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Abstract. In software engineering it is widely acknowledged that the usage of 
metrics at the initial phases of the object oriented software life cycle can help 
designers to make better decisions and to predict external quality attributes, 
such as maintainability. Following this idea we have carried out three controlled 
experiments to ascertain if  any correlation exists between the structural 
complexity and the size of UML class diagrams and their maintainability. We 
used 8 metrics for measuring the structural complexity of class diagrams due to 
the usage of UML relationships, and 3 metrics to measure their size. With the 
aim of determining which of these metrics are really relevant to be used as class 
diagrams maintainability indicators, we present in this work a study based on 
Principal Component Analysis. The obtained results show that the metrics 
related to associations, aggregations, generalizations and dependencies, are the 
most relevant whilst those related to size seem to be redundant. 

Keywords: class diagram structural complexity, class diagram maintainability, 
metrics, empirical validation, principal component analysis  

1 Introduction 

One of the principal goals of software engineering is to assure the quality of object 
oriented (OO) software from the early phases of the life-cycle, such as conceptual 
modelling. As class diagrams constitute a key artifact in the conceptual modelling 
phase, the effort spent on improving their maintainability is likely to pay off many 
times over in later phases.  

We focus on maintainability because it has become one of the software product 
quality characteristics [25] that software development organizations are more 
concerned about, since it is the major resource consumer of the whole software life 



cycle [28]1. But we are aware that maintainability is an “external quality attribute” 
that can only be evaluated once the product is finished or nearly finished. Therefore, it 
is necessary to have early indicators of such qualities based, for example, on the 
structural properties of class diagrams [5], such as their structural complexity and 
size. The theoretical basis for developing quantitative models relating structural 
properties and external quality attributes has been provided by Briand et al. [6] (see 
figure 1). It is the basis for much empirical research in the area of software artifact 
structural properties [16,17,30]. In this work we assume a similar representation to 
hold for UML class diagrams. We hypothesized that the structural properties (such as 
structural complexity and size) of a UML class diagram have an impact on its 
cognitive complexity. By cognitive complexity we mean the mental burden of the 
people who have to deal with the artifact (e.g. developers, testers, maintainers). High 
cognitive complexity leads to an artifact which reduces their understandability, and 
this conduces undesirable external qualities, such as decreased maintainability.  

 
 

 
 
 
 
 
 
 
 
 

Fig. 1. Relationship between structural properties, cognitive complexity, 
understandability and external quality attributes [6] 

 
In response to the great demand for measures of quality characteristics of class 

diagrams, and after a thorough review of some of the existing OO measures that can 
be applied at a high level design stage, not only to products [4,7,10,12, etc.] but also 
to development techniques [31], we have proposed a set of 8 measures for UML class 
diagram structural comp lexity [21]2, related to the usage of UML relationships such 
as, associations, dependencies, aggregations and generalizations; and we also 
considered traditional metrics, such as size merics (see table 1).  

 
Table 1.  Metrics for UML class diagram structural complexity 

Type of Metrics Metric definition 
Number of Classes (NC). The total number of classes.  
Number of Attributes (NA). The total number of attributes. Size metrics 
Number of Methods (NM). The total number of methods  

Structural 
complexity 

Number of Associations (NAssoc).The total number of 
associations  

                                                                 
1 Maintainability is not restricted to code, it is an attribute of the different software products we 

hope to maintain [18], including also conceptual models. 
2 We focused on UML because it is considered a standard in OO modelling. 

Structural 
Properties 

(e.g. 
STRUCUTURAL 
COMPLEXITY, 

SIZE) 

Cognitive 
complexity 

? External quality 
attributes 
? (e.g. 

