
Formal Concept Analysis support for Conceptual
Abstraction in Database Reengineering

Carmen Hernández, Félix Prieto, Miguel A. Laguna, Yania Crespo

Computer Science Dept., Universidad de Valladolid, Spain
Phone:+(34)983423670; Fax: +(34)983423671
{chernan, felix, mlaguna, yania}@infor.uva.es

Abstract. This paper presents a proposal that aims to cover some tasks required
in the Database Reengineering process, mainly in the Conceptual Abstraction
phase. The principal tasks are: the transformation of enriched logical schema to
object-oriented schema, support for process iterations and support for data
migration from the legacy database to the new database. The proposal consists
of attaining the listed tasks by applying Formal Concept Analysis (FCA)
techniques. It could be said that the advantage of using this proposal is that it is
possible to build a tool, based on FCA, automatic, graphic and interactive. This
tool will be able to support the process iterations, as it will be possible to mark
the impact zones of later modifications in the logical schema and to verify how
they affect the conceptual scheme obtained. This paper detailed presents the use
of FCA in the Conceptual Abstraction phase. We obtain a class diagram that fits
the object model defined for UML and which reflects the underlying model in
the original logical schema. In the class diagram, we will have the significant
classes of the problem, organized in the specialization/generalization hierarchy
and related by means of associations (as a general framework for the rest of the
UML relations, e.g. aggregations). The establishment of the associations can
give rise to the appearance of new classes as association classes that
characterize the defined relation.

Keywords: Database Reengineering, Conceptual Abstraction, Conceptual
Schema Migration, Formal Concept Analysis

1 Introduction

The majority of the tasks that must be carried out during software maintenance and
evolution are arised because it is necessary to support the new requirements that
appear in the organizations, or because the existing ones need to be modified. If the
system maintains and processes a great amount of persistent data, a question that has
to be tackled is to determine what information should be stored and maintained and
how this information can be used in different contexts, according to the variation in
the requirements. Some examples of requirements that have produced or will produce
massive changes in software, from the point of view of the data, are the Year-2000

mailto:yania}@infor.uva.es

problem, the Euro-conversion problem in Europe or the migration of information
systems to the Web and electronic commerce. Similarly, the growing use of Data
Warehouses and Data Mining techniques make the incorporation of information from
legacy data systems to the data warehouse necessary. Then, a consistent
transformation of the legacy data structure to the common business data model is
needed.
The first requirement in to achieve these processes is to have as much as possible of
the documentation of the data structure (conceptual, logical and physical) present in
the Legacy Database (LDB) and the Legacy Software System (LSS). Unfortunately,
in most existing LSS, the corresponding documentation is either missing, obsolete or
inconsistent. The task of Database Reverse Engineering is to recover such
information. It is then necessary to redesign the conceptual schema, to transform the
LDB into a New Database (NDB) and the LSS into a New Software System (NSS) and
to deal with the data migration from the LDB to the NDB. This complete process is
called Database Reengineering. Figure 1 summarizes the main phases of Database
Reengineering.

Logical schema Conceptual
schema

iteration

Data

LDB

LSS

Data

NDB

NSS

2 Conceptual Abstraction

4 Migration

1 Data Analysis
3 Scheme and Program

Transformation

Figure 1. Main phases of database reengineering

In this paper, a proposal is presented that allows some of the tasks carried out in the
Conceptual Abstraction phase of the Database Reengineering process to be
automated. This proposal consists of carrying out the transformation of the enriched
logical schema to an object-oriented schema, providing support to the iterations
inherent to this process and performing the data migration from the LDB to the NDB
that has to be built. All these by applying a mathematical technique of information
organization, Formal Concept Analysis (FCA). The rest of the paper is organized as
follows: Section 2 delimits the working context in the Database Reengineering
framework, presents the problem and introduces a proposal to deal with it. Section 3
introduces the FCA concepts. The proposal is explained in Section 4 and an example
of what can be achieved with this strategy is given. Related work is summarized in
Section 5 and, finally, Section 6 gives the conclusions and identifies future lines of
work.

