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ABSTRACT. The quality of an object oriented information systems (OOIS) depends greatly on the 
decisions taken at the initial phases of their development. In a typical object oriented information systems 
development a class diagram is first built. Class diagrams lay the foundation for all later design work. So, 
their quality heavily affects on the product that will be ultimately implemented. Even though the 
appearance of the Unified Modelling Language (UML) as a standard of modelling OOIS have provided a 
great contribution towards building quality OOIS, it is not enough. Early availability of metrics is a key 
factor in the successful management of OOIS development. The goal of this work is to propose a set of 
metrics in order to assess the complexity of UML class diagrams. We also put the proposed metrics under 
empirical validation in order to provide empirical support to their practical significance and usefulness.  
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1. Introduction 
 
A widely accepted principle in software engineering is that quality of a software product should be assured 
in the early phases of its life cycle. In a typical OOIS design at the early phases, a class diagram is first 
built. Class diagrams lay the foundation for all later design work. So, their quality can have a significant 
impact on the quality of the system which is ultimately implemented. Improving the quality of class, will 
therefore be a major step towards the quality improvement of the system development.  
The appearance of UML (Object Management Group, 1999), as standard OO modelling language, should 
contribute to this. Even though, we have to be aware that a standard modelling language, can only give us 
a syntax and semantics to work with, but it cannot tell us whether a “good” model has been produced. 
Naturally, even when language is mastered, there is no guarantee that the models produced will be good. 
Therefore, it is necessary to assess their quality. 
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Quality is a multidimensional concept, composed of different characteristics such as functionality, 
reliability, usability, efficiency, maintainability and portability (ISO 9126, 1999). However, the definition 
of the different characteristics that compose the concept of “quality” is not enough on its own in order to 
ensure quality in practice as people will generally make different interpretations of the same concept. 
Software measurement plays and important role in this sense because metrics provide a valuable and 
objective insight into specific ways of enhancing each of the software quality characteristics. Measurement 
data can be gathered and analysed using various quality models to assess current product quality, to predict 
future quality, and to drive quality improvement initiatives (Tian, 1999). 
Most the external quality attributes proposed in the ISO 9126 (1999), such as maintainability, reliability, 
etc. can only be measured late in the OOIS life cycle. So it is necessary to find early indicators of such 
qualities based, for example, on the structural properties of class diagrams (Briand, 1999b).  
 
Early availability of measures is a key factor in the successful management of software development, since 
it allows for (Briand et al., 1999a): 
 
1. the early detection of problems in the artifacts produced in the initial phases of the life cycle 

(specification and design documents) and, therefore, reduction of the cost of change-late identification 
and correction of the problems are much more costly than early ones; 

2. better software quality monitoring from the early phases of the life cycle; 
3. quantitative comparison of techniques and empirical refinement of the processes to which there are 

applied; 
4. more accurate planning of resource allocation, based upon the predicted quality of the system and its 

constitutent parts. 
 
Within the field of software engineering a plethora of metrics have been proposed for measuring OO 
software products, even though most of them are related on products obtained from advanced design and 
implementation phases (Chidamber and Kemerer, 1994, Lorenz and Kidd, 1994; Brito e Abreu and Melo, 
1996; Henderson-Sellers, 1996). Genero et al. (1999) have proposed some metrics for measuring OMT 
class diagrams. Few works have been done specifically about measures applied to UML class diagrams 
(Marchesi, 1998; Genero et al., 2000).  
 
The goal of this work is to propose a set of metrics in order to measure the complexity of UML class 
diagrams (section 2) focusing specially in the different UML relationships, such as associations, 
aggregations, generalisations and dependencies. We also put the proposed metrics under empirical 
validation in order to provide empirical support to their practical significance and usefulness (section 3). 
Lastly, section 4 summarises the paper, draws our conclusions, and presents future trends in metrics for 
object modelling using UML. 
 
