
Reuse based Requirements Clustering

Oscar López Villegas
Technological Institute of Costa Rica,

olopez@infor.uva.es

Miguel Ángel Laguna
University of Valladolid,
mlaguna@infor.uva.es

Francisco J. Garcı́a
University of Salamanca,

fgarcia@usal.es

Abstract

Requirements reuse is intended for cost reduction by benefiting from reusable
requirements elements (assets) in software development. In general, successful
reuse approaches are based on the identification of commonalities and variabilities
between application family members. There are many domains where the software
development process has not followed an application family focus. Addressing the
requirements reuse in these domains requires an analysis to sort the requirements
and discover the commonalities and variabilities. This paper presents a coloured
Petri net based technique for analysis and clustering of requirements information
such that one could take advantage of it within a reuse framework.

Keywords: Requirements engineering, requirements reuse, use case, coloured Petri
net.

1 Introduction

Software reuse approach has successfully contributed to improve the software devel-
opment process in restricted and well understood domains. As a consequence, several
reuse approaches have appeared, for example FODA [6], PuLSE [1] y ODM [13],
which face the software development on the basis of taking advantage of reusable el-
ements (assets) between members of an application family. This reuse approach is
usually called “product lines”. In general, the product lines based approach increases
the productivity and reduces the development cost for each product. It improves the
quality and it also allows the better estimation related to the software development pro-
cess to be done.

The starting point for a product line approach is the domain analysis. This analy-
sis leads to the development of a common software architecture which allows the re-
quirements, design and implementation elements to be shared among different family
members. There are, however, lots of companies which have been developing software
for a long time and without a product line approach. Also, these usually do not have
enough resources to afford a domain analysis from the scratch. An attractive alterna-
tive for these organizations could be one which tries to sort the existing specifications

to be reused in a product family approach. This requirement sorting should be based on
analyzing the set of domain requirements as a whole, thus establishing a requirements
family such that it makes the development management easier.

For analysis and clustering of requirements we need to address the problem of
diverse notations and lack of formality in requirements representations. The docu-
mentation of the requirements is basically oriented to being a means of communication
between analysts and stakeholders (customers, developers, maintenance personal, man-
agers, etc.). For this reason, it is represented with diverse notations and formats. Fur-
thermore, the needs for communication between many people lead to avoid the higher
levels of formality in initial requirements documentation [12]. This diversity and lack
of formality imply the need for particular actions to analyze requirements documents
and group them together in a repository of reusable artifacts [4].

In this paper we propose a technique for analysis and clustering of existing require-
ments diagrams in a domain. Requirements that have been captured and documented
based on semiformal diagrams are integrated by a common model. Then, the require-
ments lack of formality is corrected through Petri nets formalism. After that, we are in
a position to apply corresponding mechanisms to set the requirements into a coloured
Petri net (CPN) based structure. This structure always allow the domain requirements
and the application requirements to be viewed. The organization of requirements has
been proposed by different authors. Kuseela [8] proposes a hierarchy in which the
design objectives are defined by other design objectives or by design decisions. Lam-
sweerde also [14] has proposed an objectives hierarchy. Mannion [7] proposes a dis-
crimination based arrangement. The main difference between these proposals and ours
consists of we are proposing a way to benefit from existing information while those
claim for developing the proper structure as whole.

The rest of the paper is distributed in 3 sections. Section 2 deals with the analysis
of existing diagrams. In section 3 we explain how to set the diagrams to obtain a
requirements reuse structure and it is applied to use cases clustering. The section 4
concludes the paper and proposes additional work.

2 Analysis of Requirements Diagrams

The requirements specification acts as a means of communication of customer needs
and it constitutes the information flow from analysis stage towards design and imple-
mentation stages. In industrial software production, requirements specification is based
on segmenting the market and minimizing the implementation cost, thus trying to reuse
assets. Moreover, the requirements can be modified regarding both the understanding
of product characteristics and availability of reuse options. On this context, there is a
need for taking into account the requirements of all potential family members, thus a
great deal of data is expected to be processed in complex domains. For this reason it
must be available tools to analyze the requirements information in domains and then
associate it to design information in a software reuse framework.