MAINTAINABILITY: 
understandability, 
analizability and 

modifiability) 

affect  
affect  

indicate 



Number of Aggregations (NAgg). The total number of 
aggregation relationships within a class diagram (each whole-
part pair in an aggregation relationship) 
Number of Dependencies (NDep). The total number of 
dependency relationships 
Number of Generalisations (NGen). The total number of 
generalization relationships within a class diagram (each 
parent-child pair in a generalization relationship) 
Number of Generalization hierarchies (NGenH). The total 
number of generalization hierarchies in a class diagram 
Maximum DIT (MaxDIT). It is the maximum  DIT value 
obtained for each class of the class diagram. The DIT value for 
a class within a generalization hierarchy is the longest path 
from the class to the root of the hierarchy. 

metrics 

Maximum HAgg  (MaxHAgg). It is the maximum  HAgg 
value obtained for each class of the class diagram. The HAgg 
value for a class within an aggregation hierarchy is the longest 
path from the class to the leaves. 

 
Part of the information that these metrics provide might be redundant, which in 

statistical terms is equivalent to saying that metrics might be very correlated. This 
justifies the interest of analyzing the information that each metric captures to 
eliminate such redundancy. In the experimental research in software engineering 
[3,7,9], like in the other disciplines, this problem is solved by using the Principal 
Component Analysis (PCA) [15]. In this case, through the PCA, the purpose is to 
reduce the space of 11 metric dimensions that contain the initial information, in order 
to later study the correlation among these new dimensions, and the dependant 
variables of interest, in our case of maintainability. 

With the aim of ascertaining if  any correlation exists between the metrics we 
presented in table 1, and the class diagram maintainability characteristics, such as 
understandability and analizability [25]3, we have carried out a familiy of three 
experiments [20,22,23]. The metric values calculated  within the class diagrams used 
in these three experiments,  is the data used in the PCA.  

Summarising, and using the Goal-Question-Metric template (GQM) [1] for goal 
definition, the goals of this work are the following: 
− First goal : Perform an exploratory study of the UML class diagrams to 

characterize them with respect to a set of metrics, from the point of view of the 
software designers, in the context of students and professors  in the Department 
of Computer Science  at  the University of Castilla-La Mancha, in Spain. 

− Second goal: Analize the structural complexity and the size the UML class 
diagrams, to evaluate them with respect to their correlation with class diagram 
maintainability,  from the point of view of the software designers in the context 

                                                                 
3 Even though understandability has not been considered as a maintainability sub-characteristic 

by the ISO 9126 [25], we include it because there exists a lot of work related to software  
measurement, that considers understandability to be a factor that influences maintainability 
[8,18,24]. 



of students and professors in the Department of Computer Science  at the 
University of Castilla-La Mancha, Spain. 

The rest of this paper is organized as follows: Section 2 briefly describes the PCA. 
The description of the data used in this study is presented in section 3, and the data 
analysis for obtaining no-redundant metrics for UML class diagrams comes in section 
4. Finally, the last section presents some concluding remarks, and identifies further 
work related to OO metrics applied at early phases of OO software development.  

2 Principal Component Analysis 

If  a group of variables in a data set are strongly correlated, these variables are likely 
to measure the same underlying dimensions (i.e., class internal quality attribute) of the 
object to be measured. PCA is a standard technique used to identify the underlying, 
orthogonal dimensions that explain relations between the variables in the data set. 

Principal components (PCs) are linear combinations of the standarized independent 
variables. The sum of the square of the coefficients in each linear combination is 
equal to one. PCs are calculated as follows: The first PC is the linear combination of 
all standarized variables that explain a maximum amount of variance not explained in 
the data set. The second and subsequent PCs are linear combinations of all 
standarized variables, where each new PC is orthogonal to all previously calculated 
PCs, and captures a maximum variance under these conditions. Usually, only a subset 
of all variables have large coefficients –also called the loading  of the variable– and 
therefore, contributes significantly to the variance of each PC. The variables with high 
loadings help identify the dimensions the PC is capturing, but this usually requires 
some degree of interpretation. 