2. A proposal of metrics for UML class diagrams 
 
In this section we will propose a set of closed-ended metrics (Lethbridge, 1998) for assessing the 
complexity of UML class diagrams at the initial phase of the OOIS life cycle. A closed-ended metric is 
where measurements can only fall within a particular range, and where it is impossible for them to fall 
outside that range (most of our metrics fall in the range [0,1]). As the aim of this work is simplify class 
diagrams as much as possible, our goal will be minimise the metric values. We consider the worth case 
value when the metric value tends to 1, and the best case when the metric value tends to 0. 
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All of the proposed metrics measure the complexity of class diagrams due to relationships. UML allows to 
define the following kinds of relationships: associations, aggregations, generalisations  and dependencies. 
 
2.1 ASvsC metric 
 
The Associations vs. Classes metric measures the relation that exists between the number of associations 
and the number of classes in an UML class diagram. It is based on MRPROP metric proposed by Lethbridge 
(1998). We define this metric as follows: 
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NAS is the number of associations in an UML class 
diagram. 
NC is the number of classes in an UML class diagram. 
Where NAS+ NC > 0. 

 
2.2 AGvsC metric 
 
The Aggregations vs. Classes metric measures the relation that exists between the number of aggregations 
and the number of classes in an UML class diagram. We define this metric as follows: 
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NAG is the number of aggregations in an UML class 
diagram. 
NC is the number of classes in an UML class diagram. 
Where NAG + NC > 0. 

 
We consider as the number of aggregations each level of aggregation hierarchies , ie. each symbol       in 
the class diagram. 
 
2.3 DEPvsC Metric 
 
The Dependencies vs. Classes metric measures the relation that exists between the number of 
dependencies and the number of classes in an UML class diagram. We define this metric as follows: 
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NDEP is the number of dependencies in an UML class 
diagram. 
NC i  is the number of classes in an UML class diagram. 
Where NDEP+ NC > 0. 

 
2.4 GEvsC metric 
 
The Generalisations vs. Classes metric measures the relation that exists between the number of 
generalisations and the number of classes in an UML class diagram. We define this metric as follows: 
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NGE is the number of generalisations in an UML class 
diagram. 
NC is the number of classes in an UML class diagram. 
Where NGE+ NC > 0. 
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We consider as the number of generalisations each level of generalisation hierarchies, ie. in the class 
diagram each symbol        . 
 
2.5  MGH  metric 
 
The goal of Generalisation Hierarchy metric is to evaluate the complexity of class diagrams due to 
generalisation hierarchies. For this we take into account some of the factors that influence in the hierarchy 
structure (number of classes, number of levels and the use of multiple inheritance). 
 
We define this metric as follow:  
 
1. If the class diagram has no generalisation hierarchies: MGH= 0 

2. If the class diagram has generalisation hierarchies, MGH is defined as: , where CJ∑
=

=
n

1i
iGH CJM i is the 

complexity of the ith generalisation hierarchy and n is the number of generalisation hierarchy within a 
class diagram 

 
In order to calculate CJi we combine two factors: The first factor is the number of classes that are leaves of 

the hierarchy. This factor called FLEAFi,  is calculated thus: C
i

LEAF
i

i
N

N
FLEAF = , where LEAF

iN  is the number 

of leaf classes in the ith generalisation hierarchy and  is the number of classes in the iC
iN th hierarchy. 

 
Figure 1 shows different generalisation hierarchies with their values of FLEAFi. FLEAFi approaches to 0.5 
when the generalisation hierarchy is a binary tree (figure 1, parts c and d). It approaches zero in the 
ridiculous case of a unary “tree” with just a single superclass-subclass chain (figure 1, part b). And it 
approaches one if every superclass is an immediate subclass of the root class (part a). 
On its own, FLEAFi has the undesirable property that for a very shallow hierarchy (e.g. just two or three 
levels) with a high branching factor it gives a measurement that is unreasonably high, from a subjective 
standpoint (part a of fig. 1 illustrate this). To correct this problem with FLEAFi, an additional factor is 
used in the calculation of CJi, : the average number of direct and indirect superclasses per non-root class 
ALLSUPi (the root class of the generalisation hierarchy is not counted since it cannot have parents). This 
second factor is related to hierarchy depth but depends to some extent on the amount of multiple 
inheritance. 

