

Computer Science Department
University of Valladolid

Valladolid – Spain

Software Process Specification for Product Line Approach
Version 1.0

Bruno González-Baixauli, Miguel A. Laguna

Computer Science Department, University of Valladolid, Spain
{bbaixauli, mlaguna}@infor.uva.es

Abstract. Software reuse is accepted as a source of important benefits,
expressed in productivity and quality terms, when an industrial approach
is introduced in the software process. However, mainstream software
processes, such as Unified Process, do not include reuse techniques
among the tools that software engineers must deal with. In this paper we
present a proposal to introduce software reuse with minimal disturbance
of established disciplines by means of the introduction of a new process
for the product line engineering (in the same spirit of UP) and a UP
adaptation for the specific products construction. This proposal reduces
the money and time costs related to the progressive introduction of
software reuse in an organization because the use of a well-known process
definition style.
 The basis of this work is a coarse-grained reusable component model,
which presents a full project scope and supports the product line approach.
Also, reusable components can easily be integrated in a repository of
reusable elements.
 Some tools which provide support and link to the two processes,
including a requirement tool with glossary management and a repository
of reusable elements, has been developed.

Keywords: software process, software reuse, product line, Unified
Process

Technical Report No. DI-2003-1

1

1 Introduction

The assembly of new products from software pieces has been one of the main
goals of the Software Engineering discipline from its beginning, with the aim of
obtaining important benefits, expressed in productivity and quality terms, when
an industrial reuse approach is introduced in the software process.

The basic reuse unit was initially the module, but the class readily occupied
this role due to the object-oriented paradigm popularity. However, these reuse
initiatives failed to establish a systematic reuse approach because these efforts
only provided reuse at the small-scale level. For this reason the reuse unit has
increased its size and complexity towards coarse-grained reusable software
artifacts, such as frameworks or components. Nevertheless, even with these
coarse-grained constructions, the expected benefits have not appeared because
these large elements present a bottom-up reuse approach (i.e. the composition of
arbitrary components to construct systems) that has failed in practice [4].

Finally, product lines appear as the more successful approach in the reuse
field, as they combine coarse-grained components, i.e. software architectures
and software components, with a top-down systematic approach, where the
software components are integrated in a high-level structure. The product line
concept emerged in the eighties in the business schools, aiming at achieving
scope economies through synergetic development of products [15].

However, product lines is a very complex concept that requires a great effort
in both technical – architecture definition, development, usage and instantiation
[10, 4, 6]– and organizational – business view [2] – dimensions. In addition, the
standard proposals of the software development process traditionally ignore the
reuse issues, in spite of their recognized advantages [10]. These characteristics
move many organizations away from software reuse, because they cannot
support the effort or the investment needed to initiate a product line, changing
from a standard process to a entirely new one, as proposed by reuse gurus. We
aim to introduce a reuse approach based on product lines that requires less
investment and presents results earlier than more traditional product line
methods. This proposal incorporates the best practices in reuse approaches,
mainly of the domain engineering process, into conventional disciplines of the
application engineering process.

2

Figure 1. The Domain Engineering and the Product Engineering processes
are related by assets interchange, also is needed an Asset management.

Note that the Product Line Process and Asset management are continuous
process, but the Product Process is iterative.

Traditionally, reuse researchers have been more interested in techniques and
processes of domain engineering (for reuse), than in product or application
process engineering (with reuse). We ourselves, in previous work [9], have paid
little attention to this second aspect of the problem. Although we recognize the
need for a specific process for domain engineering, this aspect only affects a
minor part of an organization that seeks to introduce a product line approach:
most engineers will go on developing products, and for these engineers a
minimal modification of their well-established work disciplines is the most
suitable thing. From a practical point of view, only the domain engineering
process must be carried out by a specialized team (hired consultants can be
responsible for the initiation). This approach allows the rest of the organization
to focus on product development as in any other mature engineering. The central
idea is that it is not possible to talk seriously of engineering without reuse and it
should not be necessary to consider reuse as an independent branch of software
engineering. We therefore propose to define two processes separately: a
specialized one for domain engineering in the spirit of FORM [13] or Bosch [4]
and a process adaptation, based on classical Unified Process (UP) [10] where is
introduced the idea of the PL architecture. Both together aims at initiating a
product line approach to software development.

The proposal is founded on a coarse-grained reuse model, the Mecano model
[8, 9], and a suitable reuse library to manage the reusable elements that offer the

Product Line
Engineering

Process

Product Line
Engineering

Process
Asset

management
(Reuse library)

Asset
management

(Reuse library)

Product Engineering Process

Inicio Elaboración Construcción Transición Inicio Elaboración Construcción Transición Inception Elaboration Construction Transition

AssetsAssets

Requirement
Engineering

Reference
Architecture

definition

Component
Implementation

Domain
definition

Assets Assets

3

operative support to the reuse process. Figure 1 shows the two processes and the
relation with the repository asset management. The figure reflects the difference
between the product development process and the other two ones. Product line
engineering and asset management are continuous processes without external
observable output. The product process is iterative but has a date release as a
relevant difference.

The rest of the paper is distributed as follows: the next section explains
briefly the Mecano model and its relation to product lines. Section 3 discusses
how to introduce reuse in a conventional process. In section 4 the process for
reuse we proposed is presented. Section 5 shows how the UP must be altered to
take the benefits of the Product Line approach. Section 6 presents a series of
tools that support these processes. Section 7 relates our work to other known
studies. The section 8 concludes the paper and proposes additional work.

2 Mecano Model and Product Lines

Different practical experiences in the reuse field have emphasized the need of
defining a coarse-grained reusable software element, seeking the improvement
of the reuse process and its results. The structure of these reusable elements
should allow the increase of the reuse process abstraction level, the support of
several abstraction levels, the traceability between its components, and the
integration of these elements in a reuse process that includes both the domain
engineering and the application engineering phases.

Mecano model [8, 9] defines the structural view of a coarse-grained reusable
software element (or mecano), composed by a set of fine-grained reusable
software elements (or assets), each one classified in one of three possible
abstraction levels: requirements, design and implementation. Optionally, a
mecano can include one or many functional descriptors. A functional descriptor
is a set of links to the reusable assets that represents functional requirements
highlighted by the domain engineer.

The reusable assets that form a mecano are interrelated by a set of structural
relationships defined in Mecano model. Several categories of structural
relationship are defined: intra-level relationships –aggregation, composition,
use, extension and association– and inter-level relationship or reification.

The core Mecano model is represented in Figure 2, using UML [19] as
modeling language. It represents the main components of this structure: the
reusable assets and their relationships. The reusable assets are the reuse-centered
components, while the relationships build the layer for automated retrieval
processes through an entry point, usually a functional descriptor, and
traceability across the reusable asset network. Both the reusable assets and the

4

relationships must have a type that represents the shared properties of these
kinds of reusable assets or relationships. The Mecano model overview presented
in this section is centered in the semi-formal view of the model. Also a formal
definition of the model exists, based on the tube graph concept and in a context-
dependent graph grammar [8].

Figure 2. Mecano model defines a structural view of a coarse-grained
reusable software element composed by assets, each one classified by its

abstraction level.

Mecano support of product lines

As a result of the development of a product line, two main categories of
software artifacts are involved: the artifacts shared by the product members in
the product line and the product-specific artifacts [4]. This division is shown in
Figure 3. From a fine-grained point of view, a product line is a set of interrelated
reusable assets, where the three abstraction levels presented in the Mecano
model can be clearly identified, i.e. the requirement level – that expresses the
product line business model, the requirements of the product line, and the
product line variability graph; the design level – that collects the product line
architecture; and finally the implementation level – where the generic
components, which are compliant with the constraints of the product line
architecture, appear.

In this approach every product that belongs to a product line can be seen as a
coarse-grained reusable software component modeled by a mecano. According
to this, the product can be stored in a reuse library that supports the mecano
management. The initial development consists in the product line definition, i.e.

5

a basic product line formed by a product line specification and a product line
base-architecture.

Taking this basic product line as a first step, the development of new
products starts; products that will feed the overall product line (the products of a
product line and their components are reusable assets too) introducing these
products in the reuse library or reuse repository as mecanos. This way the reuse
cycle begins, which is formed by both the domain engineering phase and the
application engineering phase.

Business
analysis

Product - Line
requirements

Feature
graph

Product-line
architecture

Reference
context

Structure
Component

Relation

Architectural
component

Component
requirements

Variability
Component

implementation
Characteristics

Product
requirements

Product
feature graph

Product
architecture

derived

Context

Structure

Instantiated
SPL component

Product-specific
component

Product-specific
extension

Product
integration

code

Packaged and
release
product

instantiated

Software product -line artifacts

Product artifacts

Figure 3. Product-line artifacts [4] divided in two categories: shared by
product members and product-specific (instantiated from the first and new

ones).

