
���������	
����	�	����	���������	��	����	
�����	������

Francisco J. García1,  Juan M. Corchado1 and Miguel A. Laguna2 
1Dpto. Informática y Automática – Universidad de Salamanca 

2Dpto. Informática – Universidad de Valladolid 

{fgarcia, corchado}@usal.es, mlaguna@infor.uva.es  

 

���������
Reuse is one of the most important disciplines looking for 
improving the productivity, the time-to-market and, of 
course, the product quality. However, this promising 
discipline has not given the expected results. Several 
reasons have appeared in literature to explain that, one of 
the most realistic ones is the high cost expressed in terms 
of money, time and efforts that is necessary to implant a 
reuse process.  
The organisational and methodological aspects of this 
discipline have to be taken into account during the reuse 
process in order to obtain successful results. This paper 
presents a synergetic methodology based on a coarse-
grained reusable element called ������ and the Case-
based reasoning (CBR) system that facilitate the reuse of 
software components. Case-based reasoning systems 
provide a knowledge management method that supports a 
most intelligent and automated development-with-reuse 
process based on �������. 
	
�������
Case-based reasoning systems, Mecano model, 
Development with reuse. 
 
 
��������������
Reuse is the systematic process to develop systems of 
components of a reasonable size and reuse them [14]. 
Software Engineering community accepts that organized 
reuse (not ad hoc reuse) allows enhancing productivity 
and quality in software development [9]. The reuse life 
cycle comprises two main activities, development for 
reuse and development with reuse as is presented in 
[8,11,13] for example. 
Development for reuse is the process of preparing 
software artefacts that these can be reused in other 
contexts. In the other hand, development with reuse is 
related to the construction of new software systems using 
reusable elements. The process of development with reuse 
includes the activities of searching for a set of candidate 
elements from a software repository, evaluating the set of 
retrieved candidate reusable components to find the most 
suitable one, and, if it’s necessary, adapting the selected 
element to fit the specific requirements. 
The repository of reusable software elements is the link 
between the both reuse-processes, i.e., where the reusable 

elements are produced and where they are reused. But, 
when the repository is widely populated the activities of 
the development with reuse become more and more 
difficult, specially the searching and evaluating ones. 
A coarse-grained structure of reusable software elements 
called ������ [4,5] has been defined to improve the reuse 
process at different abstraction levels. 
A ������ is a reusable element that is composed of 
interrelated thin-grained components, usually called 
“assets” in reuse literature. The components can be 
included in one of these three abstraction levels: analysis, 
design and implementation; and at least two different 
abstraction levels at least have to be presented in every 
������. 
The ������ notion provides a framework to organize 
product-lines because it can be used to develop software 
for and with reuse [4]. A formal methodology is necessary 
to guide the reuse process with �������, especially the 
retrieval operation in the development-with-reuse process. 
In this framework the Case-based reasoning systems can 
be used to provide the ������ model with the required 
formalism. Such formalism facilitates the automation of 
the reuse process and allows the adaptation of the 
components of the system (�������) to the changes in the 
environment. 
CBR systems are Artificial Intelligent (AI) systems [12] 
which have been successfully used in problems in which 
is needed to establish relationships between past 
experiences and new problems [16]. These systems 
provide a framework for identifying problems similar to a 
given one and for using the solutions given to such 
problems on the present one after an adaptation, revision 
and retain process. These systems incorporate learning 
and adaptation mechanisms that can be used to eliminate, 
incorporate and adapt the ������� of the reuse-base.    
Following the paper includes an introduction to the 
������ model and the CBR systems. Then it is shown 
how such models can be combined in order to facilitate 
the reuse, and finally we present an application of the 
system, the conclusions and some future work. 
����
�����������
���
��
A ������ is a special coarse-grained reusable software 
element. A ������ is always composed by a set of 
interrelated fine-grained elements classified in different 
abstraction levels, called reusable assets, these elements 



