
Reuse based Analysis and Clustering of Requirements
Diagrams

Oscar López1, Miguel A. Laguna2, and Francisco J. Garcı́a3

1 Technological Institute of Costa Rica, San Carlos Regional Campus, Costa Rica
olopez@infor.uva.es

2 Department of Informatics, University of Valladolid, Spain
mlaguna@infor.uva.es

3 Department of Informatics and Automatics, University of Salamanca, Spain
fgarcia@usal.es

Abstract. Requirements reuse is intended for cost reduction by benefiting from
reusable requirements elements (assets) in software development. In general, suc-
cessful reuse approaches are based on the identification of commonalities and
variabilities between application family members. However, there are many do-
mains where the software development process has not followed an application
family focus. Addressing the requirements reuse in these domains requires a pro-
cess to set up a taxonomy which should be founded on analysis and clustering
of requirements information. This paper presents a technique, which is based
on metamodeling, Petri nets and facets, for analysis and clustering of require-
ments diagrams. This technique is supported by a prototype system within a reuse
framework.

Keywords: Requirements engineering, requirements reuse, use case, Petri net, facets.

1 Introduction

Software reuse approach has successfully contributed to improve the software devel-
opment process in restricted and well understood domains. As a consequence, several
reuse approaches have appeared, for example FODA [9], PuLSE [1] y ODM [25], which
face the software development on the basis of taking advantage of reusable elements
(assets) among the members of an application family. This reuse approach is usually
called “product lines”. In general, the product lines based approach increases the pro-
ductivity and reduces the development cost for each product. It improves the quality
and it also allows the better estimation related to the software development process to
be done [2, 3].

The starting point for a product line approach is the domain analysis. This analy-
sis leads to the development of a common software architecture which allows the re-
quirements, design and implementation elements to be shared among different family
members. There are, however, lots of domains where software development has been
addressed for a long time and without a product line based approach. Also, on these

domains usually there are not enough resources to afford a domain analysis from the
scratch, e.g. the domain of software applications for handicapped people. An attrac-
tive alternative for this kind of domains could be one which tries to sort the existing
specifications to be reused in a product family approach, thus making the development
management easier.

Establishing a requirements family allows the effectiveness in software reuse to be
accomplished. Neighbors [18] points out that effective reuse has to be addressed at a
high level of abstraction, thus the concept of domain-oriented reuse appears. Domain
orientation means the reusable elements are ones which implement the domain con-
cepts. To implement the domain concepts, the domain knowledge must be classified in
a taxonomy. Building of domain taxonomies, on requirements reuse context, has been
approached in different works [6, 10, 11, 26] which face the specification of reusable
requirements with natural text and formal language. In contrast to works, we propose
establishment of a requirements family from existing, semiformal diagrams on a do-
main.

This paper presents a domain oriented approach to reusing software requirements.
The proposal is based on setting up a Diagram Family Model to generate new require-
ments specifications. Requirements that have been captured and documented based on
semiformal diagrams are integrated by a metamodel and they are stored as a family in
a repository. To make sure about some quality issues of the stored reusable elements
we automatically analyze them in a Petri net environment. After that, we are in a posi-
tion to apply a mechanism to cluster the requirements in such a way that it allows the
domain requirements patterns to be identified. The rest of the paper is distributed as
follows: Section 2 deals with the analysis of existing diagrams. In section 3 we explain
how to set the diagrams to obtain a requirements reuse structure and it is applied to use
cases clustering. Section 4 presents a tool for requirements reuse. Section 5 shows a
case study. Section 6 relates our work to other known studies. The section 7 concludes
the paper and proposes additional work.

2 Analysis of Requirements Diagrams

The requirements documentation acts as a means of communication of customer needs
and it constitutes the information flow from analysis stage towards design and imple-
mentation stages. In industrial software production, requirements specification is based
on segmenting the market and minimizing the implementation cost, thus trying to reuse
assets. Moreover, the requirements can be modified regarding both the understanding
of product characteristics and availability of reuse options. On this context, there is a
need for taking into account the requirements of all potential family members. Thus, a
great deal of requirements information, which is modeled with distinct formality lev-
els, is expected to be processed in complex domains. For this reason, techniques and
supporting tools must be available to analyze the requirements information in a product
line based approach.