In order to identify these variables and interpret the PCs, we consider the rotated 
components. This is a technique where PCs are subjected to an orthogonal rotation. 
As a result, the rotated components show a clearer pattern of loadings, where the 
variables either have a very low or high impact on the PC. Several strategies exist to 
perform such  a rotation. We used the varimax rotation, which is the most frequently 
used strategy in the literature.  

For a set of n measures, there are at most, n orthogonal PCs, which are calculated 
in decreasing order of variance they explain in the data set.  Associated with each PC 
is its eigenvalue, which is a measure of the variance of the PC. Usually, only a subset 
of the PCs is selected for further analysis (interpretation, rotated comp onents, etc.). A 
typical stopping rule that we also use in this study, is that only PCs whose eigenvalue 
is larger than 1.0 are selected.   

Regarding replicated studies, it is interesting to see which dimensions are also 
observable in other systems, and find possible explanations for differences in the 
results. We would expect to see consistent trends across systems for the strong PCs, 
which explain a large percentage of the data set variance, and can be readily 
interpreted. From such observations, we can also derive recommendations regarding 
which measures appear to be redundant, and need not be collected, without  losing a 
significant amount of design information. 



3 Data Description  

 The data used in this research was obtained through three controlled exp eriments 
carried out by professors and students of the Department of Computer Science at the 
University of Castilla -La Mancha, in Spain 4 [20,22,23].  We have followed some 
suggestions provided by Wohlin et al. [36], Perry et al. [27], [5] and Kitchenham et al. 
[26] on how to perform controlled experiments.  

The common characteristics of the three experiments are the following: 
− The independent variables are the structural complexity and the size of UML 

class diagrams, measured via the 11 metrics shown in table 1. The dependent 
variables are maintainability sub-characteristics of class diagrams, measured in 
each experiment in a different way.  

− We selected a within-subject design experiment, i.e., all the tests 
(experimental tasks) had to be solved by each of the subjects. The tests were 
put in a different order for each subject. 

− Subjects were given an intensive training session before the experiments took 
place. However, the subjects were not aware of what aspects we intended to 
study. Neither were they aware of the actual hypothesis stated. 

− We wanted to test the hypothesis that exists correlation between the metrics 
we presented in table 1 and the class diagram maintainability characteristics, 
such as understandability, analyzability and modifiability. 

In the next subsections the main characteristics of each experiment are 
described. 

3.1 First Experiment Description 

− The subjects were seven professors and ten students enrolled on the final-year of 
Computer Science at the Department of Computer Science at the University of 
Castilla-La Mancha in Spain. The professors belong to the  Software Engineering 
area. 

− The material we handed to the subjects consisted of twenty eight UML class 
diagrams of the same universe of discourse, related to Bank Information Systems.  

− Each diagram had a test enclosed which included the description of three 
maintainability sub-characteristics: understandability, analyzability and 
modifiability.  

− Each subject had to rate each sub-characteristic using a scale consisting of seven 
linguistic labels. For example for understandability we proposed seven linguistic 
labels ranging  from, extremely difficult to understand, to extremely easy to 
understand.  

− The subjects were given all the materials and we explained to the to them how to 
carry out the tests.  

− We allowed one week for them to do the experiment, i.e., each subject had to 
carry out the test alone, and could  have unlimited time to solve it. 

                                                                 
4 The experimental material can be found in  http://alarcos.inf-cr.uclm.es 



− We summarised the empirical data in a table consisting of  28 rows and 14 
columns. The 28 rows represent each one of the 28 UML class diagrams given 
out to the subjects. The first 11 columns represent the values of the dependent 
variables (metrics), and the final three, the median of the subjects´ ratings for 
understandability, analysability and modifiability.  

3.2 Second Experiment Description 

 
− The subjects were ten professors and twenty students enrolled on the final-year of 

Computer Science at the Department of Computer Science at  the University of 
Castilla-La Mancha in Spain. All of the professors belong to the Software 
Engineering area.  