Figure 4 represents in a schematic way the relationships between the product
line and mecano notions. Every product line is configured by a basic or core
product line and a set of compliant products with this core. Each product has a
whole software project scope that has been developed from the basic product
line. On the other hand, every basic product line has both a specification and an
architecture that it is defined from a set of generic software components. The
products, due to their definition, are candidates to be represented by coarse-
grained reusable elements, mecanos in this approach, but also the basic product
line, the product line architecture and its components are mecanos too, because
these elements are configurations of reusable assets that they are classified in
different abstraction levels, where the product line specification and the
component specifications are functional descriptors.

6

Figure 4. A Product Line is represented by Basic Product Line, which is
composed by a specification and an architecture. These elements can be

represented as mecanos and inserted in a repository.

3 Software Process and Reuse

As we stated above, the initiation of a product line requires an important
investment in time, effort and money. For this reason although the product line
approach promises many benefits, the organizations, specially the smallest ones,
are skeptic to make this kind of inversion.

Based on Mecano model, and taking the advantages of the close connection
of mecanos to product lines, we aim the introduction of a reuse approach based
on product lines that requires less investment and presents results earlier than
more traditional product line methods. This proposal incorporates best practices
in reuse approaches, mainly of the domain engineering process, in parallel with
conventional disciplines of the application engineering process.

Nowadays, two main approaches for software development are in dispute:
the lightweight, agile proposals and the heavyweight, highly configurable
approaches. Extreme Programming (XP) [3] is the best-known representative of
agile processes and the Unified Process (UP) [10] is the best example in the
opposite field. The main advantage of UP is that it is a process framework from
which particular processes can be configured and then instantiated. UP has to be
configured (this is actually a required step defined in UP itself). XP is an ad hoc
process, difficult to scale or tailor [24]. These characteristics incline us towards
UP as the basic process to adapt.

7

Most processes have some common elements. They require sequences of
activities, which are performed by roles (individuals or teams) to produce
artifacts. Processes have also a time dimension, with milestones that represent
the completion of activities. We must define, therefore, the following
dimensions of the process: time aspects, artifacts, activities, and roles.

A discipline (or workflow in old versions) in UP is the collection of
activities producing a particular set of artifacts, which represents some
important aspect in software development. In the last version, UP’s disciplines
are Business Modeling, Requirements, Analysis & Design, Implementation,
Test, Deployment, Configuration & Change Management, Project Management,
and Environment.

A recent initiative, the Software Process Engineering Metamodel (SPEM)
raises the level of abstraction of the UP approach and allows the easy upgrade of
a process. SPEM is a meta-model for defining processes and their components
[20]. The aim of this proposal is to define the minimal set of the process
modeling elements necessaries to describe any software development process,
without adding specific models or constraints for any specific area or discipline.
The central idea in SPEM is that a software development process is
collaboration between roles that perform activities on work products (figure 5).

Role

Activity

WorkProduct
IsResponsibleFor1 0..*

Performs

1

0..*

0..*0..*

0..*0..*

ProducesUses

input output

Figure 5. SPEM central idea: a software development process is a collaboration
between abstract active entities called process roles that perform operations called

activities on concrete, tangible entities called work products [20]

Process Role defines responsibilities over specific Work Products, and
defines the roles that perform specific activities. A Work Product or artifact is
anything produced, consumed, or modified by a process. It may be a piece of
information, a document, a model, source code, and so on. Work Definition

8

describes the work performed in the process. Activity, Phase, Iteration, and
Lifecycle are subclasses of Work Definition. An Activity is the basic Work
Definition, only decomposable in atomic elements called steps and with a single
Process Role responsible for it. A Phase is a specialization of Work Definition
such that its precondition defines the phase entry criteria and its goal defines the
phase exit criteria. Finally, a process Lifecycle is defined as a sequence of
Phases that achieve a specific goal [20].

Guidance elements may be associated with model Elements to provide
detailed information about it. Possible types of Guidance can be Guidelines,
Techniques, Metrics, etc. A Technique, for instance, is a detailed algorithm used
to create a work product. Another important element of SPEM is Package. A
Package is a container that can own and import process definition elements.
Process and Discipline are subclasses of Package. A Process is a process
component intended to stand alone as a complete process. A Discipline is a
particular specialization of Package that partitions the Activities within a
process according to a common “theme”.

 With this support we have proposed the needed modifications to the UP
disciplines, to facilitate the smooth introduction of the activities related to
development with reuse. Another parallel process, specific for the development
for reuse must be defined. In this case, a process different from UP has been
elaborated, although with the same iterative and incremental philosophy. Next
section shows this process and section 5 examines the adapted UP disciplines
for reuse we propose.

4 Product Line Engineering Process

Generally, the idea of establishing a product line in a small organization or
development department takes place inside a mature environment of information
systems, in which utilities or common components for the products under
development may have been identified. This situation suggests that this
organization should have a minimum level 2 or 3 in a CMM (Capability
Maturity Model) [21] scale, although the organization has had no experience in
software reuse. Reifer [22] has proposed a set of additional key areas in the area
of reuse to be included in the CMM catalog. In particular, in technical aspects
he cites Domain engineering, Architecture engineering or Asset management.

Our process proposal is an iterative process with three main phases – product
line inception, elaboration and construction (see Figure 6) - and five unique
disciplines: domain definition, product line requirement engineering, product
line reference architecture definition, component construction and test. Another
disciplines (mainly of management) are shared (in same degree) with the
product engineering process as asset management and quality assurance,

9

product line management and environment. The principal disciplines are shown
at Figure 6. The names of the phases refer informally -also intentionally- to the
three phases with the denominations used by UP to facilitate the identification
of the main goals. This process is being successfully applied in the initiation of a
product line in the field of flexible manufacturing work cells in the Computer
Science Department of the University of Salamanca [7]. Some experiments have
been initiated in other domains, such as software applications for handicapped
people. In the next subsections, these phases and disciplines are explained in
detail, specially their technical aspects.

Phases

Inception Elaboration Construction

Domain Definition

PL Requirement
Engineering

PL Reference
Arch. Definition

PL Component
Construction

Asset Management
& Quality Assurance

Test

Figure 6. Product line process phases and disciplines. The proposal process
is composed by three phases and six main disciplines.

4.1 Phases of Product Line Engineering Process

Product line inception phase

The basic purpose of the product line inception phase is the selection of a
concrete application domain, properly focused with a wider strategy according
to the global interests of the organization [23]. Therefore, the main discipline is
the domain definition. Bosch distinguishes two approaches to initiate a product
line inside a domain [4]. First, there is a core for the product line that it is based
on a previously developed product family and the explicit experience in the
development of these products. Second, the organization initiates a product line
from scratch.

10

In our experience, an organization without previous practice in the product
line setup does not embark upon the definition of a product line from scratch.
The reason is that initiating a product line in a well-known area for which
common elements have been identified is difficult, but starting a new product
line in an unknown area is even more difficult and highly improbable.

All the data about the domain must be collected, and what is inside and
outside must be decided helped by a market and business analysis; also a first
domain analysis and an architecture prototype can be built. In a well-known
domain, as usually will be, these first steps should be dynamic and the activities
will be done faster.

The milestone of this phase is the fixation of the domain’s basic goals, its
scope, an initial domain analysis (to guide the initial reference architecture
definition) and the initial definition of reference architecture. Finally, it is
essential to decide if the product line is worth serious investment.

Product line elaboration phase

The elaboration phase has the same goals of the homonym phase in UP: the
analysis of domain requirements and the choice and definition of the common
reference architecture. Several iterations are desirable until the final architecture
evolves.

The milestone is the definition of the requirements document (with
commonalities and variabilities clearly determined) and the creation of the
architecture definition of the product line. Also, the architecture for this product
line must be validated, so another milestone part is the approbation of an initial
architecture (the core architecture implementation); used as a proof of the
architecture suitability. An important artifact obtained in this phase is the
components build plan with the planning of each component construction. The
disciplines involved in this phase are mainly product line requirement
engineering and product line reference architecture definition. Also,
construction of some component can be afforded for the creation of the proof
architecture.

At this moment, the product engineering process can be enabled (at least the
first disciplines: business modeling and analysis & design) because we have a
complete architecture definition and evidence of the architecture suitability.

Product line construction phase

In the construction phase, the reference architecture is completely designed (the
basic interfaces and responsibilities are designed at previous phases, but it is
necessary define all the internal issues) and the common and variable

11

components are designed, implemented and tested. Then, these components are
qualified and included in the asset repository as mecanos. This must be done for
each component or set of components, and once finished inserted in the
repository. For this reason, the phase can be represented by several parallel sub-
phases, which start and finish independently (figure 7).

Inception Elaboration Construction

Figure 7. Product line phases. There are three, inception, elaboration and
construction. For each component set there is a sub-phase.

After the first iteration of the product line engineering process, the product
engineering process is totally enabled. The consequent iterations will originate a
configuration management problem focused by the corresponding product line
engineering discipline.

