
Early metrics for object oriented information systems

Marcela Genero 1, Mª Esperanza Manso2, Mario Piattini 1, Francisco García3

1 Department of Computer Science- University of Castilla-La Mancha
Tel. (+34) 926 29 53 00 Ext. 3715 – Fax (+34) 926 29 53 54

Ciudad Real – Spain
{mgenero, mpiattin}@inf-cr.uclm.es

2 Department of Computer Science - University of Valladolid
Tel. (+34) 983 42 30 00 – Fax 983 42 36 71

Valladolid – Spain
manso@infor.uva.es

3 Department of Computer Science and Automatic - University of Salamanca
Tlf: +34-923-294400 ext. 1302 Fax: +34-923-294514

Salamanca – Spain
fgarcia@gugu.usal.es

ABSTRACT. The quality of an object oriented information systems (OOIS) depends greatly on the
decisions taken at the initial phases of their development. In a typical object oriented information systems
development a class diagram is first built. Class diagrams lay the foundation for all later design work. So,
their quality heavily affects on the product that will be ultimately implemented. Even though the
appearance of the Unified Modelling Language (UML) as a standard of modelling OOIS have provided a
great contribution towards building quality OOIS, it is not enough. Early availability of metrics is a key
factor in the successful management of OOIS development. The goal of this work is to propose a set of
metrics in order to assess the complexity of UML class diagrams. We also put the proposed metrics under
empirical validation in order to provide empirical support to their practical significance and usefulness.

Keywords. quality in object oriented information systems, object oriented metrics, class diagrams
complexity, UML class diagrams

1. Introduction

A widely accepted principle in software engineering is that quality of a software product should be assured
in the early phases of its life cycle. In a typical OOIS design at the early phases, a class diagram is first
built. Class diagrams lay the foundation for all later design work. So, their quality can have a significant
impact on the quality of the system which is ultimately implemented. Improving the quality of class, will
therefore be a major step towards the quality improvement of the system development.
The appearance of UML (Object Management Group, 1999), as standard OO modelling language, should
contribute to this. Even though, we have to be aware that a standard modelling language, can only give us
a syntax and semantics to work with, but it cannot tell us whether a “good” model has been produced.
Naturally, even when language is mastered, there is no guarantee that the models produced will be good.
Therefore, it is necessary to assess their quality.

 1

mailto:manso@infor.uva.es
mailto:fgarcia@gugu.usal.es

Quality is a multidimensional concept, composed of different characteristics such as functionality,
reliability, usability, efficiency, maintainability and portability (ISO 9126, 1999). However, the definition
of the different characteristics that compose the concept of “quality” is not enough on its own in order to
ensure quality in practice as people will generally make different interpretations of the same concept.
Software measurement plays and important role in this sense because metrics provide a valuable and
objective insight into specific ways of enhancing each of the software quality characteristics. Measurement
data can be gathered and analysed using various quality models to assess current product quality, to predict
future quality, and to drive quality improvement initiatives (Tian, 1999).
Most the external quality attributes proposed in the ISO 9126 (1999), such as maintainability, reliability,
etc. can only be measured late in the OOIS life cycle. So it is necessary to find early indicators of such
qualities based, for example, on the structural properties of class diagrams (Briand, 1999b).

Early availability of measures is a key factor in the successful management of software development, since
it allows for (Briand et al., 1999a):

1. the early detection of problems in the artifacts produced in the initial phases of the life cycle

(specification and design documents) and, therefore, reduction of the cost of change-late identification
and correction of the problems are much more costly than early ones;

2. better software quality monitoring from the early phases of the life cycle;
3. quantitative comparison of techniques and empirical refinement of the processes to which there are

applied;
4. more accurate planning of resource allocation, based upon the predicted quality of the system and its

constitutent parts.

Within the field of software engineering a plethora of metrics have been proposed for measuring OO
software products, even though most of them are related on products obtained from advanced design and
implementation phases (Chidamber and Kemerer, 1994, Lorenz and Kidd, 1994; Brito e Abreu and Melo,
1996; Henderson-Sellers, 1996). Genero et al. (1999) have proposed some metrics for measuring OMT
class diagrams. Few works have been done specifically about measures applied to UML class diagrams
(Marchesi, 1998; Genero et al., 2000).