Due to the communication and agreement needs, the more graphical, intuitive and
semi-formal models, the more widely used in requirements engineering process [12].
However, lack of formality constrains the systematic analysis of the behaviour of re-

2

quirements components. This shortage is a critical issue in real reuse environments.
As a consequence, it must be found the way of translating requirements semiformal
models to a precise language, a standard one if possible, to describe and manage dif-
ferent requirements models in a domain. To do so, in this section the representation of
diagrams in CPN formalism is addressed. The software requirements act as a complex
pattern of rules reflecting static and dynamic issues of the system [10] which may be
adequately modeled by CPN. Furthermore, CPN supplies such a strong formal support
that it has been successfully applied in modeling complex systems [5].

Correspond to

Transitions
 Correspond to

tokens
 Correspond to Transitions

Correspond to CPN models

Correspond to a set of CPN elements

Only between transitions and making

them to become Substitution Transitions

Individual

Goal

Job

Model

Relationship

Interaction

Representation

Subject

Company

Unit

Autonomous

System

Compulsory

Temporal

Coordination

Resources

Coordination

Resources

Representation

Activities

Representation
 From

User

Unit

Relationship

Condition
State

Multiple

Action

Sequence

Coordination

Selective
Linear
 Concurrent

IsAKindOf
 Coordination

Requirements

Representation

Association

2..*
*

cause

effect

1 *

1 *

source

target

* 1

* 1

Modeling

Unit

Unit Model

Relationship

1

cause

1

effect
 *
 *

Alternative
Optional

Makes a Transition to become

a Substitution Transition

Inclusion
Equivalence
 Extension
Subset
Exception
Complement

Dependency

From

System

Activity

{sorted}

*

Figure 1: Common Model of Software Requirements, expressed in UML, and its cor-
respondence with CPN elements.

2.1 Common Model for Requirements Diagrams

The requirements diagrams could be describe with a common model, as shown in fig-
ure 1. The central elements of this model are the Requirements Representation, which
is used to describe the different diagrams, and the Modeling Unit, which describes units
that belong to the requirements diagrams. There are three categories of Requirements
Representations whereas five of Modeling Units, four of relationships among Model-
ing Units and four of relationships between Requirements Representations.

The relationships between Modeling Units are described in the common model as
instances of the Unit Relationship class. These relationships represent the association
between elements inside a requirements diagram. These relationships between Model-
ing Units have an essential role in the reuse strategy because they describe the content
of diagrams. All these kinds of relationships between Modeling Units show a causality
issue establishing that some elements act as a cause while others act as an effect.

The relationships between Requirements Representation are described in the com-
mon model as instances of the Model Relationship class. These relationships give us
the basis for the integration of different levels of requirements description in the reuse
strategy. These relationships refer to the way in which the diagrams are combined to

3

associate distinct descriptions of the domain. For example, these relationships allow
a Use Case Diagram or an Activity Diagram to be related to a Class Diagram or a
Sequence Diagram. Model Relationship has a structural issue which determines the
degree of association between two or more related diagrams.

Some modeling units may have such a complexity that they need to be specified
in another complete requirements representation. For example, a process in a Data
Flow Diagram may be exploded in another Data Flow Diagram, or a use case may be
specified as a Sequence Specification Template. These relationships are described as
Unit Model Relationships.

2.2 Matching the Requirements Model and CPN

In order to translate the common model to a formal language, we have establish the
correspondence between the requirements common model and CPN [9]. This corre-
spondence could be expressed in following terms (see figure 1):

1. Modeling Units:

(a) State, goal, condition and subject match to tokens.

(b) Job and action match to transitions.

2. A Requirements Representation matches to a transition.

3. Relationships:

(a) Relationships between Modeling Units:

i. Dependency and Association match to a set of elements formed by
arcs, places, tokens and arc expressions.

ii. IsAKindOf Relationship is ignored because it is only descriptive in the
requirements models we have dealt with.

iii. Coordination Relationships match to CPN models. These relation-
ships are only established between modeling units which are repre-
sented as transitions.

(b) Relationships between Modeling Units and Requirements Representations
(Unit Model Relationship) are only established between transitions and it
makes the transition to become a substitution transition.

(c) Relationships between Requirements Representations (Model Relationship)
are translated to a set of elements formed by arcs, places, tokens and arc
expressions.