4.2 Disciplines of Product Line Engineering Process

Domain definition

The intention of this discipline is the study of the domain’s basic goals, its scope
and its definition. The first step is to collect all the available information about
the possible applications (related to the product line). With this data, the sub-
domains involved can be found and described. Also a market and a business
analysis (a first domain model with the basic classes) must be performed to
decide if a product line approach is profitable. Done at the PL process
management discipline.

Next, the information is analyzed to set the domain scope and boundaries
and to select the exemplars or specific applications that they are taken as
examples of the systems to be made with the product line. Once selected, the
exemplars must be described to obtain new vocabulary and analyzed at next
discipline. This description will be used to find the product requirements and to
detect commonality and variability between them. There are two ways to obtain
the description: making a simplified business modeling or taking it from a
former developed application.

12

Analyze
Market

Define PL Scope &
Boundaries

Collect Domain
Information

Build Business
Model

Evaluate Business
Posibilities

Describe Former
Exemplars

Describe New
Exemplars

Figure 8: Basic activities of domain definition discipline.

Note that almost all activities update the glossary. It is essential for
maintaining the consistency of the requirements work products and for
identifying commonalities and variabilities inside the product line. Also it’s
critical the upgrade of the glossary at every new concept introduction.

The artifacts are a document that collects the domain’s basic goals, its scope
and its definition, an initial domain model, a list with the exemplars described
and a first version of the product line glossary.

Product line requirement engineering

Requirements determination and management in a product line scope are
activities that greatly influence the quality of its products. However, the
concrete tasks and techniques are not exactly the same practices used in
traditional methods for eliciting and analyzing software requirements in an
independent product. The conclusion is that current practices in requirement

13

engineering do not support product line requirement capturing, structuring,
analysis and documentation.

In the scope of a product line, the requirements of every product should be
determined, even the requirements of the products that still have not been
developed, but are inside the product line scope (further products).

In addition to the information that expresses the requirements themselves, it
is important to know the variability of the requirements, and dependencies
between them (as mandatory or exclusion). To represent this kind of
information, the requirements are usually structured in definition hierarchies
[17].

In our proposal this discipline is based on FORM (Feature-Oriented Reuse
Method) [13]. Thus, each user requirement is an identifiable functional
abstraction, or feature.

The purpose of feature modeling is to analyze commonalities and differences
among a family of products in terms of application features, and then to
organize the analysis results into a feature model, which is used to develop
domain components. The features are classified according to the types of
information they represent, which fall largely into four categories - application
capabilities, operating environments, domain technologies, and implementation
techniques [18]. Likewise, in each category the features are organized by a
graphical AND/OR hierarchy diagram (see figure 9), i.e. the feature graph or
feature diagram, which captures the logical structural relationships between
requirements. Also, a feature can be mandatory, optional or alternative
according to its existence among applications in a domain. Mandatory features
are ones that must exist among applications in a domain, while optional features
may not be necessary in some applications of a given domain. Alternative
features indicate that no more than one feature can be selected for an
application. This classification is also applicable to sub-features, so the
restriction is only related to applications with the upper feature.

car

transmision horsepower air conditioning

manual automatic

alternative
features

optional
feature

mandatory
features

Composition rule:
“air conditioning” requires
“horsepower” > 100

Figure 9. Example showing features of a car [12] with some possible
features. Also is represented a composition rule that constraints one feature

to other feature value.

14

Various relationships exist among these features; the relationship types are
composed-of, generalization/specialization, and implemented-by. The Mecano
model supports all these relationship types.

The Mecano model represents the feature graph concept by a functional
descriptor [8]. Besides, this coarse-grained reusable element model completes
the representation of the product line requirement specification with
composition rules and a set of decision related to the product line characteristics.
These rules and decision are represented in the Mecano model through
association intra-level relationships representing mutual dependency and mutual
exclusion relationship types.

In relation with the discipline, the requirement elicitation is based on a
feature analysis, but also a use-case or scenarios analysis can help to obtain the
features (these methods are usually more familiar to software developers) and to
relate the features to the stakeholders. The question of which analysis must
guide the other depends on the product line requirements analyst and his
knowledge of the domain or the domain experts’ availability.

If the analyst has experience and domain experts are available, the best
strategy is a feature-driven one; otherwise the best is a use-case-driven strategy
(see figure 10) [5]. This analysis must be done starting from the domain
definition (scope and boundaries can help) that will provide a first idea and for
each exemplar, to obtain the commonality and variability of the product line. An
important issue is the integration of an exemplar with the rest of them: we must
be sure there are no conflicts or repeated functionality.

Figure 10: Feature elicitation strategies: if domain analyst has experience
about the domain or domain experts are available is better Feature-driven

strategy, otherwise Use-Case-driven is better. Adapted from [5]

The artifact of this discipline is the set of reusable assets representing the
functional descriptors of the mecano that models the basic product line. These

Feature Model

Domain Model Use-Case Model

Validation of
feature semantics,

discover of new features

Derivation
of objects

System
responsabilities

Use-Case
scenarios

Derivation
of use-cases

Feature ModelDomain Model

Use-Case Model

Consistency
analysis

Derivation
of objects

Derivation
of features

Derivation
Feedback,
consistency verification

Feature-Driven Strategy Use-Case-Driven Strategy

15

are a set of models with the product line features (features model) and the
relationship with the stakeholders (use-case model). Also the product line
glossary is updated.

[More Exemplars
To Analyze]

Analyze Domain
Features

Integrate
Exemplar

Analyze Domain Use
Cases /Scenaries

Analyze Exemplar
Features

Analyze Exemplar
Use Cases /

Figure 11: Basic activities of PL requirement engineering discipline.

Product Line Reference Architecture Definition

Once the basic product line requirements are determined, this is the most critical
activity in the initiation of a product line from a reuse perspective: This is
because this reference architecture will be reused in every product that feeds the
product line in the application engineering process. In addition it must comply
with the different product line applications (actual and furthers) requirements
and be enough flexible to include product specific components.

16

The reference architecture of a product line is a coarse-grained reusable asset
that can be modeled as a mecano (see Figure 4). Nevertheless, in our opinion
and experience, the design of the reference architecture is probably the most
creative aspect of the overall process, and accordingly, the more difficult to
standardize.

The experience of the software architect and the kind of products determine
the definition of the product line reference architecture. In the case of well-
known domains, the use of classic architectures, such as client-server
architecture, will be enough, but in other more complex or undefined situations,
the entire architect inventive will be required.

Define Initial
Architecture

Refine Reference
Architecture

Define Proof
Architecture

Analyze
Components

Design
Components

[Inception] [Reference Architecture enough
defined & not approved]

Mine
Components

Buy / Commission
Components

Figure 12: Basic activities of PL reference architecture definition discipline.

As a guide, the activities that we are detected for this discipline are: a first
analysis from the early domain description with some ideas with the best
architecture patterns for this domain. With this and the more detailed

17

requirements the architecture could be refined. From this refinement appear
components, from this moment it’s possible analyze them and decide if to mine,
construct or buy/commission the component. All this is done iteratively firstly
focused on the architecture refinement and then on the component analysis.
When the architecture is enough defined a proof of concept to validate its
suitability for the product line requirements could be done.

The artifacts of this discipline are the architecture structure and the different
components analysis modeled each one as an independent mecano included the
decision about their construction (mine, new or external). Also it is important to
register the traceability of every component with its requisites and mainly with
the implemented features.

Component Implementation

The design and implementation of a product line continues with the
implementation and integration of the sets of components designed at previous
discipline.

This discipline is essentially equivalent to the implementation discipline of
UP, but with the inclusion of a new activity of integration of non-implemented
components. This is useful for bought or commissioned components that also
must been integrated. Related with mine components, usually is needed
wrappers for existing software artifacts, that they are designed at mining activity
of the former discipline.

The artifacts of this discipline are the product line components, modeled
each one as an independent mecano related to the mecano that represents the
product line reference architecture.

18

Integrate Other
Components

Structure Components
Implementation Model

Integrate
Component

Implement
Component

[More Components
To Implement]

[Buy / Commissioned][Not Implemented /
Changes Needed]

Figure 13: Basic activities of component implementation definition
discipline.

Test

The contents of this discipline are equivalents to standard UP. Mainly is used at
demonstrate the architecture suitability and at the components integration. Note
that at a product line approach the existence of regression test is really useful
and the components integration test can be reused at every product specific
construction.

The artifacts of this discipline are the test plan, test procedure and test
evaluation documents.

19

Asset management and quality assurance

At this discipline the components are qualified and inserted in the repository. In
a product line approach, it is very important to identify a set of quality
characteristics of every component since a specific product can require a quality
minimum and this information must be available.

The reuse library or repository offers the operative support for the storage
and management of the product line artifacts, which are represented by mecanos
in our proposal.

The repository plays the connection role between the domain engineering
and the application engineering processes, allowing the cycle to close [14]. In
our proposal, it would be desirable that the organization had a repository that
allows the management of assets (see section 6 for details).