The goal of this work is to propose a set of metrics in order to measure the complexity of UML class
diagrams (section 2) focusing specially in the different UML relationships, such as associations,
aggregations, generalisations and dependencies. We also put the proposed metrics under empirical
validation in order to provide empirical support to their practical significance and usefulness (section 3).
Lastly, section 4 summarises the paper, draws our conclusions, and presents future trends in metrics for
object modelling using UML.

2. A proposal of metrics for UML class diagrams

In this section we will propose a set of closed-ended metrics (Lethbridge, 1998) for assessing the
complexity of UML class diagrams at the initial phase of the OOIS life cycle. A closed-ended metric is
where measurements can only fall within a particular range, and where it is impossible for them to fall
outside that range (most of our metrics fall in the range [0,1]). As the aim of this work is simplify class
diagrams as much as possible, our goal will be minimise the metric values. We consider the worth case
value when the metric value tends to 1, and the best case when the metric value tends to 0.

 2

All of the proposed metrics measure the complexity of class diagrams due to relationships. UML allows to
define the following kinds of relationships: associations, aggregations, generalisations and dependencies.

2.1 ASvsC metric

The Associations vs. Classes metric measures the relation that exists between the number of associations
and the number of classes in an UML class diagram. It is based on MRPROP metric proposed by Lethbridge
(1998). We define this metric as follows:

2

CAS

AS

NN
NASvsC ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
=

NAS is the number of associations in an UML class
diagram.
NC is the number of classes in an UML class diagram.
Where NAS+ NC > 0.

2.2 AGvsC metric

The Aggregations vs. Classes metric measures the relation that exists between the number of aggregations
and the number of classes in an UML class diagram. We define this metric as follows:

2

CAG

AG

NN
NAGvsC ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
=

NAG is the number of aggregations in an UML class
diagram.
NC is the number of classes in an UML class diagram.
Where NAG + NC > 0.

We consider as the number of aggregations each level of aggregation hierarchies , ie. each symbol in
the class diagram.

2.3 DEPvsC Metric

The Dependencies vs. Classes metric measures the relation that exists between the number of
dependencies and the number of classes in an UML class diagram. We define this metric as follows:

2

CDEP

DEP

NN
NDEPvsC ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
=

NDEP is the number of dependencies in an UML class
diagram.
NC i is the number of classes in an UML class diagram.
Where NDEP+ NC > 0.

2.4 GEvsC metric

The Generalisations vs. Classes metric measures the relation that exists between the number of
generalisations and the number of classes in an UML class diagram. We define this metric as follows:

2

CGE

GE

NN
NGEvsC ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
=

NGE is the number of generalisations in an UML class
diagram.
NC is the number of classes in an UML class diagram.
Where NGE+ NC > 0.

 3

We consider as the number of generalisations each level of generalisation hierarchies, ie. in the class
diagram each symbol .

2.5 MGH metric

The goal of Generalisation Hierarchy metric is to evaluate the complexity of class diagrams due to
generalisation hierarchies. For this we take into account some of the factors that influence in the hierarchy
structure (number of classes, number of levels and the use of multiple inheritance).

We define this metric as follow:

1. If the class diagram has no generalisation hierarchies: MGH= 0

2. If the class diagram has generalisation hierarchies, MGH is defined as: , where CJ∑
=

=
n

1i
iGH CJM i is the

complexity of the ith generalisation hierarchy and n is the number of generalisation hierarchy within a
class diagram

In order to calculate CJi we combine two factors: The first factor is the number of classes that are leaves of

the hierarchy. This factor called FLEAFi, is calculated thus: C
i

LEAF
i

i
N

N
FLEAF = , where LEAF

iN is the number

of leaf classes in the ith generalisation hierarchy and is the number of classes in the iC
iN th hierarchy.

Figure 1 shows different generalisation hierarchies with their values of FLEAFi. FLEAFi approaches to 0.5
when the generalisation hierarchy is a binary tree (figure 1, parts c and d). It approaches zero in the
ridiculous case of a unary “tree” with just a single superclass-subclass chain (figure 1, part b). And it
approaches one if every superclass is an immediate subclass of the root class (part a).
On its own, FLEAFi has the undesirable property that for a very shallow hierarchy (e.g. just two or three
levels) with a high branching factor it gives a measurement that is unreasonably high, from a subjective
standpoint (part a of fig. 1 illustrate this). To correct this problem with FLEAFi, an additional factor is
used in the calculation of CJi, : the average number of direct and indirect superclasses per non-root class
ALLSUPi (the root class of the generalisation hierarchy is not counted since it cannot have parents). This
second factor is related to hierarchy depth but depends to some extent on the amount of multiple
inheritance.

