Requirements Reuse for Software Development

Oscar Lopez Villegas

Technological Institute of Costa Rica

San Carlos Regional Campus
olopez@infor.uva.es

Abstract

This paper presents doctoral research addressing the
problem of applying a reuse based approach to the early
phases of software development, reusing requirements mod-
els. Our proposal is aimed at defining meta-model for re-
quirements diagrams, a Petri net based approach for repre-
sentation of requirements models, and an approach to com-
pare the requirements proposed by the software developer
against the domain requirements models stored in a reposi-
tory. Being able to determine the similarity between the re-
quirements models, through an operative support, makes it
possible to answer the developer’s queries ensuring the sys-
tem requirements satisfaction by selecting assets from com-
plex structures called mecanos.

1. Introduction

Software production has a three-constrain-set: quality
standards, time-to-market, and requirements. Software ap-
plications must satisfy strict quality standards, they must
be produced as soon as possible, and they must satisfy
a defined set of system requirements. Related to quality
standards and time-to-market, several software reuse ap-
proaches as alternative ways of solution have been pro-
posed. Software reuse is aimed to significantly increment
the quality and productivity of software artifacts. Software
quality is favored by using proven and validated compo-
nents. Software productivity is improved by reducing time-
to-market for software applications. Besides qualified soft-
ware is supposed to adequately satisfy the system require-
ments, software reuse per se does not ensure that system
requirements are really satisfied. An approach ensuring
the system requirements satisfaction by reusing software
components is necessary. As a result, we take satisfactory
software development by reusing components is achieved
through an approach based on software requirements reuse
as hypothesis of present research.

Software reuse implies more than simply using compo-

Miguel Angel Laguna
University of Valladolid
Department of Informatics
mlaguna@infor.uva.es

nents to make the same application, or a similar one, over
and over. True software reuse consists of the systematic use
of experience and previously developed systems as assets
which have to be cultivated to effectively better the future
development of applications. The asset term refers to any
reusable product in the software life cycle (models and do-
main architectures, requirements, designs, code, data base
components, documentation, tests) [9]. Different models of
software reuse have been established, e.g. domain engineer-
ing - application engineering, proposed by U.S. Department
of Defense [5], and the development for - development with
reuse, proposed by REBOOT [9].

Activities of development for reuse and development
with reuse are related to a components library and based
on operative support to enact, manage and use the reusable
components. The assets may be reused from two perspec-
tives: composition and generation. In composition the as-
sets are taken as passive elements which act like construc-
tion blocks to compose software applications. On the other
hand, in generation, the assets are viewed as active elements
which might be transformed to obtain software applications.
It could also be thought of as some hybrid composition-
generation, as has been proposed at the University of Val-
ladolid in the MRG approach (in Spanish, Modelo de Reuti-
lizacion GIRO). The MRG is based on fine grain elements
(they can be of three kinds: analysis, design, and implemen-
tation) and large grain elements (structures that are formed
by related assets of different levels of abstraction) where the
generation of large grain elements can take place by com-
position of fine grain elements in reuse time. This hybrid
focus provides great flexibility in the reuse process because
the assets recovered from the repository are used to generate
the new required elements, according to developer necessi-
ties.

Software requirements have to be treated adequately in-
side of a reuse strategy. Both in composition and genera-
tion environments the reuse process is triggered by a set of
requirements which are proposed by the developer. These
requirements are supposed to satisfy reusing assets which
are stored in the repository. Requirements have to previ-



ously be classified to be retrieved when developers send
their queries. Classification and retrieval of general assets
have been approached with schemes and methods based on
text, ontology or facets. Nevertheless, requirements contain
knowledge from both the domain and the development pro-
cess. The complexity of this knowledge forces the applica-
tion of sophisticated techniques for requirements classifica-
tion and retrieval [6]. To efficiently answer the developers’
queries by selecting, composing or generating elements, a
robust strategy based on software requirements reuse is re-
quired.