The artifact of this discipline is a qualification report obtained as the product
line is introduced in the repository.

Qualify
Asset

Insert
Asset

Manage
Repository

[Qualification OK]

[Qualification
unsatisfactory]

[New Asset]

Figure 14: Basic activities of asset management & quality assurance
discipline.

20

Configuration & Change Management

This discipline must control the changes to the shared components to maintain
the integrity of the components and guarantee that all the specific products can
use the changed components. The activities are similar to the same name UP
discipline, but must be taken into account all the specific products before to
allow any change. A change can be started by a product specific process (by
means of a product line change request) or by a product line requirements
change.

The artifact of this discipline is a review record with the decision about the
change request and the reasoning of allow / deny it.

Environment

At this discipline, the main guidelines are developed and the tools used at
product line are selected and initial product developments for each specific
product are settled. These are business decisions and must be done for all
products; therefore there is only a discipline, not one for each specific product.
The activities are similar to the UP ones.

The artifacts of this discipline are the guidelines about design, test, use-
cases, … and the tools to be used at the product line engineering and process
specific processes. Also is developed the first development case for each
specific product.

Product Line Management

This discipline must control the product line development. Also, the activities
are similar to the same name UP discipline, because both are iterative and
incremental processes. The first step is to decide about the product line
profitability (with the data obtained at Domain Definition). Then, if it’s decided
to develop it, planning, managing and evaluating the different iterations (create
the software development plan). The main difference is that also must plan,
manage and evaluate the specific products, deciding if the projects suit to the
product line and when to start and finish it. This must be done only at a
determinated moment, in our approach only is possible at the iteration end, after
evaluate the product line state.

Another difference is that at product lines, never there is a product line end
because there isn’t a final product. Therefore, the product line only can be
canceled.

21

Also, controls the staffing for the product line and each product specific, first
assigning almost all staff to the product line activities, and later to the specific
products that will be started.

More specifically, here the component sets partition and when the
architecture is proved are decided (at Plan for Next Iteration activity on first
construction phase and on last iteration of Elaboration phase respectively).

End Iteration

Conceive New
Product Line

Plan for Next
Iteration

[Initial Iteration]

Manage
Iteration

Monitor & Control
Product Line

Monitor & Control
Specific Products

Close-Out
Phase

Evaluate Product
Line State

Initiate Specific
Product

[PL
Canceled]

[Phase
OK]

[Phase End]

[Iteration End]

[Optional]

[Specific Product
on development]

Develop Software
Development Plan[PL Plans

Approved]

[PL Canceled]

Figure 15: Basic activities of product line management discipline.

The artifacts of this discipline are the product line development plan, phase
and iteration plans, product line state evaluations, the P.L. components

22

implementation plan and for each specific product an initial software
development plan.

Discipline Artifacts
Domain definition Document expressing the goals, scope and the

definition of the domain.
List of exemplars.
Product Line vocabulary (initial version).

Product line requirement
engineering

Set of reusable assets representing the
functional descriptors of the mecano that models
the basic product line.

Product Line Reference
Architecture Definition

A mecano that represents the product line
reference architecture.

Components design models and traceability to
requirements.

Component
Implementation

Product line components, modeled each one as
an independent mecano related to the mecano that
represents the product line reference architecture.

Test Test plan, test procedure and test evaluation
documents.

Asset management and
Quality Assurance

A qualification report obtained when the
product line is introduced in the repository

Configuration and
Change Management

A review record with the decision about the
change request and the reasoning of allow / deny it.

Environment Guidelines about design, test, use-cases, … and
the tools to be used at the product line engineering
and process specific processes.

Initial development case for each specific
product.

Product Line
Management

Product line development plan.
Phase and iteration plans.
Product line state evaluations.
P.L. components implementation plan.
Initial software development plan for each

specific product

Table 1. Disciplines and obtained artifacts

23

5 Product Engineering Process

To introduce a product line approach in an organization, some changes to the
product development process are desirables. These are mainly needed to manage
three issues: the instantiation of the product architecture from the features subset
for the application, the previous existence of a basic architecture and the
presence of a repository where the new reusable components must be inserted
(and the old ones reside).

Taking UP as the starting point, the main changes must be made to the
requirements discipline where the application features must be found and the
application feature model completed. This feature model is used to derive the
architecture on the analysis & design discipline, where the architecture is
instantiated (from the product line architecture). Also the new features and the
changes in the old features are determined. The new features implementation
can be done with a reusable approach if it could be useful to other product line
products (or conventionally if not so).

Also it must be considered that, usually, there are former projects with
similar requirements (we suppose that the product line is not created from
scratch, but from a previous development work). This implies that there is
already a previous work on requirements elicitation, analysis & design,
implementation, etc, that greatly simplifies the work.

Now all disciplines are more deeply analyzed:

Business Modeling

This discipline is simplified in our approach, because its purpose, mainly to
understand the organization structure and problems; it’s done in the domain
engineering process for all product line. In this discipline, it is only necessary to
select a subset of the product line and complete them with the most specific
problems.

Requirements

In this discipline, more changes are necessary as use-case modeling is not
enough to obtain the requirement vision needed by the product line approach. In
a product line, a feature model is required to guide the instantiation of the
product architecture from the product line reference architecture. This feature
model is constructed from the use-case model, a more known technique; each
use-case is analyzed and the features obtained. Here it is essential to compare

24

(and relate) each feature with the product line ones and create only new features
if necessary (there is no feature on the product line with this functionality and it
is not possible to modify another one to comply with the functionality).

Finally, it is necessary to contrast the feature model with the product line
feature model and to insert all required features and sub-features. From this
checking, two lists are created: the new features and the features that need
changes to be constructed in the next disciplines.

New artifacts are the product feature model, the list of new features and the
list of conflicting features.

Analysis & Design

The main change here is the product line instantiation, once the feature model is
finished. This guides all the architecture construction. From this core
architecture, only it is necessary to create specific components not implemented
at product line or modified them. This is done in the typical UP activities, but
the first architecture (corresponding to the Candidate Architecture at UP) is
created as a derivation of the product line. Then, following UP activities, the
architecture will be refined, and the behavior of the components to implement
analyzed and designed.

Here it is also important to decide if the new features / components must be
implemented for reuse (if has a functionality useful to other product line
application and the cost increment is affordable) or not. If such a decision is
taken, the construction should be checked by the product line engineering
process engineers or even done by them.

There are no new specific artifacts, but new artifacts are created at the
architecture instantiation (the candidate architecture) or when new features are
found while the architecture is refined.

Implementation

This discipline doesn’t suffer changes of significance because the start point is
the design from the analysis & design discipline where the components and how
implement them are established, but the activities don’t change. Only the
purpose varies lightly; now only the new components and adaptations are
implemented, not all the system components. Another difference is that from the
beginning there are a lot of components implemented, so the final effort would
be less.

25

Test

In this discipline, the only change is that there is an important part no
implemented by the application team, this could increase the difficulty but it is
supposed that the product line components are well tested, so the final effort
would be less. Another source of conflicts are the product line components
modification and integration, in this case regression test are useful.

Configuration & Change Management

Any change that only affects to the product specific components does not
change the normal process. The problem is when a change on a product line
component is needed; in this case, must be another activity that decide if a new
component must be implemented (probably modifying the component externally
with a wrapper or by inheritance) or if the component itself must be modified
and do a change request to the product line engineers.

The new artifact is the product line change request, if necessary.

Deployment

This discipline is important because is the responsible for new components
insertion into the general product line repository. So a new activity must be
introduced: Submit Insertion Component Request that provides a new
component to be qualified by the product line engineers, and then inserted into
the general repository.

New artifact is the component insertion request.

Project Management

Essentially, the activities at this discipline are unchanged, but the first activities
are done at the product line engineering process as it is discussed at product line
section. Also is important, at the end of the process to give access to all the data
to insert the application inside the product line, paying special attention to the
new vocabulary introduced by the application, and to insert it to the repository
as a new mecano.

26

Environment

This activity is performed at the product line engineering process. See above for
a detailed explanation.

6 Tool support

To be successful, this approach to product line development needs some tools
that support the new activities defined. We initially developed an asset
repository that implements the mecano model [8]. The main interest of the
model is the established traceability between requirements, designs and code.
The access to the GIRO repository is granted through the GIRO pages
(http://giro.infor.uva.es). Other repository engines that manage coarse-grained
reusable assets (as Repository in a Box, http://www.nhse.org/RIB) can be
adapted to support the model.

Starting from the GIRO repository implementation, the goal is to use it in a
transparent way from the point of view of the developers. This is achieved by
the design of a series of tools that connect standard CASE tools with the
repository. An API for insertion and extraction of asset has been defined and
implemented as a complement of the repository. Then, a couple of plug-ins for
Together and Rational Rose has been developed and installed in the engineers’
workstations. This allows the systematic insertion of product line assets in the
repository, using an XML standard definition of UML artifacts. A module for
searching the product applicable features and obtaining the assets related to
them is currently being developed. This module will show the feature model and
the feature description (see next paragraph) and will allow the desired ones to be
selected, obtaining a partial architecture instantiation from the repository.