Due to the communication and agreement needs, the more graphical, intuitive and
semiformal models, the more widely used in requirements engineering process [23].
However, lack of formality constrains the automatic and systematic analysis of the be-
haviour of requirements components. This shortage is a critical issue in real reuse en-
vironments. As a consequence, it must be found the way of transforming semiformal
models to a precise language, a standard one if possible, to describe and manage dif-
ferent requirements models in a domain. We address the analysis of requirements by
normalizing the representation of diagrams in metamodeling [15] and projecting dia-
grams to CPN formalism [14]. Metamodeling allows diverse models to be integrated
[7, 17] while CPN [8] supply formal support to modeling of complex systems. The
software requirements reflect a complex pattern of rules for static and dynamic issues
of the system [20] which may be adequately modeled by CPN. Furthermore, description
of requirements diagrams with Petri nets allows the automatic and analytical treatment
of requirements information to be done [13].

Person

Goal

Job

Model Level

Workflow
Diagram

Use Cases
Diagram

Activity
Diagram

Model
Relationship

Subject

Company
Unit

Autonomous
System

Compulsory

Temporal
Constraint

Resource
Constraint

Meta Level

From
User

From
System

Unit
Relationship

AlternativeOptional

Data Level

Constraint State

Multiple

Action

JointLinear Split

Generalization

Data Flows
Diagram

Document-
Task

Diagram

Requirements
Representation

Association

2..**
source

target

1 *

1 *

characterize >
1 0..1

1 1

* parent * child

Scenarios
Diagram

Dependency

Modeling
Unit

Unit Model
Relationship

11

* *

Workflow of an
Organization

Use Cases Diagram
of a System

Scenarios Diagram of
a System

DTd for an
Organization

Activity Diagram of a
System

DFd for an
Organization

Sequence
Specification

Template

Sequence
Specification

InclusionEquivalence ExtensionSubsetExceptionComplement

Activity *Semiformal

Behavioural
Model

Structural
Model

Behavioural and
Structural Model

Connector

Domain
Objective

Project

1..*

1..*

DataPhysical

Fig. 1. Requirements Metamodel expressed in UML.

2.1 Metamodel for Requirements Diagrams

We carried out an abstraction process to propose a conceptual scheme describing di-
verse requirements diagrams in the reuse framework. This conceptual scheme consti-
tutes a metamodel for different semiformal requirements diagrams, see figure 1, more

details could be found in [15]. The metamodel is theoretical basis for our reuse frame-
work such that each requirement information element from semiformal diagrams is an
object instance of some metaclass.

The main elements of our metamodel are the Requirements Representation, which
describes different requirements diagrams, the Modeling Unit, which describes units
that belong to the requirements diagrams, and the Domain Objective, which allows the
Requirements Representation to be characterized. There are three categories of Require-
ments Representations whereas six of Modeling Units, three of relationships among
Modeling Units and four of relationships between domain Objectives.

The relationships between Modeling Units are described in the metamodel as in-
stances of the Unit Relationship class. These relationships represent the association
between elements inside a requirements diagram. These relationships between Model-
ing Units have an essential role in the reuse strategy because they enhance the content
of diagrams. All these kinds of relationships between Modeling Units show a direction
issue establishing that some elements act as a source while others act as a target.

A Domain Objective is an essential requirement which must be satisfied by devel-
oping a class of applications. There is no restriction about the sort of information to be
recorded as a Domain Objective. The only restriction is that Domain Objective has to
be a general intention or a domain significant goal to be addressed by developing soft-
ware. Domain Objectives have several attributes: identifier, complexity, cost, required
technology, quality, and additional information. Domain Objectives are related through
Model Relationship, whose roles allow a parent-child based taxonomy to be built. Re-
sulting taxonomy is a lattice structure where every Domain Objective might have zero
to many children, as well as zero to many parents.

The Model Relationship class describes the relationships between Domain Objec-
tives. These relationships give us the basis for the integration of a body of domain
knowledge which is related to Requirements Representation. These relationships re-
fer to the way in which diverse diagrams are combined to accomplish the domain de-
scription. For example, these relationships allow the Use Case Diagram and Activity
Diagram to be used to describe distinct Domain Objectives. Model Relationship has a
structural issue which determines the degree of association between two or more related
diagrams.

Some modeling units may have such a complexity that they need to be specified in
another complete requirements representation. For example, a process in a Data Flow
Diagram may be exploded in another Data Flow Diagram, or a use case may be specified
as a Sequence Specification Template. These relationships are described as Unit Model
Relationships in metamodel.