Systematic reuse of software requirements demands a
special operative support to enact, manage and use the re-
quirements assets. It has to be defined correctly in order to
represent and to store specifications in the development for
reuse step. Then, for an effective requirements reuse, the
way to compare and to adapt the reusable elements in the
step of development with reuse has to be defined. With nec-
essary operative support, software requirements reuse im-
proves general software reuse if system requirements satis-
faction can be ensured when answering the queries of the
developers. In this way, an approach for requirements reuse
drives the software development process inside of quality,
time-to-market, and requirements constraints.

In summary, software reuse aims to satisfy with good
quality and efficiency the demand for software products.
The correct satisfaction of requirements is a feature of any
qualified software product. The issue of reusing the de-
sign and implementation elements is a requirements driven
one. An adequate operative support makes it possible to
answer developer queries and hence ensure the system re-
quirements satisfaction. The establishment of a requirement
reuse approach supporting the software development with
reuse is the fundamental objective of the present research.

2. Background

Software reuse is aimed to systematically use different
products of life cycle to develop new software products
based on a components library [17] as opposed to the tra-
ditional develop-from-scratch approach. The assets have to
encode the information about development from different
levels of abstraction. This information is referred to when
comparing new situations with previous ones, and during
duplication of already developed actions and objects, as
well as during adaptation to support new requirements [16].

Complex structures, like mecanos [7], have been pro-
posed because of the necessity to relate the different levels
of abstraction. A mecano is a large grain reusable element
consisting of a set of fine grain elements which correspond
to distinct levels of abstraction and are associated by inter-
level and intra-level relations. The mecano is designed to
increase the abstraction level of reuse and to facilitate trace-

ability and navigation between components inside the soft-
ware reuse process. The higher level of abstraction of soft-
ware relies on its requirements. Nevertheless, in order to in-
tegrate software requirements in complex reuse structures,
adequate models to promote reusability (e.g. comprehen-
sion, retrieval, and adaptation) are required.

2.1. The requirements reuse

Since requirements engineering triggers the software de-
velopment process [19], and since requirements engineer-
ing is in charge of the necessities of stakeholders [10], the
requirements reuse can empower the software life cycle [6].
Requirements reuse is an approach to systematically use ex-
istent requirements documents to reduce the general effort
inside the software life cycle. Although it has received lit-
tle attention [10] [21], reusing early software products and
processes can impact the life cycle from two basic points
of view: improving the requirements engineering process
[6][20], and supporting the development with reuse [3] [4]
process.

From the point of view of improving requirements engi-
neering, requirements reuse aids by recording the adopted
suppositions, made decisions, and adopted alternatives for
future reference. It makes the change management of re-
quirements easier. More, requirements reuse is helpful in
the assistance, guidance and advising for the requirements
engineer in the process of requirements acquisition [19]. It
is assumed that both process and products of requirements
engineering are reusable artifacts. In the whole require-
ments process there exist different models and ways to en-
act, handle and use models. Both, products and process are
potentially reusable.

From the point of view of supporting development with
reuse, requirements management is essential for supporting
domains and product lines [8] [2]. In addition, the ideal of
software reuse claims the knowledge in abstract form for
reuse. The more abstract level of knowledge about a partic-
ular domain is represented by requirements. Hence, reusing
requirements is a way to increment the potential of software
reuse. Requirements related to constraints inside a domain,
or to styles of data presentation or to policies of the orga-
nization are all potentially reusable. These categories could
represent more than 50 percent of the requirements. Then,
requirements reuse is an attractive alternative in the perspec-
tive of reducing software development costs [10].

Besides its potential benefits in the software engineer-
ing, requirements reuse faces as principal trade-off its diffi-
culties to enact, to process and hence to reuse, the require-
ments. The documentation of the requirements is originally
oriented to be a communication media between users and
analysts. For this reason, its representation is done with
diverse notations and formats. This diversity implies the



necessity of particular actions to analyze documents of re-
quirements and its organization in a repository of reusable
artifacts [6]. The systematic requirements reuse to develop
software requires two specific actions. First, to define the
adequate way to model and to store specifications in the
phase of development for reuse. Second, to define a pro-
cess to compare and to adapt the reusable requirements in
the phase of software development with reuse.