2 Context

The Database Reverse Engineering process is made up of two main activities, namely
Data Analysis and Conceptual Abstraction [Müller et al., 2000].
The Data Analysis activity aims to recover an updated logical data schema that is
structurally complete with well-identified and documented semantics. In the case of a
relational database, the structural completion activity consists of detecting all the
candidate and foreign keys which are not declared explicitly in the database
catalogue, in addition to the inclusion dependencies [Elmasri & Navathe, 1994]. On
the other hand, the semantic enrichment aims to classify the schema elements
according to higher level abstractions such as inheritance and aggregation [Jahnke &
Wadsack, 1999].
In general, Data Analysis is an exploratory activity with a strong human component
that requires a great deal of experience and skill. When dealing with this activity it
would be wrong to assume that the data structure being used fits in with good design
properties. There are examples that show that LDB designs have many deficiencies
and contain numerous errors. This means that the logical schema obtained has many
gaps and a lack of precision that will surely appear as the process advances, but which
will not be detected in a first phase [Blaha & Premerlani, 1995]. This enriched logical
schema with all the semantic information, that could be recovered in this Data
Analysis activity, is the input to the second activity.
The Conceptual Abstraction aims to transform the logical schema derived from the
Data analysis into an equivalent conceptual schema. The habitual design
representations are the Entity-Relationship Model or the Object-Oriented Model. Both
provide a sufficient level of abstraction to deal with the subsequent Reengineering
activities.
The Database Reengineering process is not adjusted to a waterfall-model, in which
the Conceptual Abstraction activity does not begin until the Data Analysis has
finished [Jahnke & Wadsack, 1999]. Normally, reengineers start with the Forward
Engineering activities when the logical schema is still incomplete or inconsistent.
Further knowledge of the LDB structure will surely be accumulated during the
development of these activities. That will allow the steps of the Reengineering
process to be retraced, so that the initial logical schema can gradually be completed.
It is thus necessary to define a process for obtaining and transforming these schemas
that can be automated, interactive and iterative, so that the most convenient
conceptual schema can finally be obtained and also, a method to support the
automatic LDB data migration to the NDB.

2.1 Problem

This paper is centered in the Conceptual Abstraction activity, when a first
semantically enriched logical schema has already been obtained, the following task is
to produce an equivalent conceptual schema. The paper will focus on this important
Database Reengineering activity, also called Conceptual Schema Migration.
Conceptual Schema Migration aims to produce an abstract design for an LDB
schema. High-level modeling concepts such as objects, aggregation, and inheritance

are used in this activity. The resulting conceptual schema provides a level of
abstraction that facilitates an understanding of an LDB’s static structure. Furthermore,
it is a prerequisite to achieving a very important maintenance goal, i.e.: integration
with emerging technologies such as object-orientation, Internet, and Client-Server
architectures.
Several approaches have been presented to carry out this transformation,
[Ramanathan & Hodges, 1997], [Behm et al., 1997], [Blaha & Premerlani, 1996],
[Jahnke, 1999], [Hainaut et al., 1993], some of which are commented on in Section 5
(Related Work). The most common is to start from a logical relational schema and try
to obtain a schema that fits the standard ODMG for object-oriented databases [Cattell
et al., 2000]. However, it is also necessary to consider that the Database
Reengineering process has an explorative and iterative character. Whenever
information about the logical schema is revised, the consistency with the conceptual
schema that has already been created may be lost. There are different options when
the consistency maintenance process is planned:
• To begin the redesign process from the beginning, losing the conceptual schema

modifications that had already been made.
• To manually determine the impact of the modifications on the conceptual schema

that had already been obtained.
Neither of the two options is satisfactory: the first requires the repetition of operations
already done; the second can lead to errors.
A third option, [Jahnke, 1999], proposes an incremental mechanism for reestablishing
the consistency between both models. The tool’s environment is capable of
determining those redesign operations that must be undone and those where it is not
necessary.
Our proposal support the Database Reengineering process using FCA, a mathematical
information organization technique. This technique will play multiple roles in the
Database Reengineering process.
1) In the Data Analysis phase: assistance to find out candidate and foreign keys.
2) In the Conceptual Abstraction phase: assistance to obtain the new conceptual

schema from two points of view:
a) obtaining a class diagram which reflects the original logical schema,
b) supporting the process iterations, keeping track of the relation between the

original relational schema and the new object-oriented schema. This is going
to be done in such a way that if the relational schema changes, the object-
oriented schema also changes, as far as it will be possible. If changes can’t
be applied, some transformations done in previous step must be undone. This
is on the line of [Jahnke, 1999].

3) In the Schema Transformation and Migration phases: assistance indicating the
transformations that must be achieved.

In this paper, we are going to present with details how 2a) is accomplished.
The following section introduces the FCA concepts needed for understanding this
paper.

3 Introducing Formal Concept Analysis

Formal Concept Analysis (FCA) was introduced by Wille [Wille, 1982] and is
completely developed in [Ganter & Wille, 1999]. It is a mathematical technique that
allows the underlying abstractions in a data table, formally a context, to be shown by
means of the construction of the concept lattice, also known as the Galois lattice,
associated to it. The FCA has been used in works related to symbolic data analysis
and knowledge representation [Godin et al., 1995]. It has also been used in themes
related to Software Engineering, both for the study of inheritance [Godin & Mili,
1993], and the study of the way in which the class characteristics in a hierarchy are
used [Snelting & Tip, 1996]. Both approaches have been combined to assist the
construction processes of Domain Frameworks [Prieto et al., 2002]. Outside the
object-oriented paradigm, these techniques have also been applied to module
identification within monolithic code [Siff and Reps, 1999]. It has also been used in
the area of databases [Stumme et al., 1998], [Schmitt & Conrad, 1998]. This will be
dealt with in more detail in Section 5 (Related work). We shall begin by introducing
the basic notions defined by Wille.
Definition Let us call a tupla of sets, ()IMG ,, , that verify ()MGI ×⊆ , formal
context.
G is usually called a set of objects and M a set of attributes. The binary relation I
gives the incidence of the set of attributes on the set of objects. It is then possible to
define the following applications, in whose definitions the notions, respectively, of
the set of attributes that certain objects possess, and the set of objects that certain
attributes possess, can be seen:

(){ }

(){ }MmImgBgBB
MG

GgImgAmAA
GM

∈∀∈∈=
℘→℘

∈∀∈∈=
℘→℘

↓

↑

,,|
)()(:

,,|
)()(:

a

a

ψ

ϕ

For the elements , we shall use the notation and instead of

 and { when there will be no resulting confusion.

MmGg ∈∈ , ↑g ↓m
↑}{g ↓}m

These two definitions allow the following definition to be made, that reflects the
informal notion of concept as a set of objects and attributes that are mutually
determined.
Definition Let us call a pair ())()(, MGBA ℘×℘∈ that verifies BA =↑ and

AB =↓ , a formal concept. Normally, the first set in the pair will be called the
concept extent and the second, the concept intent. The set of formal concepts
associated to a context will be denoted as (MG,)I, ()IMG ,,G .

On a partial order relation can be defined through the following

formula where

(IMG ,,G)
() () ()IMGBAB ,,,, GA, ∈′′ :

() ())(,, BBAABABA ′⊇⇔′⊆⇔′′≤
From this definition, the following result can now be proved:
Theorem (fundamental for concept lattices): The set ()IMG ,,G with the
defined partial order relation forms a complete lattice in which the lowest and highest
are given by the following formulas where T denotes a set of indices, not necessarily
finite, and () ()IMGBATt tt ,,,, G∈∈∀ :

()

() 




















=






















=

∈

↑↓

∈
∈

∈

↓↑

∈
∈

∨

∧

IU

I U

Tt
t

Tt
tttTt

Tt Tt
ttttTt

BABA

BABA

,,

,,

The existence of the lowest and highest for any set of concepts allows the following
functions to be defined:

()
{ }

()
{ }),(

,,:
),(

,,:

)|,,(),(

)|,,(),(

BAm
IMGM

BAg
IMGG

BmIMGBA

AgIMGBA

∈∈

∈∈

∨
∧

→

→

a

a

G

G

µ

γ

It is thus easy to show that these functions admit a much simpler notation, as follows:

),()(,

),()(,
↓↑↓

↑↑↓

=∈∀

=∈∀

mmmMm

gggGg

µ

γ

This provides a practical way of determining the largest concept in whose extent a
certain object appears, or which other objects share all the attributes of a given object.
The Galois lattices are normally represented by their Hasse diagram, as in this paper.
Each node in such a diagram represents a formal concept and each arc indicates an
order relation between two concepts, where the larger is placed above the smaller,
with the restriction that no intermediate concept exists.
Labeling the nodes of the Hasse diagram with the complete description of the
associated concept is difficult to read, so objects are normally labeled with the lowest

concept in whose extent they appear,)(gγ , while the attributes do so with)(mµ ,
the highest concept in whose intent they appear.
It should be pointed out that the original lattice and the context itself can be
reconstructed from this representation. The sets of objects and attributes are directly
obtained from the sets of labels, while the incidence matrix is obtained from the
expression ())()(, mgImg µγ ≤⇔∈ .

Figure 2. Incidence table for the formal context extracted from the bibliographic
reference types used in BibTeX

To illustrate the potential of these techniques, we shall consider the formal context
associated to the reference types used in BibTeX, as shown in Figure 2. In this case,
the bibliographic reference types will be represented as objects and their compulsory
characteristics as attributes. In this case, the incidence is produced when the
characteristic is compulsory for a certain reference type.
The Hasse diagram associated to the lattice shown in Figure 3 can be obtained
algorithmically from the data of this table. This diagram shows all the information of
the original table. However, it gives a clearer view of some aspects of the structure of
the reference types used in BibTeX. The following can then be stressed:
• The appearance of a node labeled with one reference type underneath one labeled

with another, means that all the compulsory characteristics of the first are present
in the second.

• Some nodes are labeled with several reference types, thus showing that, with the
information from the table, the reference types are equivalent.

• Some nodes are not labeled with any reference type, but with some characteristic.
Such nodes provide new abstractions that can be useful for understanding the
structure of the bibliographic references in BibTeX, providing a single point of
definition to these characteristics.

• There are even nodes without any labeling at all. Such nodes represent an
abstraction that brings together several reference types used as the starting point
for the incremental construction of other types.