A second tool, which is specialized in requirements (Requirement Reuse or
R2), helps to find the features, create the feature model, register the goals,
capture the functional requirements (as scenarios, workflows or use cases) and
trace relations between them. Additional modules provide the quality control of
the requirement (by Petri Net simulation) and the PL glossary. This last module
must check similarities between concepts to assure the correct understanding of
them by the different stakeholders, thus removing the overlapping features.

Additionally, a “light version” of the R2 tool (based on a personal database
instead of the complete ORACLE based tool) is available from the GIRO site.

Finally, an adaptation of a process tool is required. Currently, we are
working with an adaptation of Rational RUP. RUP is an html-based tool (in a
web style), allowing a certain degree of customization. Really, we need two
versions of UP: the “product line UP” and the standard UP. The last is a

27

modification of the RUP tool to indicate all the UP changes described. The
former is an implementation of the domain engineering process, defined in a
similar way. The complete definition of both processes in SPEM format is
available from the GIRO pages.

7 Related Work

In this section, we will briefly introduce related work on product line processes.
FORM [16, 18] centers its process at domain analysis, introducing the concept
of features, but without to analyze in depth the specific product construction, or
management issues at the product line process. It defines three phases: Context
Analysis, where the scope of the domain is defined; Domain Modeling that
provides a description of the problem space in three main activities (Information
Modeling, Features Analysis and Functional Analysis). At this phase also is
obtained a Data Glossary with the definition of the involved concepts; The last
phase is Architectural Modeling that provides the software solution for the
application in the domain with the implementation of a Reference Architecture
by means refinement from a Subsystem Model (abstract) through the Process
Model until Module Model.

The Software Engineering Institute (SEI) has been working at product lines
for several years. From this work they are found three essential activities: Core
Asset Development, Product Development and Management similar to our
processes (product line engineering, product engineering and management
disciplines from both processes). Also is created of a framework for product line
[6]. This framework describes different best-practices for product line
construction divided in three areas (software engineering, technical management
and organizational management), but doesn’t define a process, only there is a
practice with advices to do it. Some of these practices have been introduced at
our process in form of process activities.

The SEI also is working at domain analysis refining the FORM technique
with the Product Line Analysis (PLA) that combines FODA with use-cases to
elicit, analyze, specify and verify the requirements of a product line. The use-
case models are useful to find new features and to relate features with
stakeholders. Another important issue as is the reference architecture definition
activity is also described with the Attribute Driven Design (ADD) method
(formerly the Architecture Based Design method) [1]. This method provides a
series of steps for designing the conceptual software architecture from feature
and use-case models until classes.

Finally, Bosch [4] defines a process centered on the architecture and focused
on the quality attributes. He defines three main phases: development of the
architecture, deployment through product development and evolution of the

28

assets, similar to our processes, but with an idea more sequential. The evolution
in our proposal is implicitly on the iterative and incremental process. About the
components construction he identifies two ways: traditional (with components)
or with object-oriented frameworks that embodies an abstract design for
solutions to a family of related problems. Also he gives the steps to follow at
product line derivation and the possible problems about this.

8 Conclusions

In this paper, we have introduced a product line process that does not require
great effort, time or money investment. This approach smoothes the
organizational issues, taking as base the widely known UP, introducing some
changes to allow a product line approach and supporting the new activities with
a set of tools.

The mecano model is the base to support the product line concept in our
approach. The product line artifacts are stored in a reuse library to permit the
reuse life cycle articulated in product line engineering and product engineering
disciplines.

In our approach, the conventional software process is gently adapted to
include the peculiarities of a development based on a product line philosophy
with minimal changes and with tool support. In addition, a new process is
introduced, where the product line is defined in a systematic way, similar to UP,
to decrease process learning.

We think that the characteristics of the presented process structure are an
attractive proposal for organizations with limited resources. Thus, this kind of
organizations can join the reuse field through a product line approach that
allows their maturity level in software construction to be improved.

The associated tools we are developed are a firm support of the product line
process. The experiences carried out on academic developments are rewarding.
Our future work includes the introduction of this process in software houses, as
an essential step to validate the approach and measure the perceptible
advantages objectively.

Acknowledgements

This work has been supported by Spanish CICYT (Dolmen Project – TIC2000-
1673-C06-05).

29

 References

1. Bachmann, Felix; Bass, Len; Chastek, Gary; Donohoe, Patrick & Peruzzi, Fabio. “The
Architecture Based Design Method” Technical Report, CMU/SEI-2000-TR-001.
Software Engineering Institute (Carnegie Mellon) Pittsburgh, PA 15213.

2. Bass, L., Clements, P., Donohoe, P., McGregor, J. and Northrop, L. “Fourth Product
Line Practice Workshop Report”. Technical Report CMU/SEI-2000-TR-002 (ESC-TR-
2000-002), Software Engineering Institute. Carnegie Mellon University, Pittsburgh,
Pennsylvania 15213 (USA). 2000.

3. Beck, Kent Extreme Programming Explained, Addison-Wesley, 2000.
4. Bosch, J. “Design & Use of Software Architectures. Adopting and Evolving a Product-

Line Approach”. Addison-Wesley. 2000.
5. Chastek, G., Donohoe, P., Kang, K. C., Thiel, S. “Product Line Analysis: A Practical

Introduction”. Technical Report CMU/SEI-2001-TR-001 ESC-TR-2001-001, Software
Engineering Institute (Carnegie Mellon), Pittsburgh, PA 15213

6. Clements, Paul C. and Northrop, Linda. “Software Product Lines: Practices and
Patterns”. SEI Series in Software Engineering, Addison-Wesley. 2001.

7. Curto, B., García, F. J., Moreno, V., González, J. and Moreno, Á. Mª. “An Experience of
a CORBA Based Architecture for Computer Integrated Manufacturing”. In proceedings
of 8th IEEE International Conference on Emerging Technologies and Factory Automation
– ETFA 2001. (Antibes – Juan les Pins, France, October 15-18, 2001). Pages 765-769.
IEEE Press. 2001.

8. García Peñalvo, F. J. “Modelo de Reutilización Soportado por Estructuras Complejas de
Reutilización Denominadas Mecanos”. Ph. D. Dissertation, in Spanish. Universidad de
Salamanca. Enero, 2000.

9. García, F. J., Barras, J. A., Laguna, M.A., and Marqués, J. M. “Product Line Variability
Support by FORM and Mecano Model Integration”. In ACM Software Engineering
Notes. 27(1);35-38. January 2002.

10. Jacobson, I., Booch, G., Rumbaugh, J. “The Unified Software Development Process”.
Object Technology Series. Addison-Wesley, 1999.

11. Jacobson I., Griss M. and Jonsson P. “Software Reuse. Architecture, Process and
Organization for Business Success”. ACM Press. Addison Wesley Longman. 1997.

12. Kang, K. C., Cohen, S., Hess, J., Nowak, W. and Peterson, S. “Feature-Oriented
Domain Analysis (FODA) Feasibility Study”. Technical Report, CMU/SEI-90-TR-21,
Software Engineering Institute (Carnegie Mellon), Pittsburgh, PA 15213

13. Kang, K. C., Kim, S., Lee, J. y Kim, K. “FORM: A Feature-Oriented Reuse Method with
Domain-Specific Reference Architectures”. Annals of Software Engineering, 5:143-168.
1998.

14. Karlsson, E.-A. (Editor). “Software Reuse. A Holistic Approach”. Wiley Series in
Software Based Systems. John Wiley and Sons Ltd. 1995.

15. Knauber, P. and Succi, G. “Perspectives on Software Product Lines”. ACM Software
Engineering Notes, 26(2):29-33. March 2001.

16. Krut, R. “Integrating 001 Tool Support into the Feature-Oriented Domain Analysis
Methodology”. Technical Report, CMU/SEI-93-TR-011, Software Engineering Institute
(Carnegie Mellon), Pittsburgh, PA 15213

17. Kuusela, J. and Savolainen, J. “Requirements Engineering for Product Families”. In
Proceedings of 22nd International Conference on Software Engineering – ICSE 2000.
Pages 60-68. ACM Press. 2000.

18. Lee, K., Kang, K. C., Chae, W. y Choi, B. W. “Feature-Based Approach to Object-
Oriented Engineering of Applications for Reuse”. Software: Practice and Experience,
30(9):1025-1046. 2000.

19. Object Management Group. “OMG Unified Modeling Language Specification. Version
1.4”. Object Management Group Inc. 2001.

20. Object Management Group. “Software Process Engineering Metamodel Specification”.
Version 1.0. Object Management Group Inc. November 2002.