have to be stored in an adequate repository [4,5]. The 
supported abstraction levels are requirements level, design 
level and implementation level. 
Around the ������ a reuse model has been defined, 
which is articulated over three edges, the technical model, 
the process model and the qualification model. The 
technical reuse model presents a duality 
compositional/generative in the creation of �������. 
Firstly, ������� can be built as composition of individual 
reusable assets based on their relationships. This operation 
is a typical development-for-reuse activity; the result of 
which is a reusable element that can be reused “as-is” in a 
development-with-reuse activity. However, when a 
������ does not match the reuser’ specifications it cannot 
be reused “as-is”, consequently a ������ can be 
generated by composition of the assets stored in the 
repository, following the relationships among the assets, 
so the generative approach is a development-with-reuse 
activity. 
The core ������ model1 is presented in Figure 1, using 
UML 1.3 as modelling language [15]. It presents the main 
components of this structure: the assets and their 
relationships. The assets are the reuse-centred 
components, while the relationships build up the layer for 
automated retrieval processes through an entry point 
(usually an asset representing functional requirements) 
and trace ability across the assets mesh. Both the assets 
and the relationships must have a type that represents the 
share properties of these kind of assets or relationships. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

��������	�
�����������  
Due to the different abstraction levels supported by a 
������, there are two kinds of relationship between 
reusable assets: the ��	
������ relationships – among 
reusable assets classified in the same abstraction level – 
and the ��	�
����� relationships – among assets classified 
in different abstraction levels. In this framework, a coarse-
grained reusable software element can be considered as a 
������, if it incorporates ����	�
�����
���	�������. 
The “reuse process” covers every activity, resource or 
procedure related to the organization’s reuse policy. This 
model defines the activities to be carried out during the 
development-for-reuse and development-with-reuse 

                                                           
1 A complete description of the ������ model appears in 
[4]. Figure 1 presents only an informal model described 
using UML class notation. [4] presents a formal model 
based on a graph grammar constructed with tube graphs. 

processes. Figure 2 defines the basic development-with-
reuse life-cycle, which will be used to present the novel 
software engineering reuse model introduced in this paper. 
Through the retrieval activity, potential �������, 
satisfying reuser’s requirements, are searched and selected 
from the repository. However, not always a retrieved 
������ can be reused as a black box, it could be adapted 
to customize it to a particular requirements of an 
application. Finally, the ������� selected for reuse should 
be reassembled to build the subsystems of the final 
software product.  

Mecanos as
Reusable Components

Customized
Mecanos

Mecanos

Specific
Applications

5HWULHYDO

8QGHUVWDQGLQJ�DQG

$GDSWDWLRQ

&RPSRVLWLRQ

Reuser
Requirements

Selected
Mecanos

R
ep

os
ito

ry

)LJXUH����&ODVVLFDO�GHYHORSPHQW�ZLWK�UHXVH�OLIH�F\FOH�UHXVLQJ�PHFDQRV

The ����������� incorporates a qualification model, 
which defines the evaluation and certification criteria for 
each reusable software element. These criteria should be 
based on reuse metrics for the product ������� and the 
processes. Some related metrics work can be found in 
[6,7]. 
Although the ������ model improves the abstraction 
level of the overall reuse process and supports the 
product-line concept it does not provides a method for 
identify which mecanos should be reused, eliminated or 
modified. A proposed solution is working with ������� 
that present an analysis level, and try to select the suitable 
ones by their components asset representing functional 
requirements [4]. This solution is difficult to apply in real 
repository with a high number of �������, because there 
are too many functional requirements. 
This model can be improved using a memory of the 
successful reuse actions performed in our repository. 
Thus, previous successful reuse experiences can be used 
when a new reuse situation appears. The Case-based 
reasoning life cycle is used, in this paper, to provide the 
������ model with such capability and to define a reuse 
formalism based on the ������ concept. 
������
����
���
������� ���
!��
Knowledge-Based Systems (KBS) are one of the most 
popular and successful branches of the Artificial 
Intelligence (AI) world. According to [16] there are over 
2000 KBS in commercial operation. Nevertheless, 
developers of these systems have met several problems: in 
many cases it can be difficult to deal with the knowledge 
elicitation part of a problem; the implementation of KBS 
is also complicated and once implemented, KBS are often 
slow and are unable to access or manage large volumes of 
knowledge and therefore they are normally difficult to 
maintain. 