− The dependent variable was measured by the time the subjects spent carrying out 
the tasks required in the experiment. We called this time “maintenance time”. 
Maintenance time is comprised of the time taken to comprehend the class 
diagram, to analyse the required changes and to implement them. Our assumption 
here is that, for the same modification task, the faster a class diagram can be 
modified, the easier it is to maintain. 

− The material we gave to the subjects consisted of nine UML class diagrams of 
different application domains. 

− Each diagram had an enclosed test that included a brief description of what the 
diagram represented, and two new requirements for the class diagram. Each 
subject had to modify the class diagrams according to the new requirements, and  
specify the start and end time. The difference between the two is what we call 
maintenance time (expressed in minutes and seconds). The modifications to each 
class diagram were similar, including adding attributes, methods, classes, etc.  

− The subjects were given all the materials described in the previous paragraph. We 
explained to them how to carry out the tests. We allowed one week for them to 
do the experiment, i.e., each subject had to carry out the test alone, and could use 
unlimited time to solve it. 

− Once the data was collected, we controlled if the tests were complete, and if the 
modifications had been done correctly. We discarded the tests of seven subjects, 
which included a required modification that was done incorrectly. Therefore, we 
took into account the responses of 23 subjects. 

− We summarised the empirical data in a table consisting of  9 rows and 12 
columns. The 9 rows represent each one of the  9 UML class diagrams given out 
to the subjects. The first 11 columns represent the values of the measures of the 
independent variables (the metrics presented in table 1),  and the last column 
represents the mean of the maintenance time for each diagram. 



3.3 Third Experiment Description 

− The data of this sample are very similar to the second experiment’s ones. The 
only difference is that 9 different UML class of diagrams were taken, which 
implies that the values of the metrics are also different.  

−  The modifiability and understandability time  (expressed in seconds) were 
considered as measures of the dependent variables.  

− The subjects had to answer a questionnaire (5 questions) that reflected whether or 
not they had understood each diagram and they also had to write down how long 
it took to answer the questions. The understandability time was obtained from 
that.  

− The maintenance time was obtained in the same way as in the second experiment. 
The subjects were 30 undergraduate students enrolled on the third-year of 
Computer Science, but we also used the empirical data obtained from the 
responses of 23 subjects, because the other results were incomplete. 

3.4 Threats to validity of te empirical data 

We will discuss the various issues that threaten the validity of the empirical studies 
and how we attempted to alleviate them: 
− Threats to conclusion validity. The conclusion validity defines the extent to 

which conclusions are statistically valid. The only issue that could affect the 
statistical validity of this study is the size of the sample data.  We are aware of 
this, but it is wel acknowledged that Empirical Software Engineering suffer form 
the lack of enough data.  

− Threats to Construct Validity. The construct validity is the degree to which the 
independent and the dependent variables are accurately measured by the 
measurement instruments used in the studies. The construct validity of the 
measures used for the independent variables is guaranteed by Poels and Dedene´s 
framework [21] used for their theoretical validation [29]. The measures we used 
for the dependent variable are different in each experiment but in all cases we 
used measures that really measure what we purpose to measure: the 
subjects´rating (first experiment), the maintenace time (second experiment), the  
understandability and modifiability time (third experiment), so we consider these 
measures constructively valid.  

− Threats to Internal Validity. The internal validity defines the degree of 
confidence in a cause-effect relationship between factors of interest and the 
observed results. Seeing the results of the experiment we can conclude that 
empirical evidence of the existing  relationship between the independent and the 
dependent variables exists. The analysis performed here is correlational in nature. 
We have demonstrated that several of the metrics investigated had a statistically 
and practically significant relationship with maintainability sub-characteristics. 
Such statistical relationship do not demonstrate per se a causal relationship. They 
only provide empirical evidence of it. Only controlled experiments, where the 
metrics would be varied in a controlled manner and all other factors would be 



held constant, could really demonstrate causality. However, such a controlled 
experiment would be difficult to run since varying structural complexity in a 
system, while  preserving its functionality, is difficult in practice. On the other 
hand, it is difficult to imagine what could be alternative explanations for our 
results besides a relationship between structural complexity and maintainability 
sub-characteristics. We have tackled different aspects that could threaten the 
internal validity of the study, such as: differences among subjects, knowledge of 
the universe of discourse among class diagrams, precision in the time values, 
learning effects, fatigue effects, persistence effects and subject motivation. 