The practical interest of the FCA is guaranteed by the existence of several algorithms
and tools, which allow the Galois lattice to be obtained from a formal context. On the
other hand, as already indicated, this way of representing the information from the
formal context shows the existing structure in the original data set. This structure can
be analyzed manually, or by using tools that implement algorithms based on the
mathematical properties of the complete lattices.

Figure 3 Lattice associated to the bibliographic reference types used in BibTeX

The application of this technique to the analysis of real information in a concrete
domain requires the establishment of the way in which the incidence matrix will be
constructed, determining what will be interpreted as objects and attributes
respectively, and the way in which the lattice should be interpreted later. Different
incidence matrices provide different views of the structure present in the original data.

4 Formal Concept Analysis support to Conceptual Abstraction

As we previously mention, this paper present a part of our proposal, the part which
deals with the FCA support to the Conceptual Abstraction phase. This phase is in
charge of the relational schema transformation into the object-oriented schema. The
transformation start with an enriched logical schema (from the Data Analysis phase)
and obtain a class diagram.

This transformation requires some information concerning the semantics of the
original relational schema. A diagram of classes semantically equivalent to the initial
logical schema is obtained by applying FCA techniques.
The process we propose for obtaining the class diagram starts from the following
information:

- A list of the relations and their attributes,
- The verified inclusion dependencies, and
- The candidate and foreign keys of the relations.

The aim is to obtain a class diagram that fits the object model defined for UML and
which reflects the underlying model in the original logical schema. In the class
diagram, we have:

- The significant classes of the problem that have been identified,
- The specialization/generalization hierarchy between identified classes, and
- The association relations (as a general framework for the rest of the UML

relations, e.g. aggregations) between the identified classes. The
establishment of the associations can give rise, if the original schema so
requires, to the appearance of new classes as association classes that
characterize the defined relation.

The process is divided into two phases. Class identification and there organization in
a specialization/generalization hierarchy is obtained outright in the first phase of the
process. On the other hand, obtaining the associations and their characteristics by
means of association classes is the result of the second phase of the process.
Each phase uses a different FCA application (to cover different objectives). As
mentioned in the previous section, FCA application requires the problem we wish to
solve to be modeled in terms of objects, attributes and a binary relation between them
(involving the way in which the incidence matrix will be built), so that the
interpretation of the Galois lattice obtained from the application of the algorithms
answers the aims of the problem to be solved.
There are two aims in the first phase: the identification of significant classes and their
classification in a specialization/generalization hierarchy. The application of FCA to
achieve this aim is not new. In fact, most work on FCA application is in this area.
[Dao et al., 2002] states that the hierarchy that can be obtained from the correct
application of FCA in this way, is the hierarchy which complies with the criteria of
the best factorization of the class characteristics. For many authors, the hierarchy
obtained (Galois sub-hierarchy) has a maximum quality, is the ideal hierarchy.
From the initial information, the formal context ()IMG ,, is built:
1. Sets G and M:

a. Objects (G): the relations of the initial conceptual schema.
b. Attributes (M): the attributes of each relation that is NOT a primary or

candidate key.
2. Binary relation I:

a. If a relation of the initial logical schema has an attribute m, then there is
an incidence between the object g that represents the relation and the
attribute m, (g,m)∈ I.

b. The following rule of implication is established: If there is an inclusion
dependency between two relations, then the object g that represents the

relation that depends on the other, has an incidence with all the
attributes mi of the dependant relation ((g,mi)∈ I , ∀ mi).

The formal concepts (objects and attributes that are mutually determined) are obtained
by applying the FCA algorithms to this formal context. Each formal concept obtained
will be interpreted as an identified class. The Hasse diagram that presents the Galois
lattice, built from the formal context, indicates a relation between the formal concepts
detected (the classes). This relation is the specialization/generalization relation
between the classes.
Thus, from the formal concepts obtained and the Hasse diagram, a first version of the
desired class diagram can be obtained immediately and automatically.
It should be noted that the result of the transformation is not trivial. A class for each
relation in the initial conceptual schema is not obtained. Some classes coincide with
relations, but they may have their attributes intrinsic or attributes from another class.
New classes that do not coincide with relations of the schema are obtained, and some
relations have no direct correspondence in the detected classes.
The second phase aims to discover the association relations and their characterization
by means of association classes.
As far as we know, up to the present this way of applying the FCA, as proposed by us
for this second phase, has not been used.
In this case, the formal context ()IMG ,, is built using the initial information:
1. Sets G and M:

a. Objects (G): the relations of the initial conceptual schema
b. Attributes (M): the attributes of each relation that ARE primary,

candidate or foreign keys.
2. Binary relation I:

a. If a relation of the initial logical schema has an attribute m, m∈M, then
the object g, that represents the relation, is related to the attribute m,
(g,m)∈ I.