2.2 Logical Consistency of Requirements Diagrams

Correctness of requirements diagrams which are stored in a repository is strongly im-
portant in the systematic reuse context. Reusing diagrams that contain errors can make
the requirements negotiation phase more difficult, as well as costs for error correc-
tion higher. All of this may lead the enterprise to waste business opportunities. Fails in
requirements diagrams lead to both misunderstanding of real necessities and increas-
ing the development effort. Hence, analysis to make sure about logical consistency of
reusable requirements diagrams which are stored in a repository is quite important.

In order to make sure about logical consistency of the requirements diagrams we
make a projection of diagrams to a rigorous representation in CPN [16]. Analysis of
Petri net models can be automatically done with available techniques which allow the
deadlock and livelock-free, finite set of states and conflict-free properties to be guaran-
tee [24]. Furthermore, we analyze the CPN models as proposed by Aalst [5], it consists
of testing whether classical Petri nets models satisfy the soundness property, so that
we obtain the equivalent models in classical Petri nets, and these models are tested as
proposed by Aalst to determine the soundness property. If equivalent classical Petri
nets models show soundness property then we are sufficiently sure about the soundness
property of the initial CPN models.

3 Clustering of Existing Requirements Diagrams

Studying the domain for a software system, being part of a product family, goes be-
yond technical aspects of software engineering. Different domain issues, such as market
strategies, product positioning, risk management, product look-and-feel, architectural
aspects, quality standards, etc., have to be taken into account when studying a domain.
These issues should be clearly reflected by a domain requirements structure contain-
ing clustered requirements information in a reuse context. Sorted information makes
browsing and searching of relevant information easier.

3.1 Diagram Family Model

We sort the requirements in a domain taxonomy as a Diagram Family Model based on
Domain Objectives. Requirements in a domain taxonomy make the reuse approach eas-
ier in such a way that reusing requirements can be aimed both at obtaining better and
quicker software specifications and directing the elaboration for reusable design and
implementation in a domain under an application family based approach.

The requirements taxonomy is obtained by performing the following activities:

– Identifying the Domain Objectives and establishing a domain dictionary. The goals
belonging to stakeholders are identified so that these become into a lattice structure
where goals are related by Model Relationship. This activity requires lots of experi-
ence and domain knowledge to make decisions about overlapping goals, conflicting
goals, and dependencies among goals.

– Associating Domain Objectives to existing requirements diagrams. This stage aims
to benefit from current requirements representations which have been created by
different projects in the domain. Rewriting or modifying some diagrams may be
required through an iterative process which is supported by Requirements Editor
we present in section 4.

– Storing the diagram family into repository. The diagram family is physically stored
into repository which supplies the operative support for creation, management, and
use of reusable diagrams. Repository scheme is based on our requirements meta-
model.

The Diagram Family Model allows the reuse opportunities to be detected by allow-
ing stakeholders to browse and choose requirements. Each tree on the family is visited
and requirements are selected by making corresponding choices.

3.2 Requirements Catalogue

Benefiting from previous modeling effort, as it is sorted on Diagram Family Model,
might be enhanced by a catalogue of requirements diagrams. The catalogue allows de-
scriptors to be associated to reusable elements. A hierarchical taxonomy can be com-
bined with different kinds of catalogues, such as thesaurus and facet based schemes.
Facet based schemes are widely used, they consist of a set of terms which are grouped
into subsets which are called facets [21].

In order to catalogue the set of existing requirements documents in a domain, we
make a Facet based Requirements Catalogue which allows the requirements patterns to
be identified regarding to dependency and association relationships. These relationships
are described in our metamodel as shown in figure 1. The supporting idea is the domain
has been modeled across a set of applications so that clustering the requirements di-
agrams allows a characterization of domain requirements to be obtained. The distinct
software applications share similar features which are called commonalities [11, 10].
Sorting of requirements information is vital to detect these commonalities. We propose
automatic clustering of requirements diagrams to make the commonalities identifica-
tion easier.

Requirements metamodeling [15] reflects the fundamental element of the differ-
ent requirements diagrams we have investigated is any instance of the Job metaclass
(for example, each use case in a Use Case Diagram). The instances of Job metaclass
show dependency relationships between them. They are also composed of other Jobs
and Actions which have different relationships between them. Hence, Jobs, which are
expressed as Sequence Specification Template, are main elements to catalogue the re-
quirements on the context of systematic software reuse. Jobs may be mapped to differ-
ent patterns as proposed in [22]. The decision tree of figure 2 allows Jobs to be classified
by considering both association and dependency relationships. A Job S is assigned to an
element from the set P = fproduction; collaboration; service; negotiationg. Within
the Negotiation term there exist different sub-categories: Negotiation Step, Negotiation

Step with Jobs Triggering, End of Negotiation, Complete Negotiation, Service, Unfin-
ished Negotiation with Jobs Triggering, Unfinished Negotiation.