CJi is thus calculated using the following formula: 
i
i

i ALLSUP
FLEAFFLEAF −= CJi  
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Figure 1. Examples of generalisation hierarchies 
 
2.6  MMI metric 
 
Multiple Inheritance metric measures the complexity of generalisation hierarchies due to multiple 
inheritance.  
 
MMI is defined thus:  
 
1. If the class diagram has no generalisation hierarchies MMI= 0 

2. If the class diagram has generalisation hierarchies MMI is defined as follows: , where 

CMI

∑
=

=
n
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i  is the complexity of multiple inheritance of the ith generalisation hierarchy, and n is the number 
of generalisation hierarchies within a class diagram. 

 CJHMi  measures the ratio of extra parents (more than one) of each class. It is defined thus: C
i
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i

i
N
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where  is the number of extra parents of the ith class, and  is the number of classes in such 
generalisation hierarchy. 

EX
iN C
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2.7 AvsC metric 
 
The Attributes vs. Classes metric measures the relation that exists between the number of attributes and the 
number of classes in an UML class diagram.  
 
We define this metric as follows: 
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NA is the number of attributes in an UML class diagram. 
NC is the number of classes in an UML class diagram. 
Where NA + NC > 0. 

 
2.8 MEvsC metric 
 
The Methods vs. Classes metric measures the relation that exists between the number of methods and the 
number of classes in an UML class diagram.  
 
We define this metric as follows: 
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NME is the number of methods in an UML class diagram. 
NC is the number of classes in an UML class diagram. 
Where NME+ NC > 0. 

 
3. Our metrics in practice 
 
The software measures have an important role on management and qualification of OOIS, at the initial 
phase of their life cycle. Nevertheless, it is well known that the definition of new metrics is not enough to 
cover this purpose. Another fundamental aspect in this aim rests on the empirical validation and correct 
interpretation of the observed measures (Fenton, 1994; Zuse, 1998). According to this purpose we have 
studied the behaviour of the proposed metrics in a set of assets (reusable software elements) stored in the 
GIRO repository.  
 
The GIRO repository was founding as part of a research work on reuse, and it includes assets coming from 
different stages of software development and from various software paradigms, basically object oriented 
and classical (García, 2000). 
 
3.1 Data collection and analysis 
 
For the moment, the supplier of GIRO repository is the membership of GIRO and students from the 
University of Valladolid, who are developing their final project in Computer Technical Engineering. The 
asset measured belong to three product lines: 7 of Image (I), 7 of Disabled (D) and 13 of Optic (O). All of 
them were developed following the OO paradigm and UML, using the RATIONAL ROSE case tool; 
DELPHY was the implementation language. 
 
To each asset we calculate the proposed metrics. Each asset has those values as part of its quality 
documentation.  
 
The methodology followed in this research is thus:  
 
1. Extract relevant information from a summary of data. 
2. Analyse the data in order to find differences between product lines.  
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The null hypotheses to test is: H1o: there is no difference between metric X in line1 and metric X in 
line2 
Where X is each of the eight selected metrics, and line1 and line2 are each of the three product lines. 
As result, we have 24 test. 

3. Analyse this data in order to study relations between metrics.  
The null hypotheses to test are H2o and H3o: 

H2o: metric X is no correlated with Y in the product line1. 
Where X and Y are each of the eight selected metrics, and line1 is each of the three product lines. 
As result we have 84 test.  
H3o: metric X is no correlated with Y in all product lines. 
Where X and Y are each of the eight selected metrics, as result we have 28 test.  