Applying the FCA results in a Galois lattice where the formal concepts represent
classes of the problem and candidate classes for association class. On the other hand,
the Hasse diagram indicates a relation between the classes. The associations between
the classes are obtained from this relation. The way in which the concepts are related
in the diagram follow three patterns:
1. A concept is below another in the lattice and linked to it: If both represent

classes, there must be an association between both classes.
In the initial problem, this means that the relations gave rise to classes. On the
other hand, the Hasse diagram shows that the attributes of the higher concept are
included in the lower concept. As only key attributes are included, this means
that the relation which gave rise to the lower concept contains the keys of the
higher one. If the keys are understood as references to objects, this indicates that
the objects of the class represented by the lower concept can act as a reference for
the objects of the class represented by the higher concept. Thus, there is an
association between both classes.

2. A concept is below another two and linked to both: If the higher concepts
represent classes, there must be an association between both classes. If the lower

concept is associated to attributes, that represent non-key attributes, then an
association class characterizes the association between the classes.
In the initial problem, this means that the relations reflected in the higher
concepts gave rise to classes. In the lower concept, the attributes that represent
the keys of both relations of the initial schema are included. If, in the relational
model, there is a relation that includes the keys of two relations, then it represents
an interrelation between both. If, in addition, the said relation has other attributes,
these will characterize the interrelation. Thus, the lower node indicates the
existence of an association between the classes corresponding to the higher nodes
which, in the presence of attributes, will be modeled as an association
characterized by an association class.

3. A concept is below more than two concepts and is linked to them: If all the
higher concepts represent classes, there must be several binary associations
between the classes that represent the higher nodes and the class that represents
the lower node. It should be noted that in some cases, the class representing the
lower node may not be previously discovered, but is identified as a class due to
this process.
This pattern is a generalization of the previous pattern. The existence of non-
binary relations in the relational model is considered. In the UML object model,
associations can only be binary. Thus, in the new model, the non-binary relations
must be converted to binary associations. This requires the relation to be broken
down into binary associations with another class and the appearance of this class,
if it did not already exist.

The class diagram produced in the first phase of the process is completed using the
results obtained. This step is also immediate and automatic due to the fact that the
mathematical properties of the complete lattices allow algorithms to be defined for
analyzing the results of applying the FCA.
The following section presents an example of the application of the defined method.

4.2 A practical example

In this section, the conceptual schema migration strategy based on FCA is explained
by means of an example. We have a relational schema of an LDB. Example 1 shows
the different relations that make up this database, along with its attributes; the primary
key of each table is underlined. For the sake of simplicity, the existence of candidate
keys has been not considered. These relations will be used to illustrate the later
examples that are presented.

Example 1 (Example of a relational schema)
Author (AuthID, Name, FirstName, Origin) contains the authors of the books in the library
Book (BookID, Title, Publisher, Abstract) contains the books of which copies are stored in the
library
Written (BookID, AuthID) defines which authors wrote which books
Copy (BookID, SerNumber, DateAcq, State) contains instances of books which are physically
stored in the library
Member (PID, Name, FirstName, PhoneNumber) contains people who can borrow books from
the library

Addresses (PID, AddressID, Street, City) contains addresses of the library users
Project (PCode, Name) contains projects for which books can be lent
ExtProject (PCode, Duration) specialization of projects with external partner
Lending (BookID, SerNumber, LendingDate, PCode, PID) contains copies which are actually
borrowed by a certain library user for a certain project
EndLending (BookID, SerNumber, LendingDate, EndDate, PCode, PID) contains the history of
when copies have been lent out

Table 1 (below) shows the set of foreign keys and inclusion dependencies of this
example. The origin of the information included in it is to be found in the database
catalogue and/or known by an expert who knows the details of LDB, in a process
assisted by FCA, as we have proposed in Section 2.1. As indicated above, this
information will be the input for the FCA algorithms that will allow the classes, the
inheritance hierarchy of the classes and the associations between them to be obtained.

 Type Table Foreign Key Table Primary Key
1 Foreign Key Written BookID Book BookID
2 Foreign Key Written AuthID Author AuthID
3 Foreign Key Copy BookID Book BookID
4 Foreign Key Lending BookID, SerNumber Copy BookID, SerNumber
5 Foreign Key Lending PCode Project PCode
6 Foreign Key Lending PID Member PID
7 Foreign Key EndLending BookID, SerNumber Copy BookID, SerNumber
8 Foreign Key EndLending PCode Project PCode
9 Foreign Key EndLending PID Member PID
10 Foreign Key Addressess PID Member PID
11 Inclusion Dep. ExtProject PCode Project PCode

Table 1: Foreign keys and inclusion dependencies of the example.

The first phase the FCA algorithm is applied with the previously presented criteria
and the formal concept which is used as input is shown in Table 2.