2.2. Requirements representation for reuse

Common classification and retrieval techniques show
limited utility in representing requirements for reuse [6].
Some different alternatives based on knowledge represen-
tation [14], analogical reasoning [15] to reuse the require-
ments from a knowledge base have been proposed . These
techniques place emphasis on the semantics of requirements
documents and it demands artificial intelligence applica-
tions to acquire and to manage the encoded knowledge in re-
quirements documentation. Others techniques are based on
meta-models [19], evolutionary development [3] and formal
methods [22] all of which emphasize the process for devel-
opment and maintenance the reusable requirements. Cybul-
ski [6] has proposed a set of techniques based on structural
properties of documents and tasks emphasizing the way to
enact and to use the requirements in the life cycle of re-
quirements engineering. All these techniques rely on the
reuse of requirements as a way to improve the requirements
engineering process.

A few studies are intended to reusing the requirements
for software development. Besides it is known that require-
ments from domains and similar tasks are more likely to
show similarities than others software elements [21], the re-
quirements reuse as support to develop applications has re-
ceived relatively little attention. A tool and methodological
support is necessary to reuse from the requirements toward
the implementation [1]. Complex structures to accomplish
the requirements related to design and code have been pro-
posed [7]. Nevertheless, to integrate assets of requirements
and design and code it is necessary to find out how to ad-
equately model them. Requirements are modeled with a
diversity of techniques. Hence we propose a normaliza-
tion process for requirements [12] to ensure requirements
reusability when stored in a repository. The normalized re-
quirements when related to assets of different levels of ab-
straction provide an interface of large grain to increase the
abstraction level of reuse process.

2.3. Comparing and adapting requirements

The techniques for comparison and adaptation of
reusable requirements have received less attention than oth-
ers in the requirements reuse area. Reubenstein [18] started

this work when he proposed a heritage-based technique to
reuse domain descriptions and task specifications. Maiden
and Sutcliffe [20] apply techniques based on artificial in-
telligence to support the structural and semantic matching
when retrieving requirements. Frameworks and patterns in
general software reuse have shown their utility for classifi-
cation and characterization of reusable requirements. Nev-
ertheless, all these works are intended to improve the re-
quirements engineering process.

The requirements reuse for supporting software develop-
ment requires a high abstraction level. We have proposed an
abstraction of generic functional requirements which, being
able to be adapted to various applications, could be com-
bined with generalization criteria in order to manage assets
from the repository [11]. Generalization criteria provides
the necessary support for the requirements description and
these criteria make the generic requirements compatible in-
side the classification scheme. The generic part acts as the
element for the comparison [13] between both problem re-
quirements and assets from the repository. From this com-
parison it is possible to retrieve assets to apply them to a
given problem and to adapt them to satisfy the requirements.

3. Research Plan
3.1. Problem Definition

Inside the general frame of this doctoral research, the
problem to be resolved is established in following terms:

Let S be a given set of requirements which are proposed
by a software developer with reuse. S represents a subset of
a software requirements specification, then the problem we
are dealing with is to supply an approach for selecting the
minimal model M such that M satisfies all the requirements
in S, and M belongs to the universe of requirements models
which are stored and classified in a repository, and they are
derived from domain analysis applied on specific business
areas.

3.2. Objectives

The general objective of this Thesis is to define an
approach for comparing requirements models, looking at
model inclusion and the satisfaction of specific properties,
to support the establishment of an approach for software
development based on reusing complex structures called
mecanos in the MRG environment. Specifically, our aim
is to:

1. Establish a way to represent and relate the require-
ments which are stored as assets in a repository.

2. Establish an equivalence relation between require-
ments models and the sufficient condition to determine



the similarity between the requirements models.

3. Establish a process to compare requirements so that
it supports software development by reusing mecanos
from the starting point given by developer queries.

3.3. Expected products

We expect to obtain three main products from this re-
searching.