30

21. Paulk, Mark C., Curtis, Bill, Chrissis, Mary Beth and Weber, Charles V. “Capability
Maturity Model, Version 1.1”. IEEE Software, 10(4):18-27. July, 1993.

22. Reifer, D. J.“Practical Software Reuse”. Wiley, 1997.
23. Simos, M., Creps, D., Klingler, C., Levine, L. y Allemang, D. “Organization Domain

Modeling (ODM) Guidebook – Version 2.0”. Technical Report STARS-VC-
A025/001/00, Lockheed Martin Tactical Defense Systems, 9255 Wellington Road
Manassas, VA 22110-4121. 1996.

24. Smith, J. “A Comparison of RUP® and XP”. Rational Software White Paper. Technical
Paper TP-167. May 2001.

Appendix A: Domain Engineering Process (SPEM style
definition)

Discipline : Domain Definition

Subactivities
 WorkDefinition : Collect Domain Information
 Activity : Collect Information
 ProcessRole : Domain Engineer
 WorkProduct : Information Sources Document (PL Vision)
 WorkProduct : PL Description (PL Vision)
 WorkProduct : PL Glossary [Outlined]
 Steps
 Step : Determine interesting domains
 Step : Define data sources
 Step : Gather any available data about interesting
 domains
 Step : Gather any available data about current
 organization
 Step : Describe current organization structure
 Step : Identify stakeholders
 Step : Survey stakeholders to obtain more data
 Step : Organize all obtained data
 Activity : Collect Exemplars (Domain Products)
 ProcessRole : Domain Engineer
 WorkProduct : PL Exemplars Document [Outlined]
 Steps
 Step : Look for existing applications related to
 domain
 Step : Look for further applications related to
 domain
 Step : Gather any available data about exemplars
 Step : Organize all obtained data
 Step : Insert applications into the Exemplars
 Document.
 Activity : Understand Relevant Sub-domains
 ProcessRole : Domain Engineer

31

 WorkProduct : PL Description (PL Vision)
 WorkProduct : PL Glossary [Outlined]
 Steps
 Step : Describe product line sub-domains
 Step : Identify recurring problems and known
 solutions within sub-domains
 Step : Organize all obtained data
 Activity : Capture a Common Vocabulary
 ProcessRole : Domain Engineer
 WorkProduct : PL Glossary
 Steps
 Step : Find common terms
 Step : Evaluate your results
 WorkDefinition : Analyze market
 Activity : Analyze market
 ProcessRole : Domain Engineer
 WorkProduct : PL Market Analysis (PL Vision)
 Steps
 Step : Describe market
 Step : Identify customer segments
 Step : Map products to segments
 Step : Examine competitors
 Step : Evaluate the results
 WorkDefinition : Build Business Model
 Activity : Analyze market
 ProcessRole : Domain Engineer
 WorkProduct : PL Business Model (PL Vision)
 WorkProduct : PL Domain Model (outlined)
 Steps
 Step : Describe current business
 Step : Set business goals
 Step : Identify business process
 Step : Identify business workers
 Step : Evaluate the results
 Activity : Capture a Common Vocabulary
 ProcessRole : Domain Engineer
 WorkProduct : PL Glossary
 Steps
 Step : Find common terms
 Step : Evaluate the results
 WorkDefinition : Evaluate Business Possibilities
 Activity : Analyze Business Possibilities
 ProcessRole : Domain Engineer
 WorkProduct : PL Vision
 Steps

32

 Step : Analyze current organization situation
 Step : Predict future cost and benefits using a
 product line approach
 Step : Draw conclusions
 WorkDefinition : Define PL Scope & Boundaries
 Activity : Set and adjust scope / boundaries
 ProcessRole : Domain Engineer
 WorkProduct : PL Scope & & Boundaries (PL Vision)
 Steps
 Step : Complete data obtained at Collect Domain
 Information
 Step : Analyze product line data and Exemplars

 Step : Identify domain characteristics
 Step : Determine which characteristics should be
 considered part of the product line
 Step : Evaluate the results
 Activity : Find other Domains Relations
 ProcessRole : Domain Engineer
 WorkProduct : PL Related Domains (PL Vision)
 Steps
 Step : Analyze Product Line Data and Exemplars
 Step : Identify Related Domains
 Step : Describe Relations with the Related
 Domains
 Step : Evaluate the Results
 Activity : Select Exemplar Applications
 ProcessRole : Domain Engineer
 WorkProduct : PL Exemplars Document
 Steps
 Step : Check Exemplars Suitability to Product
 Line Scope and Boundaries
 Step : Evaluate the Results
 Activity : Capture a Common Vocabulary
 ProcessRole : Domain Engineer
 WorkProduct : PL Glossary [Updated]
 Steps
 Step : Find Common Terms
 Step : Evaluate the Results
 WorkDefinition : Describe Former Exemplars
 Activity : Revise Exemplar Documentation
 ProcessRole : Domain Engineer
 WorkProduct : Exemplar Business Vision
 Steps
 Step : Revise application documentation

33

 Step : Obtain application boundaries,
 stakeholders, goals & constraints
 Step : Assess reengineering possibilities

 Step : Formulate problem statement
 Step : Evaluate the results

 Activity : Capture a Common Vocabulary
 ProcessRole : Domain Engineer
 WorkProduct : PL Glossary [Updated]
 Steps
 Step : Find common terms
 Step : Evaluate your results
 WorkDefinition : Describe New Exemplars
 Activity : Set & Adjust Exemplars Goals
 ProcessRole : Domain Engineer
 WorkProduct : Exemplar Business Vision
 Steps
 Step : Define Application Boundaries
 Step : Identify Stakeholders
 Step : Gain agreement on the goals of the target
 organization

 Step : Identify constraints
 Step : Formulate problem statement

 Step : Evaluate the results
 Activity : Capture a Common Vocabulary
 ProcessRole : Domain Engineer
 WorkProduct : PL Glossary [Updated]
 Steps
 Step : Find common terms
 Step : Evaluate your results

Discipline : PL Requirement Engineering

Subactivities
 WorkDefinition : Analyze Domain Features
 Activity : Find Activities
 ProcessRole : Domain Requirements Engineer
 WorkProduct : PL Feature Model
 Steps

 Step : Find Features
 Step : Describe Features and Exemplars Relations
 Step : Relate Features with other Features
 Step : Insert Features into Feature Model
 Step : Evaluate the results
 Activity : Capture a Common Vocabulary
 ProcessRole : Domain Engineer

34

 WorkProduct : PL Glossary [Updated]
 Steps
 Step : Find common terms
 Step : Evaluate your results
 WorkDefinition : Analyze Domain Use Cases / Scenarios
 Activity : Find Actors and Use Cases
 ProcessRole : Domain Requirements Engineer
 WorkProduct : PL Use-Case Model
 Steps
 Step : Elicit stakeholders requests
 Step : Find Actors
 Step : Find Use Cases

 Step : Describe how Actors and Use Cases
 interact in scenarios

 Step : Package Use Cases and Actors
 Step : Present the Use-Case Model in Use-Case

 Diagrams
 Step : Describe how Features and Use Case Model

 interact
 Step : Evaluate the results

 Activity : Capture a Common Vocabulary
 ProcessRole : Domain Engineer
 WorkProduct : PL Glossary [Updated]
 Steps
 Step : Find common terms
 Step : Evaluate your results
 WorkDefinition : Analyze Exemplar Features
 Activity : Find Basic Exemplars Features
 ProcessRole : Domain Requisites Engineer
 WorkProduct : Exemplar Feature Model
 WorkProduct : PL Exemplar Document [Updated]
 Steps

 Step : Find Features
 Step : Describe Features and Exemplars Relations
 Step : Relate Features with other product line
 Features
 Step : Insert Features into Feature Model
 Step : Evaluate the results
 Activity : Capture a Common Vocabulary
 ProcessRole : Domain Engineer
 WorkProduct : PL Glossary [Updated]
 Steps
 Step : Find common terms
 Step : Evaluate your results
 WorkDefinition : Analyze Exemplar Use Cases / Scenarios

35

 Activity : Find Exemplar Basics Actors and Use-Cases
 ProcessRole : Domain Requisites Engineer
 WorkProduct : Exemplar Architectural Use-Case Model
 WorkProduct : PL Exemplar Document [Updated]
 Steps
 Step : Elicit stakeholders requests
 Step : Find Actors
 Step : Find Use Cases
 Step : Relate Use Cases and Actors to product line
 ones

 Step : Describe how Actors and Use Cases
 interact on scenarios

 Step : Package Use Cases and Actors
 Step : Present the Use-Case Model in Use-Case

 Diagrams
 Step : Describe how Features and Use Case Model

 interact
 Step : Evaluate the results

 Activity : Capture a Common Vocabulary
 ProcessRole : Domain Engineer
 WorkProduct : PL Glossary [Updated]
 Steps
 Step : Find common terms
 Step : Evaluate your results
 WorkDefinition : Integrate Exemplar
 Activity : PL Object Modeling
 ProcessRole : Domain Architect
 WorkProduct : PL Domain Model [Updated]
 WorkProduct : PL Feature Realization [Outlined]
 WorkProduct : PL Vision
 Steps