 N
am

e

Fi
rs

tN
am

e

O
rig

in

Ti
tle

Pu
bl

is
he

r

A
bs

tra
ct

D
at

eA
cq

St
at

e

Ph
on

eN
um

be
r

St
re

et

C
ity

D
ur

at
io

n

Le
nd

in
gD

at
e

PC
od

e

PI
D

En
dD

at
e

Author
Book
Copy
Member
Addresses
Project
ExtProject
Lending
EndLending

Table 2 Incidence table for the first formal context

Applying the algorithm results in the lattice shown in Figure 4. It shows the
inheritance relations between the classes that have been found. For instance, a new
abstract class Atr(2/1) is obtained from which Member and Author inherit. With this
result, the reengineer can interact and accept the new class by naming it Person.

Figure 4: Lattice obtained with the first application of FCA techniques (inheritance
analysis).

Although it may be a conceptual error to represent both Atr(2/1) and ExternalProject
as inheriting from Project, it is shown as so here because the attribute Name is shared
by the relations Member, Author and Project. The fact that the algorithm has picked
up this incidence leads us to consider the possibility of working in the area of
semantic enrichment as well, detecting some possible inconsistencies that can appear
in the data and which the reengineer may not have controlled.
The first version of the class diagram is established using this lattice.
The algorithm has been applied in the second phase with a formal context, according
to the criteria defined above, as shown in Table 3. The result of applying the FCA is
another new lattice which is shown in Figure 5 and from which the associations
between classes are derived.
The node labeled Member and that labeled Addresses fit the first pattern presented. In
this case, there is an association between the classes Member and Addresses.
The nodes labeled Book, Author and Written fit the second pattern presented. In this
case, there is an association between the classes Book and Author (higher nodes). No
association class characterize this association because the lower node (Written)
doesn’t have attributes but the key attributes.

 A
ut

hI
D

B
oo

kI
D

Se
rN

um
be

r

PI
D

A
dd

re
ss

ID

PC
od

e

Le
nd

in
gD

at
e

Author
Book

Written
Copy

Member
Addresses

Project
ExtProject

Lending
EndLending

Table 3 Incidence table for the second formal context

The nodes labeled Member, Project and Copy, and the lower node Lending fit the
third pattern presented. In this case, there are associations between the classes
Member and Lending; Project and Lending; Copy and Lending in the class diagram.
Note that the node labeled Project is also labeled ExternalProject. If the classes in the
same node are ancestors and descendents, the superclass is always choosen here and
the association relation is inherited by descendents.
The first version of the class diagram is completed with the result of this second
phase.
As already mentioned, the class diagram, expressed in UML, can be obtained
automatically. Figure 6 shows this diagram as it is after the first iteration.
This FCA support is the basis of our proposal. With it, we hope to be able to gather

Figure 5 Lattice obtained by applying the FCA techniques a second time (associations
analysis)

the maximum amount of semantics concerning the data and thus construct a new
approach in the task of Conceptual Abstraction. This is completed with the rest of the
points we present in Section 2.1 in order to obtain FCA support to the whole
Database Reengineering process.

Figure 6 The class diagram obtained from the lattice information

5 Related work

Much of the work in the Database Reengineering area concentrates on the
Conceptual Abstraction phase, although there are references to the Data Analysis and
Migration phases and some also take into account the whole Reengineering process.
Most research starts with a relational schema as the initial input of any task. It is
supposed that the semantic information has been obtained through an exhaustive
analysis of this relational schema and, as a general rule, it is assumed that the
relational schema should be in the Third Normal Form. One exception to this
assumption is to be found in [Premerlani & Blaha, 1994]. This proposal starts from
relational schemas that may not be well-designed and a class diagram is obtained
according to the OMT object model [Rumbaugh et al., 1991]. The main
inconvenience is that the method is not easily automated as it is based on the
perceptions of the users.
In [Behm et al., 1997] a mechanism for migrating relational databases to object-
oriented databases, which also takes into account the Data Migration phase, is
presented. This migration process is divided into two parts: migration
(transformation) of schemas and data migration, which is itself divided into four