Wider the mecano model. We are going to propose an
adaptation of the mecano model in order to focus on issues
about domain engineering. Specifically, it will get a spe-
cialized mecano model for including generic requirements.

Process for requirements reuse. It will establish a work
guide for developing software applications with reuse from
functional requirements and focusing on recent advance in
process theory and software reuse.

Tools for requirements reuse. It will specify and imple-
mented, if possible, some tools for an ease-to-reuse pro-
cess from functional requirements. At least it should be
specified corresponding tools for: (a) Automatic generation
of requirements assets from domain models. (b) Require-
ments abstraction for obtaining generic assets. (c) Support
for comparison of requirements models. (d) Requirement-
driven navigation through the mecano structure.

4. Proposal Overview

We have focused on six issues to be resolved in order
to establish an approach for requirements reuse supporting
software development, see figure 1. First, we are based on
(A) the availability of good quality and proved assets of re-
quirements which are related to design and/or implementa-
tion assets, and (B) the support given by GIRO Reuse Model
and the repository. The issues dealt with are:

1. Diversity of techniques for requirements modeling:
There are many different diagrams for the represen-
tation of software requirements. We classify them in
three categories (interaction oriented, data oriented,
and object oriented). We are proposing a requirements
meta-model to manage this diversity of techniques.

2. Low formality level in requirements diagrams: Be-
cause software requirements diagrams are intended
to facilitate communication and agreement between
stakeholders strong formal models are generally
avoided. An adequate formal level to automatically
investigate the behaviour of requirements models is
necessary. We propose a coloured Petri net based ap-
proach to solve the low formal level in requirements
diagrams stored in a repository.

3. Relationships between requirements: It is well known
that requirements are related each to the others. Some
requirements are in a mandatory relationship, or in an
optional one. The requirements could also be alterna-
tive each to the others. We are defining a way to repre-
sent these relationships inside the mecano structure to
store them within the assets.

4. Requirements are specific to a given software solu-
tion: Requirements elicitation normally takes place for
a specific problem, then requirements diagrams show
this particular reality. As a result, we are dealing with
generic requirements, i.e. domain requirements into
assets.

5. How to compare requirements models: Requirements
assets are composed by requirements models. Also,
the requirements which are proposed by the developer
with reuse have to be taken as a model. As a result,
we are working to define a process for comparison of
requirements models.

6. Process for software reuse from functional require-
ments: From former issues we are establishing a pro-
cess to give guidance and assistance to the developer
when reusing assets and mecanos.

A.
Qualified, available,
proved and related to
design/implementation
requirements assets

2. Low formality level in
requirements diagrams
3. Relationships

1. Diversity of techniques
between requirements

for requirements modeling

6. Process:
»|Requirements Reuse
for Software
Development

4. Requirements are
B. specific
GIRO Reuse Model and

Repositoy Support

5. How to compare
requirements models

Figure 1. Overall focused issues.

Acknowlegments

This work is sponsored by DOLMEN Project inside of CICYT-TIC2000-
1673-C06-05, Ministry of Technology and Science, Spain.

Oscar Lopez thanks to Spanish Agency for International Cooperation
(AECI) and to the Ministry of Technology and Science of Costa Rica.

References

[1] K. Barber, S. Jernigan, and T. Graser. Increasing opportu-
nities for reuse through tool and methodology support for

enterprise-wide requirements reuse and evolution, 1999.
[2] L. Bass, P. C. Clements, S. Cohen, L. Northrop, and

J. Withey. Third product line practice workshop report. Tech-
nical Report CMU/SEI-99-TR-003, Software Engineering



Institute. Carnegie Mellon University, Pittsburgh, PA 15213
(USA), March 1999.

[3] R. Bellinzona, M. G. Fugini, and V. de Mey. Reuse of spec-
ifications and designs in a development information system.
In N. Prakash, C. Rolland, and B. Percini, editors, Informa-
tion System Development Process, pages 79-96, Amsterdam,
1993. North-Holland.