− Threats to External Validity.  External validity is the degree to which the 
research results can be generalised to the population under study (UML diagrams 
used as design artifacts for developing OO software) and to other research 
settings. The greater the external validity, the more the results of an empirical 
study can be generalised to actual software engineering practice. Two threats to 
validity have been identified which limit the ability to apply any such 
generalisation, and we tried to alleviate them: 
o Materials and tasks used. In the experiments we tried to use class diagrams 

which can be representative of real cases. Related to the tasks, the judgement 
of the subjects (in the first experiment) is to some extent subjective, and does 
not represent a real task. But we improved this aspect considering more real 
tasks in the second and third experiment. 

o Subjects. To solve the difficulty of obtaining professional subjects, we used 
professors and advanced students from software engineering courses. We are 
aware that more experiments with practitioners and professionals must be 
carried out in order to be able to generalise these results. However, in this 
case, the tasks to be performed do not require high levels of industrial 
experience, so, experiments with students could be appropriate [2]. 

For the sake of brevity we do not explain in detail the experimental process for 
each experiment. Further details for each experiment can be found in [20,22,23]. 

4. Data Analysis and Interpretation 

First, we used PCA5 [5] to reduce the initial space of 11 metric dimensions, in which 
the structural complexity and the size of UML class diagrams are represented, which 
were the first goal of this study; eliminating redundant information (in this case 
metrics). In this PCA we have worked with rotated components, in order to reduce the 
dimension so that each one of the new components is going to be very correlated with 
very few of the old metrics or dimensions, which will ease the comprehension. 

                                                                 
 

 

5 The 11.0 version of SPSS has been used [35] to analyse the samples of data 
described in the previous section. 
 



Later on, we used a Pearson or Spearman correlation analysis [34], depending on 
the type of variables of the research, with the aim of studying the correlation of the 
new dimensions given by the PCA with the dependant variables related to the 
maintainability, which is the second goal of this study. 

4.1 Analysis of the Data of the First experiment 

4.1.1 Dimensions reduction (PCA). Three rotated PCs were obtained (see table 2), 
with the constraint that the eigenvalue is larger than 1.0. With these PCs 93.76%  (see 
table 3)  of the total variability  is explained. 

As you can observe while observing table 2: 
− The PC1 picks out information of the structural complexity relative to the 

aggregation. 
− The PC2 picks out information of the structural complexity given by the 

generalization.   
− The PC3 refers to the structural complexity given by the relations of association 

and dependencies among classes. 
The metrics NA, NGenH, NM and NC seem not to be relevant in the PCA. 

Because the correlation with the metrics that do appear in the PCA is high (see table 
4), we can think that the information that they contain has already been transmitted 
through the metrics that are relevant in the PCA. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3. Total Variation Explained by the PCs 
PCs Eigenvalue Percentage Accumulated 

Percentage 
PC1 4.112 37.383 37.383
PC2 3.441 31.278 68.661
PC3 2.761 25.101 93.763

Table 2. Rotated Components 
  PCs 

Metrics PC1 PC2 PC3 
MaxHAgg 0.911 0.231 0.126
NAggH 0.879 0.141 0.349
NAgg 0.873 0.382 0.185
NA 0.669 0.539 0.492
NGenH 0.586 0.494 0.513
MaxDIT 0.187 0.962 0.408
NGen 0.263 0.893 0.300
NM 0.567 0.675 0.429
NC 0.560 0.648 0.501
NDep 0.123 0.136 0.943
NAssoc 0.450 0.265 0.817

 

Table 4. Correlation between metrics 
 NAssoc NAagg NAggH NDep NGen NGH MaxHAgg MaxDIT 