subparts: rules for class creation, rules for attribute creation, instance creation process
and attribute assignment process. A formal notation for describing relational and
object-oriented schemas and the relationships between them is introduced. Then the
operations (transformation rules) with which an object-oriented schema can be
created step by step, are investigated. A transformation rule transforms a part of the
relational schema, called a pattern, into a part of an object-oriented schema. For
example, a foreign key dependency can be transformed into a “part-of” relation or a
relation can be transformed into a class.
Similarly, in [Alhajj & Polat, 2001] a new approach for carrying out the
transformation of a relational database to an object-oriented database is presented.
Once the new schema has been obtained, the method provides an algorithm that
manages the migration of data from the tuplas of the relational database to the objects
of the new database.
In [Jahnke, 1999], an approach that aims to cover all the phases of the Reengineering
process is presented. Data Analysis and Conceptual Abstraction are stressed. For this
phase, graph grammar is applied to transform the structure of the analyzed logical
data into an object-oriented conceptual data schema. This structure can be
interactively improved and redesigned according to needs. The possibility of carrying
out redesigning operations is formally defined using graph transformations. Based on
this formalism, a management component has been developed for the consistency that
incrementally propagates the modification of the logical structure to a conceptual
structure (redesigned), in the case where iterations are carried out.
Finally, in [Hainaut et al., 1993] a model of common generic data is used which
subsumes the conceptual, logical and physical constructors that are used to design a
database. A catalogue of schema transformations is defined and used to gradually
replace implementation constructors with others of a higher level, while at the same
time losing the initial schema. The results of this work can be found in a CASE tool
that is still being developed [Roland et al., 2000].
The work we presented here also assumes that the relational schema is in the Third
Normal Form. We are in the line of [Jahnke, 1999], but we think the FCA technique
guaranteed the quality of the obtained object-oriented schema.
As it was already mentioned (Section 3) the use of FCA in the Database area is not
new. [Schmitt and Conrad, 1999] present an approach to transform a class hierarchy
into what the authors call a “normalized” form. Given a class hierachy, they applied
FCA algorithms and obtain a new hierarchy which fits the maximal factorization
criterion.
Another use of FCA in Databases is to support data exploration, allowing the
detection of conceptual aspects. This application is used in the TOSCANA software
system [Stumme et al., 1998]. TOSCANA is a tool for knowledge discovering in
databases. The tool works with the information the database stores and facilitates
Data Mining tasks.

5 Conclusions and future work

An automation proposal for some of the tasks that are carried out in the Conceptual
Abstraction phase of the Database Reengineering process have been presented. This
proposal is based on Formal Concept Analysis techniques and allows an enriched
logical schema to be transformed into an object-oriented schema. The continuity of
this work requires a deeper study of the possibilities that the FCA based techniques
provide for the different phases of the Database Reengineering process. In the paper
we have mentioned points where we explore the FCA usefulness. This proposal
should also be verified by means of its application to real LDBs, by means of
adequate metrics to establish a comparative study between the results obtained from
our proposal and from other different techniques. This research line requires the
construction of an interactive Database Reengineering tool capable of applying the
FCA based techniques and of supporting interaction with the developer. On the other
hand, the iterative nature of the Database Reengineering process means that the
analysis of the impact of the changes in the logical schema on the conceptual schema
obtained is especially important. In this sense, it is to be expected that the properties
of the Galois lattices allow these modifications in the conceptual schema to be
conveniently isolated, thus notably facilitating the complete process.

References

[Aiken, 1998] P. Aiken "Reverse Engineering of Data". IBM Systems Journal 37(2),
1998.
[Alhajj and Polat, 2001] R. Alhajj and F. Polat. “Reengineering Relational Databases
to Object-Oriented: Constructing the Class Hierarchy and Migrating the Data”. In
Proceedings of the Eighth Working Conference on Reverse Engineering. IEEE
Computer Society Press, 2001.
[Behm et al., 1997] A. Behm, A. Geppert, K. R. Dittrich: “On the Migration of
Relational Schemas and Data to Object-Oriented Database Systems”. In 5th
International Conference on Re-Technologies for Information Systems, Klagenfurt,
Austria, December, 1997.
[Blaha and Premerlani, 1995] M. Blaha and W. Premerlani. “Observed idiosyncrasies
of relational database designs”. In Second Working Conference on Reverse
Engineering, Toronto, Ontario, Canada. IEEE Computer Society Press, 1995.
[Blaha and Premerlani, 1996] M. Blaha and W. Premerlani. “A catalog of object
model transformations”. In Proc. of 3rd Working Conference on Reverse Engineering,
Monterey, California. USA. IEEE Computer Society Press, 1996.
[Cattell et al., 2000] R. G. G. Cattell, D. Barry, M. Berler, J. Eastman, D. Jordan, C.
Russell, O. Schadow, T. Staniendam, and F. Velez. “The Object Data Standard:
ODMG 3.0”. Morgan Kaufmann Publishers, San Francisco (CA), USA, 2000.
[Dao et al., 2002] M. Dao, M. Huchard, T. Libourel, and C. Roume. “Evaluating and
Optimizing Factorization in Inheritance Hierarchies”. Proceedings of The
Inheritance Workshop. ECOOP’2002 Workshop, June, 2002.