(d) Relationship of Aggregation between Modeling Units and Requirements
Representations makes the container transition to become a substitution
transition.

2.3 Algorithm to Translate Requirements Diagrams to CPN

From matching common model and CPN, the projection of requirements diagrams to
CPN models might be obtained. To do so, we must apply the matching rules in a given
order. In this section we present an algorithm for translation of requirements diagrams
(such as Use Case Diagram, Workflow, or Activities) into a CPN model following a
top-down direction.

4

1. Project each requirements representation to a substitution transition.

2. Represent the relationships between requirements representations (instances of
the Model Relationship) by following the rule 3c. (Note: Compulsory, Alter-
native, Optional, and Multiple kinds of relationships are represented as CPN
models).

3. While there exist substitution transitions do the representation of their content.
The relationships are represented as follows:

(a) Represent the dependency and coordination relationships between the in-
stances of Job and Action metaclasses.

(b) Represent the association and dependency relationships between State, Goal,
Condition and Subject.

i. The Cause role in States, Goals, Conditions and Subjects is repre-
sented by marks in corresponding previous places and arc expressions.

ii. The Effect role in States, Goals, Conditions and Subjects is repre-
sented by marks in corresponding post places and arc expressions.

This algorithm allows the formalized expression of the described requirements di-
agrams to be obtained. This CPN formalized expression allows the requirements dia-
grams to be analytically treated with available CPN based tools. Furthermore, this CPN
based requirements formalization provides the necessary support for our requirements
organization scheme to approach the requirements reuse.

2.4 Obtaining Data from Requirements Diagrams

The requirements reuse, which is inside the general context of software reuse, aims to
take advantage of previous development effort in new products development. Reusing
requirements can be aimed both at obtaining better and quicker software specifications
and directing the elaboration for reusable design and implementation in a domain un-
der an application family based approach. For these aims the requirements reuse relies
on a domain requirements analysis. Several techniques address the domain analysis
(FODA, FORM, PuLSE, etc.) but they need an exhaustive domain analysis and they
demand for a great investment. On the contrary, our proposal takes the set of existing
requirements documents as the starting point to carry out a reuse based requirements
analysis, see figure 2. This analysis essentially consists of extracting a domain require-
ments description from the available requirements diagram.

The requirements description is carried out by taken all the domain applications
into account and it is expressed in terms of coordination, dependency and association
relationships. This description allows the domain generic requirements to be identified.
The supporting idea here is the specific domain has been modeled through the time in a
series of software applications. From this sample of applications the requirement doc-
umentation is analyzed in order to obtain a domain characterization. In other words,
if software applications model the domain, analyzing the requirements documents al-
lows the specific characterization in terms of domain requirements to be obtained. This
characterization is based on Coordination, Dependency and Association relationships.

5

DOMAIN

Facet based

Requirements

Catalogue

Requirements

Diagrams

Description of

the Domain

Requirements

Obtain

In terms of

Implementation

Design

Requirements

Implementation

Design

Requirements

Implementation

Design

Requirements

PROJECT1
 PROJECT2
 ...
 PROJECT N

Coordination
 Association
 Dependency

Action Patterns
 such as

execution, cooperation,

delivery, etc.

Diagram Patterns
 such as

production, collaboration,

negotiation, etc.

Figure 2: Reuse based Requirements Analysis. From Requirements Diagrams, be-
longing to Domain Software Projects, a Requirements Description is obtained. This
description is expressed in terms of Coordination, Dependency and Association.

3 Requirements Clustering

The requirements systematic reuse requires the information to be clustered in an envi-
ronment (then a set of supporting tools is supposed to be available). In this context, the
reuser is one who express the characteristics of the reusable elements to be retrieved
from the repository and then the environment must return the reusable elements satisfy-
ing those characteristics. In such a case of there is no satisfactory answer to the reuser
then the environment might help the reuser to create the desired element, perhaps by
partially reusing elements from the repository.