 
Really, the number of test analysed was smaller, because there were a set of metrics without enough 
observed values. We have used the Mann-Whitney test to compare medians and Spearman correlation test 
to study relationships (Siegel, 1985), which are suitable statistical analysis techniques to study ordinal 
metrics 
 
3.2 Metric summary 
 
Table 1 shows the observed percentiles by product line and globally. The legends D, I, O, G mean 
Disabled, Image, Optic and Globally, and each cell shows the 25, 50 and 75 percentiles. The metrics with 
higher Percentiles are AvsC and MEvsC, so attributes and methods can introduce the biggest complexity 
in the design. Considering the box-and-whisker plots, only AvsC could have a symmetric distribution in 
Optic line. The N-ary metric has not observed values. 
 

 asset 
count 

ASvsC N-ary AGvsC GEvsC DEPvsC AvsC MEvsC MGH

D 7 0.0513 
0.1600 
0.1805 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0.0400 
0.0865 
0.1029 

0.2430 
0.4440 
0.5070 

0.6277 
0.6766 
0.7212 

0 
0 
0 

I 7 0.0073 
0.0076 
0.1738 

0 
0 
0 

0.0004 
0.0021 
0.0323 

0.0598 
0.0625 
0.0625 

0 
0 
0 

0.4970 
0.5710 
0.6860 

0.6488 
0.6877 
0.7606 

0.1925 
0.385 
0.385 

O 13 0.0400 
0.0625 
0.1111 

0 
0 
0 

0 
0 
0.0083 

0.1185 
0.1503 
0.1600 

0 
0 
0 

0.5870 
0.6400 
0.7380 

0.6400 
0.6655 
0.6694 

0 
0 
0 

G 27 
 

0.0083 
0.0494 
0.1111 

0 
0 
0 

0 
0 
0.0052 

0.0587 
0.0625 
0.1503 

0 
0 
0.0400 

0.4970 
0.5710 
0.6690 

0.6463 
0.6694 
0.7137 

0 
0.0550 
0.3850 

Table 1. Percentiles 
 
3.3 Set of metrics which can differentiate between products lines  
 
We test H1o hypothesis to study the behaviour of the metrics by product lines in order to find significative 
differences. If a metric have different behaviour in two product lines then, it must be considered in future 
researches.  
 
The sample is small (7 D products, 7 I products and 13 O products), but even so can detect some tracks. 
The hypothesis is that there is no difference between each pair of medians:  

 7



H1o: Median X(line1) = Median X(line2)  
 

 “-“  There are few observations   
 ASvsC AGvsC GEvsC DEPvsC AvsC MEvsC MGH
I/D 0.0087 - 0.9350 - 0.2013 0.7983 - 
I/O 0.0383 0.0066 - - 0.0383 0.4273 - 
D/O 0.1303 - - - 0.0015 0.5253 - 

Table 2.  P-Value (p) of Mann-Whitney Test 
 
Considering Table 2, we can conclude that: 
 
− The ASvsC can differentiate between product lines I and D. 
− Furthermore I is different of O, when ASvsC, AGvsC and AvsC are considered. 
− The AvsC can differentiate between product lines D and  O. 
 
3.4 Relationships among metrics 
 
Every metric considered should quantify a distinct feature of the software products. To achieve this goal 
they need to be independent from each other, we can express the hypothesis H2o and H3o as:  rxy= 0  
 
Tables 3, 4 and 5 summarise the results achieved applying the Spearman correlation test. The cells contain 
the p-value and the Spearman correlation coefficient. If there are insufficient observations the cell contains 
"-".  
 
From table 3, we can conclude that MEvsC could have positive correlation with AGvsC(p= 0.0326) and 
DEPvsC(p=0.0663) in product line I.  
 
From table 4, we have not observed any correlation in product line D, (p > 0.1 in all cases).  
 
From table 5, we can conclude that GEvsC could have negative correlation with MEvsC(p= 0.0154) in the 
product line O. 
 
When we studied the metric dependency in all the sample (n = 27) we only observed positive correlation 
between ASvsC and DEPvsC (p =0.0598), the relationships detected into product lines disappeared.  
 