NC 0.843 0.817 0.761 0.607 0.893 0.928 0.717 0.728
NA 0.830 0.884 0.841 0.627 0.802 0.897 0.784 0.659
NM 0.776 0.851 0.728 0.591 0.856 0.843 0.732 0.786
NGH 0.849 0.759 0.723 0.548 0.753 1.000 0.712 0.568
 



 
4.1.2 Correlation between the structural complexity and the PCs. The 

correlation of the new components with dependent variables, understandability, 
analyzability and modifyability has been studied by using the Spearman correlation 
coefficient (see table 5). For that, the coefficients for factorial punctuations have been 
previously calculated with the Anderson-Rubi method. These are the three 
components of the class diagrams in the new space of three dimensions. 

 
 
The observed results were the following: 
− Understandability is highly correlated with PC2 (generalizations) (0.679 

p=0.000) and less with PC1 (aggregations (0.520 p= 0.005) 
− Analizability is highly correlated with PC2 (generalizations) (0.702  p=0.000) 

and less with PC1 (aggregations) (0.544 p= 0.003) 
− Modifiability is highly corelated with PC2 (generalizations) (0.747 p=0.000) 

and less with PC1 (aggregations) (0.502 p= 0.006) 
In conclusion, it seems that PC3, that refers to dependencies and associations, is 

not correlated with none of the studied dependent variables. This fact might have been 
produced because, after analyzing the class diagrams that were used in the 
experiment, it was observed that mostly they had very few associations and even less 
dependencies. From that comes the necessity of making a next experiment in which 
more emphasis is put on this type of relations. Definitively, after analyzing the data 
obtained in the first experiment, we can say that apparently the metrics that have to do 
with the aggregation and the generalization, influence the maintainability of class 
diagrams. Although these results are partial, they are similar to the ones found in 
different empirical researches made to evaluate the effect of the relation of 
generalization about the OO software maintainability [3,12,13,24,31]. Otherwise, as 
Deligiannis et al. [14] affirm, the relations of aggregation have been less studied from 
an empirical point of view. That is why they insist on the necessity to deepen on this 
subject, now that there exists the suspicion that the usage of the aggregation might 
complement the design of more extensive and reusable products. 

4.2 Second experiment analysis 

4.2.1 Dimensions Reduction (PCA). The solution obtained in the PCA after the 
rotation of the components, with an eigenvalue larger than 1 (see table 6), explains 
79,151% of the total variability (see table 7). 

 
 
 
 
 
 
 
 

Table 7. Total Variation Explained by the PCs 
PCs Eigenvalue Percentage Accumulated 

Percentage 
PC1 5.768 52.440 52.440
PC2 2.938 26.711 79.151

Table 6. Rotated components 
  PCs 

Metrics PC1 PC2 
NC 0.796 0.561
NA 0.359 0.862
NM 0.683 0.686
NAssoc -0.08817 0.911
NAgg 0.729 0.239
NDep 0.728 -0.248
NGen 0.927 0.00895
NAggH 0.632 0.348
NGenH 0.870 0.399
MaxHAgg 0.872 0.269
MaxDIT 0.832 0.330

 

Table 5. Spearman’s correlation coefficient 
 PC1 PC2 PC3 

Understandability 
0.520 - (p=0.005 ) 0.679-

(p=0.000)
0.312 

 (p=0.106 )
  
Analizability 

0.544 - (p=0.003 ) 0.702
(p=0.000)

0.265
(p=0.174)

  
Modificability 

0.502 - (p=0.006) 0.747
(p=0.000)

0.268
(p=0.168)

 



 
 
 
 
 
 
 

 
 
 
 
 

 
 

 
 
In this case the conclusions that can be extracted are the following: 
− The PC1 is determined because of the complexity given by the generalization. 
− The PC2 otherwise, picks out the complexity of the associations and the 

number of attributes. 
In this research the metrics that allows elimination because of having redundant 

information, are NC, NM, NAgg, NDep and NAggH (see table 6). The information 
they contain will be picked out through the metrics with the correlated ones (see table 
8) that intervene in the principal components.  