The first necessary element to requirements clustering, in a reuse environment, is
diagrams formalization that make us sufficiently sure about precision of modeling data.
Having the translation of requirements diagrams into CPN, we propose a scheme where
requirements diagrams are arranged in a Petri net itself, as shown in figure 3. The Select
place is the entering point where the reuser determines which is the desired informa-
tion. Depending on which information is introduced then the corresponding transition
is triggered: Modeling Technique, Domain Pattern or Domain Requirements. Each
one of these transitions sends a corresponding signal to the Begin place. The signal in
Begin makes the Display transition to be triggered then producing the corresponding
information for Diagram (Template), Requirements Pattern and Requirements Classi-
fication places. The Display transition takes the necessary information from the fusion
places (identified with dotted lines) of figure: T, L, O, R, C, D, A. These fusion places
contain the information that characterizes to domain requirements after the Sort transi-
tion has been triggered.

The arrangement scheme we propose allows the requirements information to be
viewed in different ways. It could be displayed as templates, patterns or classification
scheme. In this way the environment is a tool for domain analysis. The information that
is stored in fusion places supports for the domain characterization in terms of generic
requirements.

6

CPN-Formalized

Diagram2

CPN-Formalized

Diagram3

CPN-For
 ...

Sort

CPN-Formalized

Diagram1

CPN-Formalized

Diagram N

T
 L
 R
 C

Modeling

Technique

Domain

Pattern

Domain

Requirements

Display

Requirements

Pattern

Diagram

(Template)

O
D
A

Select

Begin

Requirements

Classification

Figure 3: Petri net for requirements clustering. The Sort transition allows the require-
ments descriptive information to be put in fusion places. The Select place allows the
sorting process to be triggered.

3.1 Classification Criteria for Requirements

Due to interdependencies between requirements [2], reusing a complete diagram in an
application being different from the original one is a very difficult and unlikely scene.
Reusing some information from diagrams is more workable. If this information may
be (semi) automatically extracted then it makes the clustering of knowledge related to
requirements easier.

The fundamental element of the different requirements diagrams is any instance of
the Job metaclass (for example, each use case in a Use Case Diagram). The instances
of Job metaclass show coordination and dependency relationships between them. They
are also formed by other jobs and actions which have different relationships between
them. These modeling units are the reusable elements in systems level software re-
quirements. For this reason, they have to be arranged in order to be able to reuse them.
The Jobs may be classified by applying two orthogonal criteria: (a) Domain Patterns
and (b) Coordination Relationships.

Regarding to the domain patterns, we have adopted the domain independent reg-
ularities which are proposed in [11]. The decision tree of figure 4 shows these pat-
terns. By combining the association and dependency relationships, a Job S falls in one
and only one of following categories: Sensors, Production, Collaboration, Negotiation
Step, Negotiation Step with Jobs Triggering, End of Negotiation, Complete Negoti-
ation, Service, Unfinished Negotiation with Jobs Triggering, Unfinished Negotiation.
Criteria to assign the jobs to the former categories are shown in the figure.

Regarding to coordination relationships, a Job S is assigned to one and only one of
the following categories (where i means the number of steps in the job):

Temporal Coordination:
���������	��
���
������������������

Linear Sequence: � ��� � � ��
������
!� ���������"��#��

Selective Sequence: $ ��� $ �%��
&�'
!� ���������(�)*�

Concurrent Sequence: + ��� + �,��
��-
������������(�/.��

7

No

Previous

Demand

Response

Is there a

passive actor

Response

Only one

Service

Complete

Negotation

Unfinished

Negotiation

End of

Negotiation

Negotiation

Step with jobs

triggering

Unfinished

Negotiation with

jobs triggering

Only one

Negotiation

Step

No

Start

The action is always CARRY OUT

Job is related by DEPENDENCY:

inclusion, subset, complement,

extension, equivalence, or

exception

Internal Actors do not

perform the SEND action

There is an Actor which

only performs RECEIVE

actions

Internal Actors exactly perform

the SEND action once

Yes

Only one

Actor

Production

Complementary

Roles

Collaboration
Yes

No

Yes

No

Yes
No
 No
 Yes

Yes

Yes

No

Yes

No

Figure 4: Classification of jobs by applying requirements patterns.