 Step : Identify candidate Objects from the
 Feature Model
 Step : Allocate responsibilities to candidate
 objects
 Step : Relate objects to older domain objects
 Step : Define information exchange between
 Objects
 Step : Update glossary with object definitions
 Step : Evaluate the results
 Activity : Manage Dependences
 ProcessRole : Domain Requisites Engineer
 WorkProduct : Exemplar Vision [Outlined]
 WorkProduct : Exemplar Architectural Use-Case Model
 [Updated]

36

 WorkProduct : Exemplar Feature Model [Updated]
 WorkProduct : PL Domain Model [Updated]
 Steps
 Step : Assign attributes
 Step : Establish and verify traceability

 Step : Manage changing requirements
 Activity : Integrate Exemplar
 ProcessRole : Domain Requisites Engineer
 WorkProduct : PL Exemplar Document [Updated]
 WorkProduct : PL Use-Case Model
 WorkProduct : PL Feature Model
 WorkProduct : PL Domain Model
 Steps
 Step : Integrate exemplar Features and Use-Case
 Model
 Step : Evaluate the results

Discipline : PL Reference Architecture Definition

Subactivities
 WorkDefinition : Define Initial Architecture
 Activity : PL Architectural Analysis
 ProcessRole : Domain Architect
 WorkProduct : PL Architecture Document [Outlined]
 WorkProduct : PL Vision
 Steps
 Step : Develop architecture overview
 Step : Define the high-level organization of the
 subsystems
 Step : Identify key abstraction
 Step : Create Feature realizations
 Step : Identify stereotypical interactions
 Step : Analyze the results
 WorkDefinition : Refine Reference Architecture
 Activity : PL Architectural Analysis
 ProcessRole : Domain Architect
 WorkProduct : PL Architecture Document [Outlined]
 WorkProduct : PL Vision
 Steps
 Step : Define the high-level organization of the
 subsystems
 Step : Identify key abstraction
 Step : Create Feature realizations
 Step : Identify stereotypical interactions
 Step : Analyze the results

37

 Activity : Identify Design Mechanisms
 ProcessRole : Domain Architect
 WorkProduct : PL Design Model [Updated]
 WorkProduct : PL Architecture Document [Updated]
 WorkProduct : Supplementary PL Specifications [Updated]
 Steps

 Step : Categorize clients of analysis mechanisms
 Step : Inventory the implementation mechanisms
 Step : Map design mechanisms to implementation
 mechanisms
 Step : Document architectural mechanism
 Activity : Identify Design Elements
 ProcessRole : Domain Architect
 WorkProduct : PL Design Model [Updated]
 WorkProduct : PL Architecture Document [Updated]
 WorkProduct : Supplementary PL Specifications [Updated]
 Steps

 Step : Analyze concurrency requirements
 Step : Identify processes and threads
 Step : Identify process lifecycles

 Step : Identify and specify events
 Step : Identify and specify signals
 Step : Identify classes, active classes and
 subsystems
 Step : Identify subsystem interfaces
 Step : Identify capsule protocols
 Activity : Review the Architecture
 ProcessRole : Domain Architecture Reviewer
 WorkProduct : PL Architecture Review
 Steps
 Step : Conduct review meetings
 WorkDefinition : Define the Proof Architecture
 Activity : Define the Proof Architecture
 ProcessRole : Domain Architect
 WorkProduct : PL Proof Architecture Document
 WorkProduct : PL Architecture Document [Updated]
 Steps

 Step : Analyze features and exemplars
 Step : Identify architecture core elements
 Step : Select proof architecture elements
 Step : Evaluate the results
 WorkDefinition : Analyze Components
 Activity : Features and Use Case Analysis
 ProcessRole : Product Line Analyst
 WorkProduct : Feature Realizations

38

 WorkProduct : Analysis Classes
 Steps

 Step : Find analysis classes from features & use
 cases
 Step : Distribute behavior to analysis classes
 Step : Describe analysis classes
 Step : Evaluate the results
 Activity : Analyze Legacy Components
 ProcessRole : Domain Analyst
 WorkProduct : Legacy Components Document
 Steps

 Step : Find legacy components that fits analysis
 classes
 Step : Understand needed components changes
 Step : Evaluate the results
 Activity : Determine if Mine / Construct / Buy --
 Commission
 ProcessRole : Domain Architect Reviewer
 WorkProduct : Component Review Record
 WorkProduct : PL Architecture Document [Updated]
 Steps

 Step : Review feature realizations
 Step : Review legacy components
 Step : Review organization policy & resources
 Step : Evaluate the results
 WorkDefinition : Mine Components
 Activity : Mine Components
 ProcessRole : Domain Designer
 WorkProduct : Feature Realizations
 WorkProduct : Design Classes
 Steps

 Step : Analyze candidate components
 Step : Analyze mining options
 Step : Design component modification classes
 Step : Evaluate the results
 WorkDefinition : Design Components

(like UP Analysis & Design :: Design Components,
but oriented to a reuse approach with frameworks,
automatic component assembly, …)

 WorkDefinition : Buy / Commission Components
 Activity : Buy / Commission Components
 ProcessRole : Domain Designer
 WorkProduct : Feature Realizations
 WorkProduct : Design Classes
 Steps

39

 Step : Analyze buy / commission options
 Step : Analyze contractors options
 Step : Evaluate the results

Discipline : Component Implementation

Subactivities
 WorkDefinition : Structure Components Implementation Model
 Activity : Structure the Implementation Model
 ProcessRole : Domain Architect
 WorkProduct : PL Architecture Document (Implem. View)
 WorkProduct : PL Implementation Subsystems
 WorkProduct : PL Implementation Model
 Steps
 Step : Create the initial implementation model
 structure

 Step : Adjust implementation subsystems
 Step : Define imports for each implementation
 subsystem
 Step : Evaluate the implementation model
 WorkDefinition : Implement Component Set

[like UP Implementation :: Implementation
Components with a set of components not at Proof
Architecture and grouped at Plan Component
implementation]

 WorkDefinition : Integrate Component Set
 Activity : Integrate Components
 ProcessRole : Domain Integrator
 WorkProduct : Component Set Build
 WorkProduct : Product Line Build
 Steps
 Step : Evaluate automatic integration possibilities

 Step : Integrate component
 Step : Evaluate the results
 WorkDefinition : Integrate Other Components
 (Typically bought or commissioned)
 Activity : Integrate Components
 ProcessRole : Domain Integrator
 WorkProduct : Architecture Build
 Steps
 Step : Evaluate automatic integration possibilities

 Step : Integrate component
 Step : Evaluate the results

Discipline : Test
[like RUP discipline Test]

40

Discipline : Asset management and quality assurance
 WorkDefinition : Assure Asset Quality
 Activity : Qualify Asset
 ProcessRole : Repository Manager
 WorkProduct : Component Set Build
 WorkProduct : Asset Measures Guidelines
 WorkProduct : Component Set Requirements
 WorkProduct : Asset Repository Insertion Review
 Steps

 Step : Check documentation
 Step : Check requisites fulfillment
 Step : Make asset measures

 Step : Evaluate the results
 WorkDefinition : Insert Asset into the Repository
 Activity : Insert Asset
 ProcessRole : Repository Manager
 WorkProduct : Component Set Build
 WorkProduct : Asset Repository Insertion Review
 Steps

 Step : Complete asset data
 Step : Insert asset data into repository

Discipline : Configuration & Change Management
[like RUP discipline Configuration & Change
Management, but change requests from specific product
processes are possible]

Discipline : Product Line Management
 WorkDefinition : Conceive New Product Line
 Activity : Identify and Assess Risks
 ProcessRole : Product Line Manager
 WorkProduct : Product Line Risk List
 WorkProduct : Risk Management Plan
 Steps
 Step : Identify potential risks
 Step : Analyze and prioritize risks
 Step : Identify risk avoidance strategies
 Step : Identify risk mitigation strategies
 Step : Identify risk contingency strategies
 Activity : Initiate Product Line
 ProcessRole : Product Line Manager
 WorkProduct : Product Line Software Development Plan
 WorkProduct : Iteration Plan (first iteration)
 Steps

 Step : Assign project review authority (PRA)

41

 Step : Assign project manager
 Step : Assign project planning team
 Step : Approve project acceptance criteria

 Activity : Product Line Approval Review
 ProcessRole : Product Line Manager
 WorkProduct : Product Line Software Development Plan
 WorkProduct : Product Line Vision PL
 WorkProduct : Product Line Approval Review Record
 Steps