[Elmasri and Navathe, 1994] R. Elmasri and S. B. Navathe. “Fundamentals of
Database Systems”. Benjamin/Cummings, Redwood City, 2nd edition, 1994.
[Ganter and Wille, 1999] B. Ganter and R. Wille. “Formal concept analysis:
mathematical foundations”. Springer, 1999.
[Godin et al.,1995] R. Godin, G. Mineau, R. Missaoui and H. Mili. “Méthodes de
clasification conceptuelle basées sur les treillis de galois et applications”. Revue
d’Intelligence Artificielle, 9(2):105-137, 1995.
[Godin and Mili,1993] R.Godin and H.Mili. "Building and maintaining analysis-level
class hierarchies using Galois lattices”. Proceedings of OOPSLA 1993.
[Hainaut et al., 1993] J-L. Hainaut, V. Englebert, J. Henrard, J-M. Hick, and D.
Roland. “Requirements for information system reverse engineering support”.
Technical Report RP-95-13, University of Namur, Belgium, 1993.
[Hainaut, 2000] – Hainaut, J-L., “The Nature of Data Reverse Engineering”, Data
Reverse Engineering Workshop, EuroRef, Seventh Reengineering Forum,
Reengineering Week 2000, Zurich, Switzerland, March 2000.
[Jahnke and Wadsack, 1999] J.-H. Jahnke and J. P. Wadsack. “Varlet: Human-
Centered Tool Support for Database Reengineering”. Workshop on Software-
Reengineering, Bad Honnef, Germany. Technical Report (Fachbericht
INFORMATIK 7/99), University Koblenz-Landau. J. Ebert, B. Kullbach, F. Lehner
(Editors). May 1999.
[Jahnke, 1999] J. H. Jahnke. “Management of Uncertainty and Inconsistency in
Database Reengineering Processes”. PhD thesis, University of Paderborn, Dept. of
Mathematics and Computer Science, 33095 Paderborn, Germany, September 1999.
[Jahnke et al., 2002] J.-H. Jahnke, W. Schäfer, J. P. Wadsack and A. Zündorf.
“Supporting Iterations in Exploratory Database Reengineering Processes”. Science
of Computer Programming (Special Issue). Elsevier Science, 2002. (to appear).
[Müller et al., 2000] Hausi A. Müller, Jens H. Jahnke, Dennis B. Smith, Margaret-
Anne D. Storey, Scott R. Tilley, Kenny Wong: "Reverse Engineering: A Roadmap,"
The Future of Software Engineering Track at the 22nd International Conference on
Software Engineering (ICSE 2000), Limerick, Ireland, June 4-10, 2000.
[Premerlani and Blaha, 1994] W. Premerlani and R. Blaha. “An Approach for
Reverse Engineering of Relational Databases”. Communications of the ACM, 37 (5),
pp. 42-49, 1994.
[Prieto et al., 2002] F. Prieto,Y. Crespo, J. M. Marqués and M. A. Laguna. “Formal
Concept Analysis support to Domain Frameworks Construction”. V Iberoamerican
Workshop on Requirements Engineering and Software Environments Development.
La Habana, Cuba, Abril 2002. (In Spanish)
[Ramanathan and Hodges, 1997] S. Ramanathan and J. Hodges. “Extraction of object-
oriented structures from existing relational databases”. ACM SIGMOD Record, 26(1),
1997.
[Roland et al., 2000] D.Roland, J.-L.Hainaut, J.-M.Hick, J.Henrard, V.Englebert,
“Database Engineering Processes with DB-MAIN”. In Proc. of the 8th Conference on
Information Systems (ECIS2000). Vienna, Austria, 2002.
[Rumbaugh et al., 1991] J.Rumbaugh, M.Blaha, W.Premerlani, F.Eddy and
W.Lorensen. “Object-Oriented Modeling and Design”, Prentice Hall, Inc., 1991.

[Schmitt and Conrad, 1999] I. Schmitt and S. Conrad. “Restructuring Object-Oriented
Database Schemata by Concept Analysis”. In “Fundamentals of Information
Systems”, Kluwer Academic Publishers, pp. 177—185 (Chapter 12), 1999.
[Siff and Reps, 1999] M. Siff and T. Reps. “Identifying modules via concept
analysis”. IEEE Transactions on Software Engineering, 25, December, 1999.
[Snelting and Tip, 1998] G. Snelting and F. Tip. “Reengineering class hierarchies
using concept analysis”. ACM SIGSOFT Software Engineering Notes, 23(6), 1998.
[Stevens and Pooley, 1998] P. Stevens and R. Pooley. “Systems reengineering
patterns”. In Proc. of ACM Foundations of Software Engineering, Lake Buena Vista,
Florida, USA, pages 17-23. ACM Press, 1998.
[Stumme et al., 1998] G. Stumme, R. Wille and U. Wille, “Conceptual Knowledge
Discovery in Databases Using Formal Concept Analysis Methods”, LNCS 1510, pp.
450-458, 1998.
[Wille, 1982] R. Wille. “Restructuring lattice theory: An approach based on
hierarchies of concepts”. In Ordered Sets, pages 225-470. Reidel, Dordrecht-Boston,
1982.

