information available in a
metamodel

8
QAOOSE 2005

Bad Smell and Metric Relations
(I) A case study

Definition
Subject JFreeChart (1.0.0_pre2)

class library for generating charts in Java

more than 600 classes
more than 5.000 methods
more than 10.000 lines of code

Questions
Where do we begin to refactor?
When do we begin to refactor?

9
QAOOSE 2005

Bad Smell and Metric Relations
(II) A case study

Scope
Use widely accepted metrics [Chidamber & Kemerer, 1994] [McCabe

1976] [Lorentz & Kidd, 1994]

Eclipse + Metrics plug-in

Selected / analyzed:

Bad SmellCategory

Parallel Inheritance
Hierarchy

Change
Preventers

Switch StatementsObject Oriented
Abusers

Lazy Class

Data Class
Dispensables

10
QAOOSE 2005

Bad Smell and Metric Relations
(I) Results

Data Class
“There are classes that have fields, getting and setting
methods for fields and nothing else”

Metrics: NOA, NOM, WMC, LCOM
Detected:

AbstractRenderer, ChartPanel, PiePlot, XYPlot
and CategoryPlot

Refactorings to be applied [Fowler, 2000]: Move Method
to add more funcionality to these classes,
Encapsulate Field and Encapsulate Collection

11
QAOOSE 2005

Bad Smell and Metric Relations
(II) Results

Lazy Class
“A class that isn’t doing enough to pay for itself should be
eliminated”

Metrics: NOA, NOM, WMC, DIT
Detected:

CountourPlotUtilities, DataSetReader,
ChartFactorty (DIT=1)
DefaulKeyedValues2DDataSet,
DefaultKeyedValuesDataSet

Refactorings to be applied [Fowler, 2000]: Move Method,
Remove Class, Collapse Hierarchy and Inline Class

12
QAOOSE 2005

Bad Smell and Metric Relations
(III) Results

Switch Statements
“Most times you see a switch statement you should consider
polymorphism”

Metrics: V(G), LOC, NBD
Detected:

executeQuery method in JDBCXYDataSet

Refactorings to be applied [Fowler, 2000]: Replace Conditionals
with Polymorphism and Replace Type Code with Subclass /
Replace Type Code with State/Strategy, Extract Method

13
QAOOSE 2005

Bad Smell and Metric Relations
(IV) Results

Parallel Inheritance Hierarchy
“Every time you make a subclass of one class, you
also have to make a subclass of another ”

Metrics: DIT, NOC
Detected:

3 parallel hierarchies

Refactorings to be applied[Fowler, 2000]: Move
Method and Move Field

14
QAOOSE 2005

Bad Smell and Metric Relations
Conclusions

Case study shows:
Objective relation between metrics vs. bad smells
(vs. refactorings)
Relations could be established with language
independent metrics

How to seize this
opportunity?

Give a definition based
on frameworks

“A framework is a set of
cooperating classes that make
up a reusable design for a
specific class of software”
[Deutsch, 89]

language independence

Core

Extension

15
QAOOSE 2005

Support Based on Frameworks
How to collect metrics?

Framework defined on metamodels

Possible candidates
UML without instructions (Actions ?)
FAMIX without genericity
MOON metamodel as solution

Minimal Object-Oriented Notation

Class Method

Attribute
NameSpaceCode

16
QAOOSE 2005

Support Based on Frameworks
Metamodel Elements Traversal

Traversal of the elements
Visitor DP
Strategy DP

MetricStrategy
traverseModel()

MetricVisitor
setProfile()

Strategy
traverseModel()

Visitor
visitClassDef()
visitMethodDec()
visitAttDec()
...()

0..* 110..*

Strategy

Visitor

Class

accept(Visitor v)

Method

accept(Visitor v)

NameSpace

accept(Visitor v)

MOON Core

Core

17
QAOOSE 2005

Support Based on Frameworks
Runnable Metric Hierarchy

Algorithm and elements
Template Method DP

general template for
metrics (template method)

calculate

two phases (hook methods)

check

run

Different granularity of
metrics: System, Class and
Method
Command DP

concrete executions
run

concrete metrics ...

Core

ClassMetric
check()
run()

MethodMetric
check()
run()

Metric
author
year
valueMinDefault
valueMaxDefault

calculate()
check()
run()

IMetric
calculate()

SystemMetric
check()
run()

Template
Method

Command

Extension

18
QAOOSE 2005

Support Based on Frameworks
Profiles: Metric Customization

Customization
Profiles to
customize each
metric
Decorator DP

Wrapper of
metrics
Customize min
and max
values

Collecting
Parameters DP

Core

Collecting
Parameter

Te
m
pl
at
e

M
et
ho
d

C
om

m
an
d

D
ecorator
(W
rapper)

IMetric
calculate()

Metric
author
year
valueMinDefault
valueMaxDefault

calculate()
check()
run()

MetricProfile
name
dateCreation
dateLastExecution

addMetricConfiguration()
getMetricConfigurationCollection()

MetricConfiguration
valueMin
valueMax
active : Boolean

calculate()

0..*1 0..*1

1

0..*

1

0..*

MetricResult
date

addMeasure()

Measure
value
date11 11

1

0..*

1

0..*

<<use>>

19
QAOOSE 2005

Support Based on Frameworks
Measure Calculation

MetricProfile
MetricVisitor

MetricResult

MetricStrategy

Results

Interpretation

Refactorings

mcn

mc2
mc1

Metric 1

Metric 2

Metric n

Code Core Extension

Transformation

Instances of MOON
Metamodel

20
QAOOSE 2005

Support Based on Frameworks
Framework Validation: An Example

Implement concrete metrics
Ej: DIT

35 lines of code (very simple)
MOON metamodel dependence

Framework provides:
Traversal of the inheritance tree
Collect results

Easily plugged in framework
ClassMetric

check()
run()

DITWMCNOCRFCLCOM CBO

Extension

LOCNOA NOM NOC DIT

21
QAOOSE 2005

Strengths and Weaknesses
Reuse of the framework

Easy to include and run other metrics ...
language independent
current design developed on Java, easy migrate to other
language

Easy to change the metamodel

Improvements
include Observer DP to optimize calculations
additional filters and customization of metrics
graphical interface

22
QAOOSE 2005

Conclusions and Future Works
Conclusions

support to metric calculation
objective method to detect refactoring
opportunities

Future works
provide refactoring engines with additional module
relating metrics and bad smells
continue with empirical validation of metrics as
detection way of bad smells
face problems with certain languages

23
QAOOSE 2005

Thank you very much.
Any question?

	Language Independent Metric Support towards Refactoring Inference
	Outline
	Initial Context
	Initial Context
	Initial Context
	State of the Art and Current Trends
	State of the Art and Current Trends
	Bad Smell and Metric Relations(I) A case study
	Bad Smell and Metric Relations (II) A case study
	Bad Smell and Metric Relations(I) Results
	Bad Smell and Metric Relations(II) Results
	Bad Smell and Metric Relations(III) Results
	Bad Smell and Metric Relations(IV) Results
	Bad Smell and Metric RelationsConclusions
	Support Based on Frameworks
	Support Based on Frameworks Metamodel Elements Traversal
	Support Based on Frameworks Runnable Metric Hierarchy
	Support Based on Frameworks Profiles: Metric Customization
	Support Based on Frameworks Measure Calculation
	Support Based on Frameworks Framework Validation: An Example
	Strengths and Weaknesses
	Conclusions and Future Works
	Thank you very much.Any question?