 

4.2.2 Correlation between the structural complexity and the PCs. The correlation 
of the new PCs has been studied (see table 8) with the dependent variable and the 
maintenance time, using the Pearson´s correlation coefficient (see table 9).  For that, 
the coefficients for the factorial punctuations were previously calculated with the 
Anderson-Rubi method. These are the two components of the class diagrams in the 
new space of two dimensions.  

The correlation between maintenance time and the PCs shown in the table, is only 
significant for the PC2 (see table 9) that corresponds to associations and attributes. 

 
 

 
 

 

 
Table 8. Correlation between metrics 

 NA NGen NGenH MaxHAgg MaxDIT 
NC 0.775 0.794 0.886 0.833 0.822 
NM 0.900 0.651 0.887 0.760 0.827 
NAggH 0.341 0.570 0.710 0.634 0.607 
NAgg 0.338 0.501 0.651 0.928 0.536 
NDEP 0.148  0.684 0.438 0.610 0.406 

 

Table 9. Pearson´s correlation coefficient 
 PC1 PC2 

Maintenance time  
 

0.485 - (p=0.185) 0.853 - (p=0.003)

 



4.3 Analysis of the third experiment 

4.3.1 Dimensions reduction (PCA). While studying the table of correlations among 
the metrics, it was observed that NM was not correlated with any of the others, that is 
why the PCA was made without including it, because it constitutes a dimension. 

After the rotation, the PCA presented the results of table 10, with the same 
restriction as in the previous cases (autovalues that are bigger than one), and 
explained 92.075% of the total variability (see table 11).  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
From the  PCs shown in table 10 the following can be concluded: 
− The PC1 picks out the information related to dependencies and 

generalizations. 
− The PC2  picks out  the information related to aggregations and attributes. 
 In this research, the metrics that allow elimination because of having redundant 

information are NC, NAssoc and MaxHAgg. As seen in table 12, they are very 
correlated among themselves, besides others being part of the selected PCs. In this 
way,  NC is very correlated with metrics that determine the PC2, meanwhile, NAssoc 
y MaxHAgg are very correlated with metrics of the PC1. 

Table 10. Rotated components 
Metrics PCs 

PC1 PC2 
NC 0.643 0.753
NA 0.423 0.859
NAssoc 0.667 0.579
NAgg 0.397 0.901
NDep 0.855 0.414
NGen 0.956 0.221
NAggH -0.247 0.955
NGenH 0.961 0.044
HAggMax 0.741 0.591
MaxDIT 0.941 0.111

 

Table 11. Total Variation Explained by the PCs 
PCs Eigenvalue Percentage Accumulated 

Percentage 
PC1 5.260 52.596 52.596
PC2 3.948 34.480 92.075

 

Table 12. Correlation between metrics 
 NC NAssoc NA NAgg NDep NGen MaxHAgg MaxDIT 

NC 1.000 0.819 0.928 0.953 0.863 0.778 0.909 0.714
NM 0.214 0.509 0.281 0.133 0.342 0.394 0.314 0.176
NAssoc 0.819 1.000 0.763 0.714 0.862 0.714 0.828 0.654
MaxHAgg 0.909 0.828 0.748 0.834 0.926 0.858 1.000 0.688

 



4.3.2 Correlation between the structural complexity and the PCs. Correlation of 
new PCs (see table 10) and  NM with the dependent variables, the understandability 
and maintenance time have been studied, using Pearson´s correlation coefficient (see 
table 13).   