Kolodner proposed a revolutionary model: the case-based 
reasoning model which is in fact a model of human 
reasoning [12], that overcomes some of the problems of 
KBS. The idea behind CBR is that people rely on concrete 
previous experiences when solving new problems. This 
fact can be tested on any day-to-day problem by simple 
observation or even by psychological experimentation. 
Since the CBR model was first proposed, it has proved 
successful in a wide range of application areas [3]. 
A case-based reasoning system solves new problems by 
adapting solutions that were used to solve old problems 
[10]. The case base holds a number of problems with their 
corresponding solutions. Once a new problem arises, 
retrieving similar cases from the case base and studying 
the similarity between them obtain the solution to it. A 
CBR system is a dynamic system in which new problems 
are added to the case base, redundant ones are eliminated 
and others are created by combining existing ones. 
CBR systems record past problem solving experiences 
and, by means of indexing algorithms, retrieve previously 
stored cases, along with their solutions, and match them 
and adapt them to a given situation, to generate a solution. 
The intention of the CBR system is to abstract a solution 
from the knowledge stored in the case base in the form of 
cases. All of these actions are self-contained and can be 
represented by a cyclical sequence of processes in which 
human intervention may be needed. A case-base reasoning 
system can be used by itself or as part of another 
intelligent or conventional system. CBR systems are 
especially appropriate when the rules that define a 
knowledge domain are difficult to obtain or the number 
and the complexity of the rules affecting the problem are 
too large for the normal knowledge acquisition problem. 
This AI technology has been successfully used in 
disciplines such as law, medicine and other diagnostic 
systems with rich histories of cases [1]. 
A typical CBR system is composed of four sequential 
steps that are recalled every time that a problem needs to 
be solved [12,16]. 

�������

��	�
����

����

����
��	��

��������
���	
��

���
��	�

�
���
���	
��

��������������

 
��������	�
�������
��������������

This cyclical process involves four major steps (Figure 3): 
• Retrieve the most relevant case(s), 
• Reuse the case(s) to attempt to solve the problem, 
• Revise the proposed solution if necessary, and 
• Retain the new solution as a part of a new case. 

The mission of the retrieval algorithms is to search the 
case base and to select from it the most similar problems, 
together with their solutions, to the new problem. Cases 
should therefore represent, accurately, problems and their 
solutions. Once one or more cases are identified in the 
case base as being very similar to the new problem, they 
are selected for the solution of this particular problem. 
These cases are reused to generate a proposed solution 
(i.e. normally using an adaptation technique). This 
solution is revised (if possible) and finally the new case 
(the problem together with the obtained solution) is stored. 
Cases can also be deleted if they prove to be inaccurate; 
they can be merged together to create more generalised 
ones and they can be modified. For example, every time 
that an attempt to solve a problem fails, whenever 
possible, the reason for the failure is identified and logged 
in order to avoid the same mistake in the future. This is an 
effective way of learning that represents a general learning 
method used by humans [3]. CBR systems are able to 
utilise the specific knowledge of previously experienced 
problem situations rather than making associations along 
generalised relationships between problem descriptors and 
conclusions or relying on general knowledge of a problem 
domain such as rule-based reasoning systems. CBR is an 
incremental learning approach because every time that a 
problem is solved a new experience can be retained and 
made immediately available for future retrievals. 
In the CBR cycle, there is normally human intervention 
[16]. Human experts often undertake case revision and 
retention. This can be a weakness of CBR systems and 
one of the major challenges of CBR research is to 
eliminate human intervention.  
According to [1] there are five different types of CBR 
systems, and although they share similar features, each of 
them is more appropriate for a particular type of problem: 
exemplar based reasoning, instance based reasoning, 
memory-based reasoning, analogy-based reasoning and 
typical case-based reasoning. 
Those CBR systems that focus on the learning of concept 
definitions are normally referred to as being exemplar-
based. In the literature there are different views of concept 
definition [2]. A concept is defined extensionally as the 
set of its examples. PROTOS is an example of this type of 
CBR systems. In this case, solving a problem requires 
finding the right class for an unclassified exemplar. The 
class solution of the most similar retrieved case is the 
problem case solution. Instance-based reasoning (IBR) 
can be considered as exemplar-based reasoning is useful 
in highly syntactic problem [2]. This type of CBR system 
focuses on problems in which there are a large number of 



instances which are needed to represent the whole range 
of the domain and where there is a lack of general 
background knowledge. The case representation can be 
made with feature vectors and the phases of the CBR 
cycle are normally automated as much as possible, 
eliminating human intervention. 
"���
�������
��������#������
$���
���
�������
 ���
!�
One of the main inconvenients of the reuse approach to 
software development is its high cost in terms of money, 
time and effort that is required to implant it. The ������ 
reuse model defines an abstraction level of the overall 
reuse process that reduces its cost in general terms by 
facilitating the organisation of the reuse process. This 
section describes another step towards the improvement 
and formalisation of the reuse process of software 
engineering. The reasoning process of Case-based 
reasoning systems is used in this context to guide the 
reuse of software components, in this case �������.  
This cyclical process is composed of four steps that 
correspond with the four stages of the CBR systems 
presented in Figure 3. These four steps can be identified in 
Figure 4, which has been created combining the processes 
described in Figures 2 and 3. Figure 4 identifies the 
activities to be carried out, in sequential order, in the 
development-with-reuse process of a ������ reuse model.  