Resources Sharing: � ��� � �,��
&�-
������������(���*�

The classification criteria (domain patterns and coordination relationships) when
applied to a set of requirements diagrams allow a clustering for the jobs or domain
services to be obtained. This distribution constitutes a table of classification displaying
a view of the services or jobs belonging to each diagram. It constitutes a specification
family in a domain. Each cell of the table represents a commonality point in the domain
requirements. As a result, applying the classification scheme to a set of requirements
projects allows a service taxonomy to be obtained. This taxonomy allows the typical
domain pattern of job ordering to be displayed. One can benefit from this taxonomy
through two ways, which have been mentioned in subsection 2.4. First, taking it as
a guideline to the construction of reusable design and implementation elements in the
domain. Second, taking it as reusable elements in development of new specifications
in the domain. These two alternatives of requirements reuse should be addressed as a
part of our future work.

3.2 An Example of Use Cases Arrangement

Use cases are a well known modeling technique which can be arranged by applying
our proposed scheme for analysis and clustering of requirements. The corresponding
translation of Use Case Diagram to CPN is obtained by applying the guidelines we
have established in sections 2.2 and 2.3.

Figure 5 shows a use case diagram for policies claiming, borrowed from [3]. There
are five use cases �,+����	� and two actors in this diagram. By applying the classification
scheme to this diagram we assign the use cases to the corresponding categories. By
following the decision tree of figure 4, the +���
 use case is classified as Unfinished
Negotiation with Jobs Triggering. In this +���
 use case there exist two actors whose
have complementary roles, there exits no previous demand and several responses are
supposed to be produced. The +���� use case is classified as Negotiation Step due to
there exists a previous demand and it is supposed to be produced a response from this
use case. The +���
 use case falls in the Negotiation Step category due to there exists
a previous demand and there is no expected response from this case. The +���� and
+���� use cases are classified as Negotiation Step with Jobs Triggering because of the

8

Unfinis. Negot. w. jobs trig.

Negotiation Step

End of Negotiation

Negotiat. Step w. jobs trig.

Negotiat. Step w. jobs trig.

Table for Use Cases Clustering

Use Cases Specification

System (partially):
 Get pay for car accident

Main Success Sequence
 (CU1)

1. Claimant submits claim with substaining data

2. Insurance company verifies claimant owns a valid policy

3. Insurance company assigns agent to examine case

4. Agent verifies all details are within policy guidelines

5. Insurance company pays claimant

Extensions

1.a. Submitted Data is incomplete:
 Request for additional

data
 (CU2)

1.a.1. Insurance company requests missing

information

1.a.2. Claimant supplies missing information

2.a. Claimant does not own a valid policy:
 Decline claim

(CU3)

2.a.1. Insurance company declines claim

2.a.2. Notifies claimant

2.a.3. Record all this

2.a.4. Terminates proceedings

3.a. No agents are available at this moment:
 Assign an

external agent
 (CU4)

3.a.13.a.4

4.a. Accident violates basic policy guidelines:
 Decline

claim

idem 2.a

4.b. Accident violates some minor policy

guidelines:
 N
egotiation with claimant
 (CU5)

4.b.1. Insurance company begins negotiation...

4.b.4

Get pay for

car accident

Request for

additional

data

Decline

claim

Asign

external

agent

Negotiation

with

claimant

extend

extend

extend

extend

Claimant

Insurance

company
CU
 1

CU
 2
 CU
 3

CU
 4
 CU
 5

CU1

CU2

CU3

CU4

Task Pattern

L2

L4

L5

CU5

L4

L4

Execution

Inquiry

Inquiry & concession

Job
 Action Pattern

incomplete data

incomplete data

Sequence

Pattern

Figure 5: Use cases clustering for policy claiming system.

existence of previous demand for performing these use cases and, besides the example
do not supply enough details, supposedly there exist several responses from these two
use cases. Finally, the +���
 � +�� � and +���� use cases are assigned to � � category
because of they are specified as a linear sequence with four steps. Analogously, the
+���
 and +���� use cases are classified into the � � and � � categories, respectively.

4 Conclusions and Future Work

In this paper we propose a way for analysis and clustering of reusable requirements.
The proposal allows the domain description to be obtained in terms of the coordination,
association and dependency relationships related to the modeled services in different
techniques under a common model for requirements. We address the formalization of
the static and dynamic issues of the system in order to obtain the generic requirements
which generalize the variability in a domain. The requirements formalization is sup-
ported by the CPN formalism.