CJi is thus calculated using the following formula:
i
i

i ALLSUP
FLEAFFLEAF −= CJi

 4

C2 C6C5C4C3

C1

Fleaf = 0,83
ALLSup = 1
Is_ARel =0

(a) (b) C1

C6

C5

C4

C3

C2

Fleaf = 0,16
ALLSup = 3

Is_ARel =0,11

C5C4

C3C2

C1

C6

Fleaf = 0,5
ALLSup = 1,6
Is_ARel =0,19

C5C4

C3C2

C1

C6

Fleaf = 0,5
ALLSup = 2,2
Is_ARel =0,28

(c) (d)

Figure 1. Examples of generalisation hierarchies

2.6 MMI metric

Multiple Inheritance metric measures the complexity of generalisation hierarchies due to multiple
inheritance.

MMI is defined thus:

1. If the class diagram has no generalisation hierarchies MMI= 0

2. If the class diagram has generalisation hierarchies MMI is defined as follows: , where

CMI

∑
=

=
n

1i
iMI CMIM

i is the complexity of multiple inheritance of the ith generalisation hierarchy, and n is the number
of generalisation hierarchies within a class diagram.

 CJHMi measures the ratio of extra parents (more than one) of each class. It is defined thus: C
i

EX
i

i
N

N
CMI = ,

where is the number of extra parents of the ith class, and is the number of classes in such
generalisation hierarchy.

EX
iN C

iN

2.7 AvsC metric

The Attributes vs. Classes metric measures the relation that exists between the number of attributes and the
number of classes in an UML class diagram.

We define this metric as follows:

 5

2

CA

A

NN
NAvsC ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
=

NA is the number of attributes in an UML class diagram.
NC is the number of classes in an UML class diagram.
Where NA + NC > 0.

2.8 MEvsC metric

The Methods vs. Classes metric measures the relation that exists between the number of methods and the
number of classes in an UML class diagram.

We define this metric as follows:

2

CME

ME

NN
NMEvsC ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
=

NME is the number of methods in an UML class diagram.
NC is the number of classes in an UML class diagram.
Where NME+ NC > 0.

3. Our metrics in practice

The software measures have an important role on management and qualification of OOIS, at the initial
phase of their life cycle. Nevertheless, it is well known that the definition of new metrics is not enough to
cover this purpose. Another fundamental aspect in this aim rests on the empirical validation and correct
interpretation of the observed measures (Fenton, 1994; Zuse, 1998). According to this purpose we have
studied the behaviour of the proposed metrics in a set of assets (reusable software elements) stored in the
GIRO repository.

The GIRO repository was founding as part of a research work on reuse, and it includes assets coming from
different stages of software development and from various software paradigms, basically object oriented
and classical (García, 2000).

3.1 Data collection and analysis

For the moment, the supplier of GIRO repository is the membership of GIRO and students from the
University of Valladolid, who are developing their final project in Computer Technical Engineering. The
asset measured belong to three product lines: 7 of Image (I), 7 of Disabled (D) and 13 of Optic (O). All of
them were developed following the OO paradigm and UML, using the RATIONAL ROSE case tool;
DELPHY was the implementation language.

To each asset we calculate the proposed metrics. Each asset has those values as part of its quality
documentation.

The methodology followed in this research is thus:

1. Extract relevant information from a summary of data.
2. Analyse the data in order to find differences between product lines.

 6

The null hypotheses to test is: H1o: there is no difference between metric X in line1 and metric X in
line2
Where X is each of the eight selected metrics, and line1 and line2 are each of the three product lines.
As result, we have 24 test.

3. Analyse this data in order to study relations between metrics.
The null hypotheses to test are H2o and H3o:

H2o: metric X is no correlated with Y in the product line1.
Where X and Y are each of the eight selected metrics, and line1 is each of the three product lines.
As result we have 84 test.
H3o: metric X is no correlated with Y in all product lines.
Where X and Y are each of the eight selected metrics, as result we have 28 test.