��������	

���������
������

���
�
���
�������

���������

���������	
��
������

����������	��

�
�������

������

�������

����������

�����
��������	��
���

���
����

 
��������	��������
��������������

In the present paper the term “����������
���������” 
will be used to refer to the novel reuse model presented 
here. To construct a new software system using this model 
it is necessary to create a repository of ������� first. 
Then, on cyclical steps, the four steps of this model should 
be run to identify reusable component for each of the 
fragments in which the new software development process 
is divided. The four steps are: Retrieval, Evaluation and 
Adaptation, Composition and Feedback. Although this 
reuse process can be used to build any software system, 
the metrics used in any of the steps may be adapted to 
each type of problem.   
The main reuse-process, shown in Figure 4, could be 
briefly described as follows. Once identified a particular 

software development problem, a metric is used to select 
those ������� that can be reused during the retrieval step. 
Since probably such ������� cannot be reused as they 
are, they have to be evaluated and adapted in the 
following step of the process using other predefined 
metrics. The initial solution may be reviewed by human 
experts or by other predefined metrics. After 
implementing the system and analysing its performance, 
conclusions can be extracted about the efficiency of the 
reuse process and the final system. During the Feedback 
step, the extracted conclusions can be used to carry on 
actions in order to avoid future errors and to improve the 
system by adding/eliminating ������� from the 
repository of �������, modifying them or the metrics 
used for their retrieval, evaluation or adaptation.  
In a typical incremental software life-cycle, the process 
shown in Figure 4 could be done several times, so many 
times as subsystems or increments are defined in the 
global system, where each subsytem could be supported or 
represented by a set of �������, in a coarse 
approximation. After a ������ is proposed, it needs to be 
integrated with the previously found subsystems during 
the composition step of the Mecano-CBR reuse cycle.  
%�����
� �����
A CBR reuse-prototype has been constructed with the 
ideas presented in this paper. An experiment has been 
carried out using a small number of laboratory-made 
������� stored in the GIRO Reuse Repository 
(http://marte.dcs.fi.uva.es/) and classified in the robotic-
workcell domain. 
Every ������ represents an active component in a robotic 
workcell (i.e. a robot, a conveyor belt and so on). Each 
one is composed by four main assets, as shown in Figure 
5, representing the Software Requirements Specification 
(SRS) document (composed by the atomic functional 
requirements expressed in XML), the UML class 
packages, the sequence diagram and the IDL and C++ 
implementation. 
 

SRS  asset 

UML  Class  
Diagram asset 

UML  Sequence 
Diagram asset 

C++&IDL  asset 

XML  requirements 
assets 

�������� �	 

��������� 
�	�
���
�������� 

��������
�
�� 
�	�
���
�������� 

������ 
�	�
���
�������� 

��
�������� 
����
������ 

��������	�
��������������������������������������������������

During the retrieval activity, firstly, we use the consulting 
facilities of the repository, basically by navigating through 
the requirements specifications of the �������classified 
in a concrete domain, the robotic-workcell domain in this 
case. This way you can select the mecanos you are 
interested in. If there are many ������� that represent the 