We have not been looking for a technique for substituting the requirements dia-
grams but for formally represent them in order to precisely extract the information
allowing the reuse based requirements classification to be obtained. The execution or
simulation of the Petri net gives us the basis for the process of obtaining the descrip-
tion of diagrams which belong to different projects. All this description provides us a
double mechanism for syntactic validation and automatic data extraction to classify the
requirements in a domain.

Our future work is aimed at defining process for developing the requirements speci-

9

fications in a domain. This process should be founded on the structure for requirements
analysis and organization we proposed in present paper. Furthermore, from this pro-
posal for requirements clustering, we aim to explore the possibilities for developing the
design and implementation elements in a specific domain.

Acknowledgments
This work is sponsored by the DOLMEN Project within CICYT-TIC2000-1673-C06-05, Ministry of Tech-
nology and Science, Spain.
Oscar López wishes to thank the Spanish Agency for International Cooperation (AECI) and the Ministry of
Technology and Science of Costa Rica.

References
[1] J. Bayer, O. Flege, P. Knauber, R. Laqua, D. Muthig, K. Schmid, T. Widen, and J. M.

DeBaud. PuLSE: A methodology to develop software product lines. In Proceedings of the
Fifth ACM SIGSOFT Symposium on Software Reusability (SSR’99), pages 122–131, Los
Angeles, CA, USA, May 1999. ACM.

[2] P. Carlshmre, K. Sandahl, M. Lindvall, B. Regnell, and J. och Dag. An industrial survey
on requirements interdependencies in software product release planning. In Proceedings of
the 5th IEEE International Symposium on Requirements Engineering, pages 84–91. IEEE
Computer Society, August 2001.

[3] A. Cockburn. Writing Effective Use Cases. Addison-Wesley, Boston, 2000.
[4] J. L. Cybulski. Patterns in software requirements reuse. Technical report, Department of

Information Systems. University of Melbourne, July 1998.
[5] K. Jensen. Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use,

Volume 3. Springer-Verlag, Berlin, Germany, 2nd edition, 1997.
[6] K. Kang, S. Cohen, J. Hess, W. E. Novak, and A. Peterson. Feature-Oriented Domain

Analysis (FODA). Feasibility study. Technical Report CMU/SEI-90-TR21 (ESD-90-TR-
222), Software Engineering Institute, Carnegie-Mellon University, Pittsburgh, Pennsylvania
15213, November 1990.

[7] B. Keepence, M. Mannion, H. Kaindl, and J. Wheadon. Reusing single system requirements
from application family requirements. In Proceedings of the 21st International Conference
on Software Engineering, pages 453–462. ACM Press, May 1999.

[8] J. Kuusela and J. Savolainen. Requirements engineering for product lines. In Proceedings
of ICSE 2000, IEEE. IEEE Computer Society, 2000.

[9] O. López, M. Laguna, and F. Garcı́a. Representación de requisitos mediante redes de Petri
coloreadas. Technical Report IT-DI-2002-1. Departamento de Informática, Universidad de
Valladolid, 2002.

[10] K. Pohl. Requirements engineering, an overview. Encyclopedia of Computer Science and
Technology, Vol. 36, Marcel Deccer Inc., 1996.

[11] M. Ridao, J. Doorn, and J. Leite. Domain independent regularities in scenarios. In Pro-
ceedings of the 5th IEEE International Symposium on Requirements Engineering, pages
120–127. IEEE Computer Society, August 2001.

[12] C. Rolland and N. Prakash. From conceptual modelling to requirements engineering. Tech-
nical Report Series 99-11, CREWS, 1999.

[13] M. Simos, D. Creps, C. Klingler, L. Levine, and D. Allemang. Organization domain model-
ing (ODM) guidebook - version 2.0. Technical Report STARS-VC-A025/001/00, Lockheed
Martin Tactical Defense Systems, 9255 Wellington Road Manassas, VA 22110-4121, June
1996.

[14] A. van Lamsweerde, R. Darimont, and P. Massonet. Goal-directed elaboration of require-
ments for a meeting scheduler: Problems and lessons learnt. In Proceedings: 2nd IEEE
International Symposium on Requirements Engineering, pages 194–203. IEEE Computer
Society Press, 1995.

10