Image ASvsC AGvsC GEvsC DEPvsC AvsC MEvsC 
ASvsC  0.7875 

-0.1101 
0.95815 
-0.0263 

- 0.7575
7 
-01261 

0.40187 
-0.3424 

AGvsC   0.1945 
-0.6489 

- 0.1089 
0.6547 

0.0326 
0.8729 

GEvsC    - 0.4727 
0.3591 

0.8375 
-0.1026 

DEPvsC     - - 
AvsC      0.0663 

0.7500 
Table 3.  Matrix of  Spearman correlation in product line Image 
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Disabled ASvsC AGvsC GEvsC DEPvsC AvsC MEvsC 
ASvsC  - - 0.6274 

0.1982 
0.1154 
0.6429 

0.7931 
0.1071 

AGvsC   - - - - 
GEvsC    - - - 
DEPvsC     0.3316 

0.3964 
0.7575 
0.1261 

AvsC      0.7931 
-0.1071 

Table 4. Matrix of  Spearman correlation in product line Disabled 
 
Optic ASvsC AGvsC GEvsC DEPvsC AvsC MEvsC 
ASvsC  0.2413 

0.3354 
0.8493 
-0.0633 

- 0.2156 
0.3574 

0.1507 
0.4148 

AGvsC   0.8067 
-0.0815 

- 0.16193 
-0.4038 

0.9068 
-0.0338 

GEvsC    - 0.5828 
0.1831 

0.0154 
-0.8074 

DEPvsC     - - 
AvsC      0.7366 

-0.0971 
Table 5. Matrix of  Spearman correlation in product line Optic 
 
In conclusion, the complexity metrics ASvsC, AGvsC and AvsC could have different behaviour by 
product lines, so if we ignore it we can have confounding (Kleinbaum, 1987). Furthermore, some metrics, 
such as MEvsC wtih AGvsC, AvsC and GEvsC could be correlated in different product lines, and so we 
must consider this relationship in future models. We cannot forget that the sample is small, so the 
conclusions must be corroborated with other larger samples.  
 
4. Conclusions and future work 
 
Due to the growing complexity of OOIS, continuous attention to and assessment of object models are 
necessary to produce quality software systems. The fact that UML has emerged is a great step forward in 
object modelling. Even though this does not guarantee the quality of the models produced through the IS 
life cycle. Therefore, it is necessary to have metrics in order to evaluate their quality from the early phases 
in the OOIS development process.  
 
In this work we have presented a set of metrics for assessing the complexity of UML class diagrams, 
obtained at early phases of the OOIS life cycle. It is widely accepted that the greater complex an UML 
class diagram,  the greater complex the OOIS which is finally implemented, and therefore more effort is 
needed to develop and maintain it. So that the proposed metrics could be very fruitful, because they will 
allow OOIS designers to assess the complexity of their designs, and compare between design alternatives, 
from the early phases of OOIS life cycle. 
 
As in other aspects of Software and Knowledge Engineering, proposing techniques and metrics is not 
enough, validation is critical to the success of software measurement (Kitchenham et al., 1995; Fenton and 
Pflegeer, 1997; Schneidewind, 1992; Basili et al.,1999). It is also necessary for them under theoretical and 
empirical validation, in order to assure their utility. Furthermore it is important understand their behaviour 
in order to define suitable models and appropriate design of the experiments (Montgomery, 1991, 
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Kleinbaum et al., 1987), i.e. the quality model changes if we need consider blocks (product lines in this 
case), or if  we have variables which are not independent (MEvsC and AGvsC).  
 
With regard to empirical validation, we are carrying out some experimentation not only with controlled 
experiments but also with “real” cases taken from some enterprises, with the objective of assessing these 
metrics as predictors of maintenance efforts, and therefore, determine whether they can be used as early 
quality indicators. 
 
In future work, we will focus our research on measuring other quality factors like those proposed in the 
ISO 9126 (1999), which not only tackle class diagrams, but also evaluate other UML diagrams, such as 
use-case diagrams, state diagrams, etc. To our knowledge, few works have been done towards measuring 
dynamic and functional models (Derr, 1995; Poels, 1999; Poels 2000). As is quoted in (Brito e Abreu et 
al., 1999) this is an area which lacks in depth investigation. In addition further empirical validation of the 
proposed metrics is needed to research their usefulness in the development software process. Furthermore 
we need a sample bigger to confirm the tracks find in this study and a quality model which includes a set 
of interest variables. 
 
We will extend our metric, called MANTICA (created to measures data models), in order to provide 
support for collecting, analysing and visualising metric values applied to UML class diagrams.  
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