Really, the number of test analysed was smaller, because there were a set of metrics without enough
observed values. We have used the Mann-Whitney test to compare medians and Spearman correlation test
to study relationships (Siegel, 1985), which are suitable statistical analysis techniques to study ordinal
metrics

3.2 Metric summary

Table 1 shows the observed percentiles by product line and globally. The legends D, I, O, G mean
Disabled, Image, Optic and Globally, and each cell shows the 25, 50 and 75 percentiles. The metrics with
higher Percentiles are AvsC and MEvsC, so attributes and methods can introduce the biggest complexity
in the design. Considering the box-and-whisker plots, only AvsC could have a symmetric distribution in
Optic line. The N-ary metric has not observed values.

 asset
count

ASvsC N-ary AGvsC GEvsC DEPvsC AvsC MEvsC MGH

D 7 0.0513
0.1600
0.1805

0
0
0

0
0
0

0
0
0

0.0400
0.0865
0.1029

0.2430
0.4440
0.5070

0.6277
0.6766
0.7212

0
0
0

I 7 0.0073
0.0076
0.1738

0
0
0

0.0004
0.0021
0.0323

0.0598
0.0625
0.0625

0
0
0

0.4970
0.5710
0.6860

0.6488
0.6877
0.7606

0.1925
0.385
0.385

O 13 0.0400
0.0625
0.1111

0
0
0

0
0
0.0083

0.1185
0.1503
0.1600

0
0
0

0.5870
0.6400
0.7380

0.6400
0.6655
0.6694

0
0
0

G 27

0.0083
0.0494
0.1111

0
0
0

0
0
0.0052

0.0587
0.0625
0.1503

0
0
0.0400

0.4970
0.5710
0.6690

0.6463
0.6694
0.7137

0
0.0550
0.3850

Table 1. Percentiles

3.3 Set of metrics which can differentiate between products lines

We test H1o hypothesis to study the behaviour of the metrics by product lines in order to find significative
differences. If a metric have different behaviour in two product lines then, it must be considered in future
researches.

The sample is small (7 D products, 7 I products and 13 O products), but even so can detect some tracks.
The hypothesis is that there is no difference between each pair of medians:

 7

H1o: Median X(line1) = Median X(line2)

 “-“ There are few observations
 ASvsC AGvsC GEvsC DEPvsC AvsC MEvsC MGH
I/D 0.0087 - 0.9350 - 0.2013 0.7983 -
I/O 0.0383 0.0066 - - 0.0383 0.4273 -
D/O 0.1303 - - - 0.0015 0.5253 -

Table 2. P-Value (p) of Mann-Whitney Test

Considering Table 2, we can conclude that:

− The ASvsC can differentiate between product lines I and D.
− Furthermore I is different of O, when ASvsC, AGvsC and AvsC are considered.
− The AvsC can differentiate between product lines D and O.

3.4 Relationships among metrics

Every metric considered should quantify a distinct feature of the software products. To achieve this goal
they need to be independent from each other, we can express the hypothesis H2o and H3o as: rxy= 0

Tables 3, 4 and 5 summarise the results achieved applying the Spearman correlation test. The cells contain
the p-value and the Spearman correlation coefficient. If there are insufficient observations the cell contains
"-".

From table 3, we can conclude that MEvsC could have positive correlation with AGvsC(p= 0.0326) and
DEPvsC(p=0.0663) in product line I.

From table 4, we have not observed any correlation in product line D, (p > 0.1 in all cases).

From table 5, we can conclude that GEvsC could have negative correlation with MEvsC(p= 0.0154) in the
product line O.

When we studied the metric dependency in all the sample (n = 27) we only observed positive correlation
between ASvsC and DEPvsC (p =0.0598), the relationships detected into product lines disappeared.