[4] R. Bellinzona, M. G. Fugini, and B. Pernici. An environ-
ment for specification reuse. Technical Report POLIMI-
UDUNIV.92.E.2.9E.8.4, ITHACA, Nov 1992.

[5] R. E. Creps, M. A. Simos, and R. Prieto-Diaz. The STARS
conceptual framework for reuse processes. In Proceedings of
STARS’92, November 1992.

[6] J.L.Cybulski. Patterns in software requirements reuse. Tech-
nical report, Department of Information Systems. University
of Melbourne, July 1998.

[7] F.J. Garcia. Modelo de Reutilizacion Soportado por Estruc-
turas Complejas de Reutilizacion Denominadas Mecanos.
PhD thesis, Universidad de Salamanca, Spain, 2000.

[8] F. J. Garcia, M. P. Romay, J. M. Marqués, and Y. Crespo.
Mecanos: Exposicion resultados y lineas abiertas en reuti-
lizacion sistematica del software. In Actas de Las Il Jor-
nadas Iberoamericanas de Ingeneria De Requisitos y Ambi-
entes Software (IDEAS’99), pages 193-204, San José, Costa

Rica, Marzo 1999.

[9] E.-A.Karlsson, editor. Software Reuse. A Holistic Approach.
Wiley Series in Software Based Systems. John Wiley and
Sons Ltd, 1995.

[10] I. Kotonya, G.; Sommerville. Requeriments Engineering:
Processes Techniques. USA Wiley, 1997.

[11] O. Lopez, M. A. Laguna, and F. J. Garcia. Reutilizacion de
requisitos para desarrollo de software en el modelo mecano.
In | Jornadas de Trabajo DOLMEN, Sevilla, Spain, Junio
2001.

[12] O. Lopez, M. A. Laguna, and J. M. Marqués. Generacion
automatica de casos de uso para desarrollo de software con
reutilizacion. In Actas de Las V Jornadas de Ingenieria
Del Software y Bases de Datos (JISBD’2000), pages 89-101,
Spain, Noviembre 2000.

[13] O. Lbépez, M. A. Laguna, and J. M. Marqués. Reutilizacion
del software a partir de requisitos funcionales en el modelo
mecano. In Actas de Las IV Jornadas Iberoamericanas de In-
genieria De Requisitos y Ambientes Software (IDEAS’2001),
pages 104-116, San José, Costa Rica, Abril 2001.

[14] M. Lowry and R. Duran. Knowledge-based software engi-
neering. In The Handbook of Artificial Intelligence, pages
241-322, Massachusetts, 1989. A. Barr, P.R. Cohen, and E.A.
Feigenbaum, Editors. Addison-Wesley.

[15] N.Maidenand and A. Sutcliffe. Exploting reusable specifica-
tion through analogy. Communications of ACM, 35(4):55-64,
1993.

[16] R. Prieto-Diaz. Classification of reusable modules. Software
Reusability, Vol 1. Concepts and Models, 1:99-123, 1989.

[17] R. Rada. Reengineering Software, How to Reuse Program-
ming to Build New, State-of-art Software. USA AMACON,
2nd. edition edition, 1999.

[18] H.Reubenstein and R. Waters. The requirements apprentice:
Automated assistance for requirements acquisition. |EEE
Transactions on Software Engineering, 17:226-240, March
1991.

[19] C. Rolland and N. Prakash. From conceptual modelling to
requirements engineering. Technical Report Series 99-11,

CREWS, 1999.
[20] A. Sutcliffe, N. Maiden, S. Minocha, and D. Manuel. Sup-

porting scenario-based requirements engineering. IEEE
Transactions on Software Engineering, 24(12), December

1998.
[21] A.van Lamsweerde. Requirements engineering in the year

00: A research perspective. In 22nd. International Confer-
ence on Software Engineering, Limerich, June 2000. ACM

Press.
[22] M. Wirsing, R. Hennicker, and R. Stabl. Menu - an example

for the systematic reuse of specifications. In 2nd European
Software Engineering Conference, pages 20-41, Coventry,
England, 1989. Springer-Verlag.



