
On transformation strategies from multiple inheritance to single

inheritance. A comparative approach�.

Juan José Rodríguez Yania Crespoy José Manuel Marqués

juanjo@infor.uva.es yania@infor.uva.es jmmc@infor.uva.es

Dpto. de Informática Dpto. de CC. de la Comp. Dpto. de Informática

Universidad de Valladolid Universidad de La Habana Universidad de Valladolid

España Cuba España

Abstract

In this paper we brie�y present some solution
strategies for situations in which it is necessary
to transform multiple inheritance schemes into
single inheritance or non-inheritance �equiva-
lent� schemes. The strategies are divided into
basic strategies and combined strategies. The
mechanisms presented are comparatively ana-
lyzed in the light of some ideal characteristics
to be accomplished by hierarchy transformation
strategies.

Keywords: object oriented, single inheri-
tance, multiple inheritance, conversion strate-
gies

1 Introduction and Motivation

It is possible to describe 3 situations in which
it would be useful to have available some trans-
formation mechanisms from multiple inheri-
tance to single inheritance:

� To extend a single inheritance language
with multiple inheritance constructions.

� To implement a multiple inheritance based
model in a single inheritance language.

� To translate from a multiple inheritance
language to a single inheritance language.

The second situation is specially interesting
for Software Engineering. This is because of
its usefulness in CASE tools, in automatic pro-
totyping environments and also in those envi-

�This work has been partially supported thanks to
CICYT project TIC97-0593-C05-05 as part of the MEN-
HIR project.

yYania Crespo is a research student thanks to the
Instituto de Cooperación Iberoamericana (ICI).

ronments for aiding in reuse from di�erent ab-
straction levels. The automatic realization of
this mechanism is useful from the previous three
points of view because:

� It can be incorporated into Object Ori-
ented Design (OOD) CASE tools in order
to support code generation independently
of the target language.

� It can be used in automatic prototyping
environments if they encourage multiple
inheritance as a speci�cation resource, or
some other speci�cation resource leading
to a multiple inheritance design solution, if
it one wishes to obtain a prototype coded
in a single inheritance language1.

� It can be incorporated into environments
supporting reuse from di�erent abstraction
levels. In this case it will be possible to
reuse a multiple inheritance based OOD in
some other project requiring a particular
target language that does not allow mul-
tiple inheritance. Functionality of assets

repositories and libraries will also be im-
proved2.

Object Oriented Programming Lan-

guages and Inheritance

Figure 1 represents some examples of lan-
guage categorized according to the presence of
inheritance relations as language construction.

1An example for this situation is found in the code
generation tool for OO-METHOD conceptual models
[13] (Universidad Politécnica de Valencia, MENHIR
project).

2An example for this situation is the repository based
in complex reuse structures currently under develop-
ment in the MECANO project [7] (Universidad de Val-
ladolid) as a part of the MENHIR project.

OOPL’s

No Inheritance
CLU

Single Inheritance
Delphi

Single Subclassing
+

Multiple Subtyping
Java

Multiple Inheritance
C++

Multiple Subclassing
+

Multiple Subtyping
Kaleidoscope

Figure 1: Some languages on the presence of
inheritance.

CLU [8] is class based language, objects+classes
without any inheritance mechanism (following
the Wegner classi�cation [19]). Delphi [5] is
an application development tool based in Ob-
ject Pascal, an object oriented language (ob-
jects+classes+inheritance), from which it ac-
quired the characteristic of just allowing single
inheritance3 (Modula-3 [3] is another example
of this case). Ei�el [11], C++ [18] y CLOS [16]
are examples of languages supporting multiple
inheritance of classes.