Image ASvsC AGvsC GEvsC DEPvsC AvsC MEvsC
ASvsC 0.7875

-0.1101
0.95815
-0.0263

- 0.7575
7
-01261

0.40187
-0.3424

AGvsC 0.1945
-0.6489

- 0.1089
0.6547

0.0326
0.8729

GEvsC - 0.4727
0.3591

0.8375
-0.1026

DEPvsC - -
AvsC 0.0663

0.7500
Table 3. Matrix of Spearman correlation in product line Image

 8

Disabled ASvsC AGvsC GEvsC DEPvsC AvsC MEvsC
ASvsC - - 0.6274

0.1982
0.1154
0.6429

0.7931
0.1071

AGvsC - - - -
GEvsC - - -
DEPvsC 0.3316

0.3964
0.7575
0.1261

AvsC 0.7931
-0.1071

Table 4. Matrix of Spearman correlation in product line Disabled

Optic ASvsC AGvsC GEvsC DEPvsC AvsC MEvsC
ASvsC 0.2413

0.3354
0.8493
-0.0633

- 0.2156
0.3574

0.1507
0.4148

AGvsC 0.8067
-0.0815

- 0.16193
-0.4038

0.9068
-0.0338

GEvsC - 0.5828
0.1831

0.0154
-0.8074

DEPvsC - -
AvsC 0.7366

-0.0971
Table 5. Matrix of Spearman correlation in product line Optic

In conclusion, the complexity metrics ASvsC, AGvsC and AvsC could have different behaviour by
product lines, so if we ignore it we can have confounding (Kleinbaum, 1987). Furthermore, some metrics,
such as MEvsC wtih AGvsC, AvsC and GEvsC could be correlated in different product lines, and so we
must consider this relationship in future models. We cannot forget that the sample is small, so the
conclusions must be corroborated with other larger samples.

4. Conclusions and future work

Due to the growing complexity of OOIS, continuous attention to and assessment of object models are
necessary to produce quality software systems. The fact that UML has emerged is a great step forward in
object modelling. Even though this does not guarantee the quality of the models produced through the IS
life cycle. Therefore, it is necessary to have metrics in order to evaluate their quality from the early phases
in the OOIS development process.

In this work we have presented a set of metrics for assessing the complexity of UML class diagrams,
obtained at early phases of the OOIS life cycle. It is widely accepted that the greater complex an UML
class diagram, the greater complex the OOIS which is finally implemented, and therefore more effort is
needed to develop and maintain it. So that the proposed metrics could be very fruitful, because they will
allow OOIS designers to assess the complexity of their designs, and compare between design alternatives,
from the early phases of OOIS life cycle.

As in other aspects of Software and Knowledge Engineering, proposing techniques and metrics is not
enough, validation is critical to the success of software measurement (Kitchenham et al., 1995; Fenton and
Pflegeer, 1997; Schneidewind, 1992; Basili et al.,1999). It is also necessary for them under theoretical and
empirical validation, in order to assure their utility. Furthermore it is important understand their behaviour
in order to define suitable models and appropriate design of the experiments (Montgomery, 1991,

 9

Kleinbaum et al., 1987), i.e. the quality model changes if we need consider blocks (product lines in this
case), or if we have variables which are not independent (MEvsC and AGvsC).

With regard to empirical validation, we are carrying out some experimentation not only with controlled
experiments but also with “real” cases taken from some enterprises, with the objective of assessing these
metrics as predictors of maintenance efforts, and therefore, determine whether they can be used as early
quality indicators.

In future work, we will focus our research on measuring other quality factors like those proposed in the
ISO 9126 (1999), which not only tackle class diagrams, but also evaluate other UML diagrams, such as
use-case diagrams, state diagrams, etc. To our knowledge, few works have been done towards measuring
dynamic and functional models (Derr, 1995; Poels, 1999; Poels 2000). As is quoted in (Brito e Abreu et
al., 1999) this is an area which lacks in depth investigation. In addition further empirical validation of the
proposed metrics is needed to research their usefulness in the development software process. Furthermore
we need a sample bigger to confirm the tracks find in this study and a quality model which includes a set
of interest variables.

We will extend our metric, called MANTICA (created to measures data models), in order to provide
support for collecting, analysing and visualising metric values applied to UML class diagrams.

Acknowledgements

This research is part of the MANTICA project, partially supported by CICYT and the European Union
(1FD97-0168), and MENHIR project, supported by CICYT TIC97-0593-C05-05.

References

(Basili et al., 1999): V. Basili, F. Shull and F. Lanubile. Building knowledge through families of

experiments. IEEE Transactions on Software Engineering, 25(4), pages 435--437,
1999.

(Briand et al., 1999a): L. Briand, S. Morasca and V. Basili. Defining and Validating Measures for Object-
Based high-level design. IEEE Transactions on Software Engineering. 25(5), pages
722--743, 1999.

(Briand et al., 1999b): L. Briand, S. Arisholm, F. Counsell, F. Houdek, F. and Thévenod-Fosse. Empirical
Studies of Object-Oriented Artifacts, Methods, and Processes: State of the Art and
Future Directions. Technical Report IESE 037.99/E, Fraunhofer Institute for
Experimental Software Engineering, Kaiserslautern, Germany, 1999.

(Brito e Abreu et al., 1996): F. Brito e Abreu and W. Melo. Evaluating the Impact of Object-Oriented
Design on Software Quality. Proceedings of 3rd International Metric
Symposium, 1996.