No

Previous
Demand

Response

Is there a
passive actor

Response

Only one

Service
Complete

Negotation
Unfinished
Negotiation

End of
Negotiation

Negotiation
Step with jobs

triggering

Unfinished
Negotiation with
jobs triggering

Only one

Negotiation
Step

No

Start

The action is always CARRIED OUT

Job is related by DEPENDENCY:
inclusion, subset, complement,

extension, equivalence, or
exception

Internal Actors do not
carry out the SEND action

There is an Actor which
only performs RECEIVE

actions

Internal Actors exactly carry
out the SEND action once

Yes
Only one

Actor
Production

Complementary
Roles

CollaborationYes

No

Yes

No

YesNo No Yes

Yes

Yes

No

Yes

No

Fig. 2. Decision tree to catalogue the jobs of diagrams.

The facet of Diagrams Patterns, cataloguing a particular diagram, is a subset of P .
As Jobs which are contained into a requirements diagram correspond to different terms
of P , the requirements diagrams may be catalogued by composed facets such as Pro-
duction plus service plus collaboration, and Negotiation (whichever of its kinds) plus
production or collaboration or service, etc. In this way, a characterization of typical
sequences of tasks in a domain is obtained. It could be thought of a great dispersion
of combinations of terms, however in [22] it is shown that a high proportion of tasks
corresponds to a catalogue of patterns.

The Diagram Pattern allows the diagrams sharing similar structures among differ-
ent projects and modeling techniques to be identified. One can benefit from this pattern
identification by taking it as a guideline to the construction of reusable design and im-
plementation elements in the domain.

4 A Tool for Requirements Reuse (R2)

Process to build the requirements taxonomy is supported by R 2, a prototype system
which is implemented using relational tables (ORACLE) and Java language. This en-
vironment is composed by five main elements with corresponding sub-elements: (1)
User Interface including menu options and necessary views to support the interaction
between reusers and the environment, (2) Requirements Editor which supplies needed
functionality for creation and modification of requirements diagrams, (3) Data Man-
ager, it allows the requirements information to be stored, classified, retrieved and up-
dated, (4) Repository, which physically contains the information related to requirements
diagrams regarding to the conceptual scheme of our requirements metamodel, and (5)

Data Exchange, it is a module which allows the information to be directed to and di-
rected from external applications, for example the Petri net applications to address the
verification of logical consistency of diagrams.

Fig. 3. Requirements Editor interface of R2 environment.

Figure 3 shows the Requirements Editor interface of R2. The identifier of project
and their elements are on the left side of the window. Graphical notation corresponding
to current element appears on the right. The figure shows the selected diagram inside
the so called project “Communicator”.

5 A Case Study: Preliminary issues

We currently apply our proposed scheme for analysis and clustering of requirements on
the domain of software applications for handicapped people. This domain has been ad-
dressed with different projects conducted by undergraduated students at Computer Sci-
ence Department, University of Valladolid. These projects have been developed without
product line perspective, and for this reason there are different requirements diagrams
from distinct notations.

We start by building a domain taxonomy as a Diagram Family Model based on Do-
main Objectives. Semiformal diagrams were linked to Domain Objectives, thus setting
up the requirements family. This process has required the support from domain experts
through several work sessions. It had been necessary to rewrite some diagrams. Fur-
thermore, we had to create some new diagrams as domain experts was suggested. All
of these new diagrams were incorporated to requirements family. All the semiformal
diagrams being part of the family were tested for logical consistency, as we explained
in section 2.2.

We address the construction of Diagram Family Model through a subjective pro-
cess which demands for knowledge and experience with regard to application domain.
Sometimes we needed to make compromise solutions regarding how to link require-
ments on a family. Although similar works related to making requirements families
have been published [10, 26, 11, 6], these do not provide enough details of the construc-
tion process. All of these make the need for a time to stabilize the requirements family
evident. Furthermore, it confirms Leite’s idea [12] about the need for conducting exper-
iments in the process of domain construction.