 Step : Conduct project approval review meeting
 Step : Record decision

 WorkDefinition : Develop P. L. Software Development Plan
 [like RUP workproduct Develop Software
 Development Plan]
 WorkDefinition : Manage and Control Product Line
 [like RUP workproduct Manage & Control Project]
 WorkDefinition : Plan for Next Iteration
 [like RUP workproduct Plan for Next Iteration.
 Note that here is where is decided if create in
 this iteration the Proof Architecture at
 Elaboration Phase]
 WorkDefinition : Manage Iteration
 [like RUP workproduct Manage Iteration]
 WorkDefinition : Close-Out Phase
 [like RUP workproduct Close-Out Phase with an
 extra activity if Elaboration Phase]
 Activity : Plan Product Line Components Construction
 ProcessRole : Domain Architect
 WorkProduct : P. L. Components Implementation Plan
 Steps

 Step : Identify implementation relations
 Step : Define component sets
 Step : Evaluate the results
 WorkDefinition : Evaluate Project Product Line State
 [like RUP workproduct Manage Iteration]
 WorkDefinition : Initiate Specific Product
 Activity : Assess Product suitability to Product Line (NEW)
 [Not necessary if the product is an exemplar]
 ProcessRole : Product Line Manager
 WorkProduct : Product Line Feature List
 WorkProduct : Product Specific Vision [Outlined]
 WorkProduct : Product Suitability Document
 Steps
 Step : Describe specific product
 Step : Analyze current organization situation
 Step : Analyze product characteristics

42

 Step : Analyze product line features
 Step : Draw conclusions
 Activity : Identify and Assess Risks
 ProcessRole : Product Line Manager
 WorkProduct : Product Risk List
 WorkProduct : Risk Management Plan
 Steps
 Step : Identify potential risks
 Step : Analyze and prioritize risks
 Step : Identify risk avoidance strategies
 Step : Identify risk mitigation strategies
 Step : Identify risk contingency strategies
 Activity : Initiate Specific Product
 ProcessRole : Product Line Manager
 WorkProduct : Product Software Development Plan
 WorkProduct : Iteration Plan (first iteration)
 Steps
 Step : Assign project review authority (PRA)
 Step : Assign project manager
 Step : Assign project planning team
 Step : Approve project acceptance criteria
 Activity : Product Specific Approval Review
 ProcessRole : Product Line Manager
 WorkProduct : Software Development Plan
 WorkProduct : Product Vision
 WorkProduct : Product Approval Review Record
 Steps
 Step : Conduct project approval review meeting
 Step : Record decision
Discipline : Environment
 WorkDefinition : Prepare Environment for Product Line
 [like RUP workproduct Prepare Environment for
 Project, but with entire Product Line]
 WorkDefinition : Prepare Environment for Project
 [like RUP workproduct Prepare Environment for
 Project, but is executed when a new project is
 initiated (see Initiate Specific Product)]
 WorkDefinition : Prepare Environment for an Iteration
 [like RUP workproduct Prepare Environment for an
 Iteration]
 WorkDefinition : Prepare Guidelines for an Iteration
 [like RUP workproduct Prepare Guidelines for an
 Iteration]
 WorkDefinition : Support Environment During an Iteration
 [like RUP workproduct Support Environment During
 an Iteration]

43

Appendix B: Product Engineering Process Additions (SPEM
style definition)

Discipline : Requirements

Subactivities
 WorkDefinition : Analyze the Problem
 Activity : Find Basic Product Features (NEW)
 ProcessRole : System Analyst
 WorkProduct : Product Feature List [outlined]
 Steps
 Step : Find Features
 Step : Describe Features and Exemplars Relations
 Step : Relate Features with other Features
 Step : Insert Features into Feature Model
 Step : Evaluate the results
 WorkDefinition : Understand Stakeholder Needs
 Activity : Find Basic Product Features (NEW)
 ProcessRole : System Analyst
 WorkProduct : Product Feature List [outlined]
 Steps
 Step : Find Features
 Step : Describe Features and Exemplars Relations
 Step : Classify Features
 Step : Relate Features with other Features
 Step : Insert Features into Feature Model
 Step : Evaluate the results
 WorkDefinition : Define the System
 Activity : Find Product Features (NEW)
 ProcessRole : System Analyst
 WorkProduct : Product Feature List
 Steps
 Step : Find Features
 Step : Describe Features and Exemplars Relations
 Step : Classify Features
 Step : Relate Features with other Features
 Step : Insert Features into Feature Model
 Step : Evaluate the results
 WorkDefinition : Integration into Product Line (NEW)
 Activity : Validate Product Features
 ProcessRole : System Analyst

44

 WorkProduct : Product Feature List [Validated]
 Steps
 Step : Check Feature names conflicts
 Step : Check Features existence at Product Line
 Feature Model
 Step : Check Feature functionality
 Step : Change Features to complains to Product
 Line Feature Model
 Activity : Create Product Feature Model
 ProcessRole : System Analyst
 WorkProduct : Product Feature Model
 WorkProduct : Product New Features List
 Steps
 Step : Merge with product line feature model
 Step : Prune resulting feature model
 Step : Check new features
 Activity : Manage Dependences / Conflicts
 ProcessRole : System Analyst
 WorkProduct : Product Feature Model
 WorkProduct : Product Conflicting Features Model
 WorkProduct : Product New Features List
 Steps
 Step : Analyze conflicting feature and required
 changes
 Step : Analyze changes effect onto related features
 Step : Decide if implement a new component o
 modify existent
 WorkDefinition : Manage the Scope of the System
 Activity : Prioritize Features / Use Cases (NEW)
 ProcessRole : Software Architect
 WorkProduct : Software Architecture Document
 [Feature/Use Case View]
 Steps
 Step : Prioritize Features
 Step : Prioritize Use-Cases and Scenarios for each
 Feature
 Step : Document the Feature/Use-Case view
 Step : Evaluate the result
 WorkDefinition : Refine System Definition
 [Only for new features or modified]
 Activity : Detail Feature (NEW)
 ProcessRole : System Analyst
 WorkProduct : Product Feature List
 Steps
 Step : Detail characteristics abstracted by Feature

45

 Step : Relate Features with other Features
 Step : Insert Features into Feature Model
 Step : Evaluate the results
 WorkDefinition : Manage Changing Requirements
 Activity : Review Features (NEW)
 ProcessRole : System Analyst
 WorkProduct : Product Feature List
 WorkProduct : Product Conflicting Features Model
 WorkProduct : Product New Features List
 Steps
 Step : Analyze new Features needed
 Step : Analyze Features changes needed
 Step : Analyze new / changed Features relation
 with PL Feature Model
 Step : Evaluate the result

Discipline : Analysis & Design

Subactivities
 WorkDefinition : Define Architecture Candidate
 Activity : Derivate Product Line Architecture (NEW)
 ProcessRole : Software Architect
 WorkProduct : Core Architecture
 Steps
 Step : Select PL Architecture assets (from features)
 Step : Integrate assets
 Step : Evaluate your result
 Activity : Use-Case Analysis (only for no implemented
 features – NEW CONDITION)
 WorkDefinition : Refine Architecture
 Activity : Identify Features (NEW)
 ProcessRole : Software Architect
 WorkProduct : Product Feature Model
 WorkProduct : New Features List
 Steps
 Step : Identify new characteristic
 Step : Classify Feature
 Step : Relate Features with other Features
 Step : Insert Features into Feature Model
 Step : Evaluate the results
 Activity : Review Design
 ProcessRole : Architecture Reviewer (NEW)
 WorkProduct : Product Line Change Request
 Steps
 (NEW) Step : Review Feature

46

 WorkDefinition : Analyze Behavior (only non existing features)
 Activity : Identify Features (NEW)
 ProcessRole : Software Architect
 WorkProduct : Product Feature Model
 WorkProduct : New Features List
 Steps
 Step : Identify new characteristic
 Step : Classify Feature
 Step : Relate Features with other Features
 Step : Insert Features into Feature Model
 Step : Evaluate the results
 Activity : Review Design
 ProcessRole : Architecture Reviewer
 WorkProduct : Product Line Change Request
 Steps
 (NEW) Step : Review Feature

Discipline : Configuration & Change Management

Subactivities
 WorkDefinition : Manage Change Request
 [If it’s a change request of a product line component, the
 submission must be done to the product line team; in this case
 the change request will be a process line change request]

Discipline : Deployment

Subactivities
 WorkDefinition : Produce Deployment Unit
 Activity : Submit Insert Component Request (NEW)
 ProcessRole : Deployment Manager
 WorkProduct : Insert Component Request
 Steps
 Step : Complete Insert Component Request
 Step : Submit the Insert Component Request

Discipline : Project Management

Subactivities
[The first activity is already done by Product Line
Management, then is eliminated]
 WorkDefinition : Close-out Project
 Activity : Resume Project (NEW)
 ProcessRole : Project Manager
 WorkProduct : Product Mecano Description Document
 Steps

47

 Step : Create Project Functional Descriptor
 Step : Evaluate Results