(Brito e Abreu et al., 1999): F. Brito e Abreu, H. Zuse, H. Sahraoui W. and Melo. Quantitative
Approaches in Object-Oriented Software Engineering. Object-Oriented
technology: ECOOP´99 Workshop Reader, Lecture Notes in Computer
Science 1743, Springer-Verlag, pages 326--337, 1999.

(Chidamber et al., 1994): S. Chidamber and C. Kemerer. A Metrics Suite for Object Oriented Design.
IEEE Transactions on Software Engineering. 20(6), pages 476--493, 1994.

(Derr, 1995): K. Derr. Applying OMT. SIGS Books, New York, 1995.

 10

(Fenton, 1994): N. Fenton. Software Measurement: A Necessary Scientific Basis. IEEE Transactions on
Software Engineering, 20(3), pages 199--206, 1994.

(Fenton et al., 1997): N. Fenton and S. Pfleeger. Software Metrics: A Rigorous Approach. 2nd. edition.
London, Chapman & Hall, 1997.

(García, 2000): F. J. García. Modelo de Reutilización Soportado por Estructuras Complejas de Reutilización
Denominadas Mecanos. PHD Thesis, University of Salamanca, 2000.

(Genero et al., 1999): M. Genero, Mª E. Manso, M. Piattini and F. J. García. Assessing the Quality and the
Complexity of OMT Models. 2nd European Software Measurement Conference -
FESMA 99, Amsterdam,The Netherlands, pages 99—109, 1999.

(Generoet al., 2000): M. Genero, M. Piattini and C. Calero (2000). Una Propuesta para Medir la Calidad
de los Diagramas de Clases en UML. IDEAS´2000, Cancún, México, pages 373—
384, 2000.

(ISO, 1999): ISO/IEC 9126-1.2. Information technology- Software product quality – Part 1: Quality
model, 1999.

(Henderson-Sellers, 1996): B. Henderson-Sellers. Object-oriented Metrics - Measures of complexity. Prentice-
Hall, Upper Saddle River, New Jersey, 1996.

(Kitchenhan et al., 1995): B. Kitchenham, S. Pflegger and N. Fenton. Towards a Framework for Software
Measurement Validation. IEEE Transactions of Software Engineering, 21(12),
pages 929--943, 1995.

(Kleinbaum et al., 1987): D. Kleinbaum, L. Kupper and K. Muller. Applied regression analysis and other
multivariate methods, second ed. Duxbury Press, 1987.

(Lethbridge, 1998): Lethbridge, T. Metrics for Concept-Oriented Knowledge bases. International Journal
of Software Engineering and Knowledge Engineering, 8(2), pages 61—188, 1998.

(Lorenz et al., 1994): M. Lorenz and J. Kidd. Object-Oriented Software Metrics: A Practical Guide.
Prentice Hall, Englewood Cliffs, New Jersey, 1994.

(Marchesi, 1998): M. Marchesi. OOA Metrics for the Unified Modeling Language. Proceedings of the 2nd
Euromicro Conference on Software Maintenance and Reengineering, pages 67--73,
1998.

(Montgomery, 1991). D. Montgomery. Diseño y análisis de experimentos. Grupo Editorial
Iberoamericana, 1991.

(OMG, 1999): Object Management Group. UML Revision Task Force. OMG Unified Modeling Language
Specification, v. 1.3. document ad/99-06-08, 1999.

(Poels, 1999): G. Poels. On the use of a Segmentally Additive Proximity Structure to Meausre Object Class
Life Cycle Complexity. Software Measurement : Current Trends in Research and Practice,
Deutscher Universitäts Verlag, pages 61-79, 1999.

(Poels, 2000): G. Poels. On the Measurement of Event-Based Object-Oriented Conceptual Models. 4th
International ECOOP Workshop on Quantitative Approaches in Object-Oriented Software
Engineering, June 13, Cannes, France, 2000.

(Schneidewind, 1992): N. Schneidewind. Methodology For Validating Software Metrics. IEEE Transactions
of Software Engineering, 18(5), pages 410--422, 1992.

(Siegel, 1985): S. Siegel. Estadística no paramétrica. Ed. Trillas, 1985.
(Tian, 1999): J. Tian. Taxonomy and Selection of Quality Measurements and Models. Proceedings of

SEKE´99, The 11th International Conference on Software Engineering & Knowledge
Engineering, June 16-19, pages 71--75, 1999.

(Zuse, 1998): H. Zuse. A Framework of Software Measurement. Berlin, Walter de Gruyter, 1998.

 11

	Optic