For that, coefficients for factorial punctuations were previously calculated with the 
Anderson-Rubi method. These are the two components of the class diagrams in the 
new space of two dimensions 

 
 
 
 
 
 
 
 
 
 
Analysing the obtained results in table 13, it can be observed that: 
− The understandability time is highly correlated with PC2, which is related with 

aggregations and attributes. 
− The maintenance time is not correlated with the PCs.  
− Besides, the third dimension that NM represents is not related to any of the 

two dependent variables. 
Given that in the previous experiment the maintainance time has been evaluated 

without making the difference between understandability and maintenance time, it is 
considered to be a new dependent variable in this case Total Maintenance Time that 
measures the maintenance time as the sum of both of them. In this way the results of 
both experiments can be better compared (see table 14). 

 

 

 
 
In table 14 the results can be observed. Only the component PC2, that picks out 

the information of the aggregations and the number of attributes, is positively 
correlated with the maintainance time. As expected, the sum of the two times reduces 
the correlation grade, from 0.769 to 0.669, and the level of signification gets worse,  
from 0.016 to 0.049, although the result keeps being significant at the level 0.05. 

5 Conclusions and future work 

It is well known that softeare product metrics are very useful to evaluate the different 
characteristics that affect the quality of OO software, for example the maintainability 

Table 13. Pearson´s correlation coefficients 
 PC1 PC2 NM 

Understandability 
time 

 

0.355
  (p=0.348)

0.769 
(p=0.016) 

0.401
(p=0.285)

Maintenance time  
 

0.472
(p=0.199)

0.365 
(p=0.376) 

0.146
(p=0.709)

 

Table 14. Pearson´s correlation coefficients 
 PC1 PC2 NM 

Total maintenance 
time 

 

0.472
(p=0.199)

0.669 
(p=0.049) 

0.146
(p=0.709)



[18]. With this idea in mind, we have carried out three controlled experiments to test 
if the metrics we had defined for class diagram structural complexity, and other 
traditional metrics related to class diagram size, could be really used as class diagram 
maintainability indicators at the early phases of the OO software life-cycle. With the 
aim to discover which of the used metrics might not be redundant in these empirical 
studies, we have used PCA in this work.  

After performing the PCA we managed to observe in the three samples of data, that 
the PCs containing non-redundant information present well known characteristics of 
the OO design, which have to be with the usage of relations, associations, 
dependencies, aggregations and generalizations. 

The metrics related to the size do not seem to be relevant, like NC and NM, but 
NA is.  Although it is reasonable to think that the more classes there are in a diagram 
the more dependencies and associations can exist, in this research it is declared that 
these last ones could influence the maintainability. 

If we examine the correlation among the maintainability and/or the 
understandibility and the PCs in the two experiments where they are measured 
objectively using the maintenance time (see table 9 and 14), it is clear that it is 
correlated in the first experiment with the PC that picks out the structural complexity 
of class diagrams due to the number of associations together with the number of 
attributes. In the second experiment it is correlated with the PC that picks out the 
number of aggregations and the number of attributes. 

When separating the maintenance time considering the modifiability and the 
understandability time, the grade of dependence and the signification improve, so it 
would seem correct to make this difference, unless in the dependent variables. 

The results of the first experiment deserve a separate comment, for the dependent 
variables are subjective measures. No size metric appears to be relevant in the PCA. 
The PC1 and PC2, that pick out the information of the aggregration and the 
generalization, are the ones being significantly correlated with dependent variables. 

These results confirm what is already known [3,9], that the results obtained in the 
PCA are dependent on the data, for that even though in the three data samples the 
results obtained are in a certain way similar, it will be necessary to keep on making 
empirical researches that for one part allow people to explore the obtained results, 
building prediction models for the class diagram maintainability. On the other hand, it 
is necessary to make a family of experiments that allow the extension of conclusions 
as much as possible  to increase the external validity of the results, including 
experiments with professionals and also data about real projects. Besides we are 
conscious of the necessity to make laboratory packages with the information of the 
empirical studies, to encourage their external replication and obtain a body of 
knowledge about the utility of metrics[2,11,33]. This can contribute to metrics being 
useful for OO software designers to make better decisions in the early phases of OO 
software development, which is the most important goal for any measurement 
proposal to pursue if it aims  to be useful [19]. 
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