The corresponding clustering of requirements diagrams is obtained by applying the
guidelines we have mentioned in section 3.2. By following the decision tree of figure
2, the tasks inside a diagram are classified as different subcategories. As an example,
the use case Add Student, see figure 4, is classified as Negotiation Step with Jobs Trig-
gering. In this use case there exist two actors (System and Educator) whose have not
complementary roles (the action is not always “carry out”), there exits previous demand
(job is related by dependency) and more than one responses have to be produced.

We are now ready to experiment with our Diagram Family Model in generating
new requirements specifications. Having a Requirements Reuse prototype system we
expect to obtain quantitative data with respect to reusing requirements and making an
increase of requirements specifications. We believe that reusing requirements on our
reuse framework can make better requirements specification because of requirements
engineers might focus on decisions about taken a set of requirements regardless the
details of definition, logical consistency, and documentation.

6 Related Work

The organization of requirements has been proposed by different authors. Kuseela [11]
proposes a hierarchy in which the design objectives are defined by other design objec-
tives or by design decisions. Lamsweerde [27] has also proposed an objectives hierar-
chy. Mannion [10] proposes a discrimination based arrangement. The main difference
between these proposals and ours consists of we are proposing a way to benefit from
existing information while those claim for developing the proper structure as whole.

On the other hand, we know that some authors such as Cybulski [4], Palmer and
Liang [19], have been addressing the classification of requirements specifications. These

Action: SEND

Action: CARRY OUT

Two Actors

Fig. 4. Clustering of Requirements Diagrams.

proposals focus on indexing of text based requirements specifications. Our proposal is
based on diagram based requirements specifications. However, we do not mean that
requirements are only made as diagrams. In fact, the real requirements are in natural
language, as we express the Domain Objectives. Our approach is aimed at reusing dia-
grams which are linked to textual requirements.

7 Conclusions and Future Work

In this paper we propose a technique for analysis and clustering of reusable require-
ments. The proposal allows the domain description to be obtained in terms of the
association and dependency relationships related to the modeled services in different
techniques under a requirements metamodel. We address the rigorous description of
the static and dynamic issues of the system in order to test the logical consistency of
reusable requirements elements which are stored in a repository. The rigorous descrip-
tion is based on the CPN formalism. The analysis and clustering of requirements are
automatically made with our prototype system for requirements reuse.

The Diagram Descriptor allows the similar structures of requirements in a domain to
be identified. By applying these descriptors we are in a position to classify requirements
and to discover commonalities and variabilities from requirements diagrams which are
modeled in domain applications. This classification can be aimed both at obtaining bet-
ter and quicker software specifications and directing the elaboration for reusable design
and implementation in a domain under an application family based approach.

Our future work is aimed at defining process for developing the requirements speci-
fications in a domain. This process should be founded on the structure for requirements
analysis and organization we proposed in present paper. Furthermore, from this pro-
posal for requirements clustering, we aim to explore the possibilities for developing the
core assets for requirements, design and implementation in a product line based ap-
proach.

Acknowledgments
This work is sponsored by the DOLMEN Project within CICYT-TIC2000-1673-C06-05, Ministry
of Technology and Science, Spain.
Oscar López wishes to thank the Spanish Agency for International Cooperation (AECI) and the
Ministry of Technology and Science of Costa Rica.

References

1. J. Bayer, O. Flege, P. Knauber, R. Laqua, D. Muthig, K. Schmid, T. Widen, and J.-M. De-
Baud. PuLSE: A methodology to develop software product lines. In Proceedings of the Fifth
ACM SIGSOFT Symposium on Software Reusability (SSR’99), pages 122–131, Los Angeles,
CA, USA, May 1999. ACM.

2. Jan Bosch. Design and Use of Software Architectures: Adopting and Evolving a Product-
Line Approach. ACM Press. Addison-Wesley, May 2002.

3. Paul C. Clements and Linda N. Nothrop. Software Product Lines: Practices and Patterns.
The SEI series in software engineering. Addison-Wesley, 2002.

4. J. L. Cybulski and K. Reed. Requirements classification and reuse: Cross domain boundaries.
In Sixth International Conference on Software Reuse, Vienna, Austria, June 2000.

5. V. d. Aalst. The Application of Petri Nets to Workflow Management. Eindhoven, University
of Technology, Netherland, URL: wwwis.win.tue.nl/ wsinwa/jcsc/jcsc.html, 1997.