same component you should select the better one, in this 
case we use the metrics framework for UML diagram 
classes defined in [7]. 
The adaptation and composition are manual activities, but 
the effort made in them should be measured to take 
conclusions and to express the feedback information. 
The feedback activity is the key of the ����������
����
����� because it represents the result of the overall reuse 
process and can determine management action to modify 
the repository population, introducing new ������� or 
deleting existing ones because they are not useful for an 
effective reuse process. 
This initial prototype can be used to compose new systems 
by reusing existing subsystems in a systematic way. The 
Mecano-CBR tool only guides software engineers through 
the four steps presented above. This tool as it is does not 
include any option that automates the adaptation, the 
composition, and the feedback; it is just a framework that 
facilitates such processes by now. 
&�����'����������(����
���)�
The Mecano-CBR reuse model presented in this paper is a 
first step toward the development a more automated 
repository-environment that facilitates the software 
engineering process of reuse. This model combines the 
advantages of an Artificial Intelligent model with one of 
the most productive branches of the Software 
Engineering, as reuse is. 
The developed prototype has shown promising results and 
presently is been improving to be used in a real product-
line engineering problem. 
Further work will be focussed in defining the methods that 
facilitate the automation of every step of the Mecano-CBR 
reuse model that have not been yet automated. In this way, 
it is compulsory consider the generation part in the 
creation of the ������� in reuse time, as is explained in 
[4]. 
*����)��'
��
!
����
This work has the partial support of the Castilla y Leon 
Council (SA02/00F Project) and the CICYT (Dolmen 
Project - TIC2000-1673-C06-05). 
+���
,
�
��
��
[1]  Aamodt, A. and Plaza, E. “��������������������

������	��������������	�������������
��	�����
������	�����
������”. AICOM, 7(1). March, 
1994. 

[1]  Corchado, J. M. and Lees B. “Adaptation of Cases 
for Case-Based Forecasting with Neural Network 
Support”. S.K Pal, T.S. Dillon and D.S. Yeung 
(Eds.), �� 	�����	�����������������������, 
Springer Verlag, London, 2000.  

[2]  Corchado, J. M. and Lees, B. “�!�"
�������"����
����� �
��
����	���”. Applyed Artificial 
Intelligence (In press). 2001. 

[3]  Corchado, J. M., Lees, B., Fyfe, C., Rees, N. and 
Aiken, J. “#��
������	�	�����	��� �
������

"����������������	��”. Computing and 
Information Systems Journal, 5(1):15-20. February, 
1998.  

[4]  García, F. J. “�����������	���$���%�����
	�����

&�	
��	�
��������'�������	���$���%�
(�����������������”. PhD Thesis, University of 
Salamanca, 2000. 

[5]  García, F., Marqués, J. and Maudes, J. “���������
������ ��������	�����)*���
�	�����+�������
�����”. Proceedings of the 2nd ed. of the European 
Reuse Workshop. Madrid - Spain, 2, 17-20. 1998. 

 [6]  Genero, M., Manso, Mª E., Piattini M. and García, F. 
J. “Assessing the Quality and the Complexity of 
OMT Models”. 2nd European Software 
Measurement Conference - FESMA 99, 
Amsterdam,The Netherlands, pages 99-109, 1999. 

[7]  Genero, M., Manso, Mª E., Piattini M. and García, F. 
J. “Early Metrics for Object Oriented Information 
Systems”. In proceeding of the 6th International 
Conference on Object Oriented Information Systems 
(OOIS’2000). London (United Kingdom) – 
December, 2000. D. Patel, I. Choudhury, S. Patel and 
S. de Cesare (eds). Pages 414-426. Springer-Verlag 
London. 2000. 

[8] Girardi, M. R. “Application Engineering: Putting 
Reuse To Work”. In Tsichritzis, D. editor, Object 
Frameworks, pages 137-149. Centre Universitaire 
d’Informatique, University of Geneva. 

[9]  Griss, M. L. “Software Reuse: A Process of  Getting 
Organized”. Object Magazine, 4(12). 1995. 

[10] Joh, D. Y. “CBR in a Changing Environment”. Case 
Based Reasoning Research and Development. 
ICCBR-97. Providence, IR, USA. 1997. 

[11] Karlsson, E.-A., editor. “Software Reuse. A Holistic 
Approach”. Wiley Series in Software Based 
Systems. John Wiley & Sons Ltd, 1995. 

[12]  Kolodner, J. “Case-Based Reasoning”. Morgan 
Kaufmann, 1993. 

[13]  McClure, C. “Software Reuse Techniques: Adding 
Reuse to the System Development Process”. 
Prentice-Hall, 1997. 

[14]  McIlroy, D. “Mass Produced Software 
Components”. Proceedings of the 1968 NATO 
Conference on Software Engineering. 

[15]  OMG. “,�*-�� �����������.�������
����� ���	���/��
����0/1”. Object Management 
Group Inc. http://uml.shl.com:80/docs/UML1.3/99-
06-08-pdf. June, 1999. 

[16]  Watson, I. and Marir, F. “Case-Based Reasoning: A 
Review”. Cambridge University Press. The 
knowledge Engineering Review, 9(3). 1994. 

 


