
Description

Motivation

Inputs: C, G , B

Preconditions:

Actions ReplaceBoundType(C,G,B)

Postconditions:

class A

attributes

a:D;

...

end

Transform existing software adapting it in a new context

preserves software behavior

are not excluding

Automated refactoring tools

are software system

Reuse refactoring definitions when adapting to new source language

defining refactorings and support for reuse based on frameworks

The architecture has been changed since initial work due to a iterative process

M O O N R E FA C T O R IN G FR A M E W O R K

R E FA C TO R IN G R E PO SIT O R Y

M O O N

C O R E

JA V A
E X T E N S IO N

E IF FE L
E X T E N S IO N

E N G IN E C O R E

1. Language validation

Language support
3. Engine support

Refactoring is important to software reuse and software reuse is important to refactoring

Previous works

Model language MOON

Abstract constructions in the refactoring definitions

Common to a family programming languages

Refactoring parameterize [Crespo, 2000]

Related works

Refactoring definition

Non formal

Semiformal (pre- and portconditions

Works with a particulary language

Tools for Java, Smalltalk

Do not reuse refactoring definitions

Problem: Loss reuse from previous efforts on refactoring definition

conditions must be satisfied. They are defined with predicates and functions on model

language MOON

edition primitives defined on MOON grammar. They transform the classes.

Initial conditions must be satisfied. They are defined with predicates and functions on model
language MOON

parameters supported in the model language MOON

When refactoring can be useful

description explaining the refactoring

Refactoring Analysis on Model Language:Template

class A[G -> C,H]

...

...

end

class B[H]

...
attributes

a1:A[H];

a2:A[Number];

...

end

Example: Predicates and functions

RemoveAttribute(a,A)

Example: Actions

class A

attributes
...

end

FormalParam(A) = { G, H }

BoundType(A,G) = C

IsCompleted(TE((B,_,a1))) = false

IsCompleted(TE((B,_,a2))) = true

C

G->A

A

B

C

G->B

Example: Specialize Bound S

)m(FormalPara CG∈

)Subtype()lPar(SubstForma BTC,GT ∈⇒∈∀
)Subtype(/)BoundType(C'BC'C,G ∈=

),'(/)(' IsCompleteTGCBoundTypeCDescC ∧=∈∀

BGC =),(BoundType

Primitives

MOON Framework

common language contructions

Model syntactic and semantic language rules

refactoring basic operations

language constructions

Engine Framework

ate method to achive refactoring by checking preconditions, executing

toring definitions based on concrete predicates, actions and functions.

public class Collection

<A implements Comparable <A>>{...}

context BOUNDED_S:

inv FBOUNDS:

self.isBoundedF() = true implies

self.bCLASS_TYPE ->completed = false

Example: MOON Framework and extension with

2

2

1

A

A

B

A

B

(A,Collection):TYPE:FORMAL:PAR:BOUNDED

:BOUNDED_S : GJFBOUNDED_S

BOUNDED_S

<<abstract>> geRecursiveFormalPar() : FORMAL_PAR

<<abstract>> isBoundedF() : Boolean

CLASS_TYPE

completed : Boolean
10..* 10..*

bound_s_type

GJFBOUNDED_S

boundedfF : Boolean

isBoundedF() : Boolean

setBoundedF(p : Boolean)

getRecursiveFormalPar() : FORMAL_PAR