6. Stuart R. Faulk. Product-line requirements specifications (PRS): an approach and case study.
In Proceedings of 5th IEEE International Symposium on Requirements Engineering, pages
48–55, Toronto, Canada, August 2001. IEEE Computer Society.

7. R. Geisler, M. Klar, and C. Pons. Dimensions and dichotomy in metamodeling. In Proceed-
ings of the Third BCS-FACS Northern Formal Methods Workshop. Springer-Verlag, Septem-
ber 1998.

8. Kurt Jensen. Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use,
Volume 3. Springer-Verlag, Berlin, Germany, 2nd. edition, 1997.

9. K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson. Feature-Oriented
Domain Analysis (FODA). Feasibility study. Technical Report CMU/SEI-90-TR21 (ESD-
90-TR-222), Software Engineering Institute, Carnegie-Mellon University, Pittsburgh, Penn-
sylvania 15213, November 1990.

10. Barry Keepence, Mike Mannion, Hermann Kaindl, and Joe Wheadon. Reusing single system
requirements from application family requirements. In Proceedings of the 21st International
Conference on Software Engineering, pages 453–462. ACM Press, May 1999.

11. J. Kuusela and J. Savolainen. Requirements engineering for product lines. In Proceedings
of ICSE 2000, IEEE. IEEE Computer Society, 2000.

12. J. Leite. Are domains really cost effective? In Proceedings of the Workshop on Institution-
alizing Software Reuse (WISR’9), January 1999.

13. O. López, M.A. Laguna, and F.J. Garcı́a. Automatic generation of uses cases from work-
flows: a petri net based approach. In European Joint Conferences on Theory and Practice of
Software ETAPS, pages 279–293, Grenoble, France, Abril 2002.

14. O. López, M.A. Laguna, and F.J. Garcı́a. Representación de requisitos mediante redes de
Petri coloreadas. Technical Report IT-DI-2002-1. Departamento de Informática, Universidad
de Valladolid, 2002.

15. O. López, M.A. Laguna, and F.J. Garcı́a. Requirements modeling for reuse. In Actas de Las
II Jornadas de Trabajo DOLMEN, pages 105–114, Valencia, España, Marzo 2002.

16. O. López, M.A. Laguna, and F.J. Garcı́a. Reuse based requirements clustering. In Actas de
Las II Jornadas de Trabajo DOLMEN, pages 129–138, Valencia, España, Marzo 2002.

17. S. Mann and M. Klar. A metamodel for object-oriented statecharts. In Proceedings of The
Second Workshop on Rigorous Object-Oriented Methods, May 1998.

18. James M. Neighbors. The Draco approach to constructing software from reusable compo-
nents. IEEE Transactions on Software Engineering, SE-10(5):564–574, September 1984.

19. J. Palmer and Liang Y. Indexing and clustering of software requirements specifications.
Information and Decision Technologies, 18(4):283–299, 1992.

20. K. Pohl. Requirements engineering, an overview. Encyclopedia of Computer Science and
Technology, Vol. 36, Marcel Deccer Inc., 1996.

21. Rubén Prieto-Dı́az. Implementing faceted classification for software reuse. Communications
of the ACM, 34(5):89–97, May 1991.

22. M. Ridao, J. Doorn, and J. Leite. Domain independent regularities in scenarios. In Proceed-
ings of the 5th IEEE International Symposium on Requirements Engineering, pages 120–127.
IEEE Computer Society, August 2001.

23. Colette Rolland and Naveen Prakash. From conceptual modelling to requirements engineer-
ing. Technical Report Series 99-11, CREWS, 1999.

24. Manuel Silva. Las Redes de Petri en la Automática y la Informática. Editorial AC, Madrid,
España, 1985.

25. Mark Simos, Dick Creps, Carol Klingler, Larry Levine, and Dean Allemang. Organiza-
tion domain modeling (ODM) guidebook - version 2.0. Technical Report STARS-VC-
A025/001/00, Lockheed Martin Tactical Defense Systems, 9255 Wellington Road Manassas,
VA 22110-4121, June 1996.

26. A. Sutcliffe and N. Maiden. The domain theory for requirements engineering. IEEE Trans-
actions on Software Engineering, 24(3):174–196, March 1998.

27. A. van Lamsweerde, R. Darimont, and P. Massonet. Goal-directed elaboration of require-
ments for a meeting scheduler: Problems and lessons learnt. In Proceedings: 2nd IEEE
International Symposium on Requirements Engineering, pages 194–203. IEEE Computer
Society Press, 1995.