Java [1] is a language that separates type
and class notions into 2 structures: interfaces
and classes as implementations of interfaces.
For Java interfaces, multiple derivations are al-
lowed, but for Java classes, just single deriva-
tions are allowed. A class can implement multi-
ple interfaces. On the other hand, Kaleidoscope
[6] is an example of a language that separates
the same notions but allowing multiple deriva-
tions for both of them. In the following sec-
tion these language categories will be related
to the transformation strategies that apply to
each case. Figure 2 shows this relation schemat-
ically. What the dotted line means is that for
those languages it is always possible to apply
the preceding methods even through they don't
fully exploit all the language characteristics.

2 Conversion strategies from

multiple inheritance into sin-

gle inheritance

We propose that an ideal transformation
strategy from multiple inheritance schemes into
single inheritance schemes should:

3This description corresponds with Delphi 3 because
currently Delphi 4 is situated in the same case as Java.

Multiple
Inheritance

 Models

 No Inheritance

 Simple Inheritance

Single subclassing +
Multiple subtyping

 Multiple Inheritance

Variant Types or
Simulation using flags

Emancipation

Composition

Expansion

Mixed Strategy
Java Case

Mixed Strategy
General Case

Conflicts
Resolution

Figure 2: Languages and transformation mech-
anisms.

� Maintain as far as possible the originally
modeled inheritance hierarchic classi�ca-
tion.

� Respect polymorphic assignments and be-
haviour even if the languages are strongly
statically typed.

� Avoid (as far as possible) excessive code
repetition and problems of coherence main-
tenance.

These aspects will be considered as a refer-
ence for analyzing each transformation strat-
egy. Their complexity and the kind of language
their apply to will be also evaluated.

2.1 Basic strategies

The problem of transforming a multiple in-
heritance hierarchy into a single inheritance
�equivalent� hierarchy can be tackled using the
following basic strategies:

� Emancipation: all the inheritance rela-
tions of a class are eliminated, and all
the inherited properties are included as its
own resources. This strategy is similar
to the application of �attening to a class
[10, 12]. In this operation it must be taken
into account that the coexistence of vari-
ous versions of the same method (the an-
cestors versions) could be necessary so that
the original calls to super methods can be
translated into local calls. This requires
the methods to be renamed, the calls to be
modi�ed and so on.

� Composition: the inheritance relations
are transformed into composition relations.
According with Meyer [12], when it is the
case that a class B needs a facility from
some other class A there are 2 possibil-
ities. Is B an heir of A, or a client of
A? Even though there is a marked di�er-
ence between is-a and has-a relationships,
sometimes it is possible to change an is-a

relationship by a has-a relationship (with
the loss of bene�ts this implies). The calls
to super methods are solved delegating in
the composite object. As a consequence,
the methods body must be modi�ed.

� Expansion: the multiple inheritance
graph (DAG) is expanded into a tree (a
forest, generally). Hence, in the new
graph there are only single inheritance re-
lations. In this method the transforma-
tion is achieved without loss of informa-
tion thanks to the replication of classes [9,
Chapter 4].

� Variant type or its simulation with a

monitor class and �ags: starting from
root classes on the hierarchy, a complex
structure including all the properties of its
descendant classes is created for each one.
These properties are dispatched according
to the current object. The structure is a
variant type (in the case where the target
language has a type construct for variant)
or a monitor class simulating variants with
�ags. Unlike the emancipation process, a
�attened class is not obtained for each orig-
inal class. The result is a unique complex
structure describing the objects of one or
other class depending on a condition.

Table 1 shows a comparative evaluation of the
methods named basic strategies.

The analysis of basic strategies leads us to
the conclusion that none of them is completely
satisfactory by itself because there is a great
loss of the original model and/or some (or all)
of the ideal characteristics already exposed are
broken.

2.2 Combining strategies

To the present time there are two proposals
for combining strategies and they are classi�ed

as: the Java case and the General case [15]. The
special distinction for Java is justi�ed because,
although it is a particular case, it is interest-
ing and representative and it serves as a basis
for considering the general case. The Java case
tries to cover those languages with single class
inheritance but multiple interface derivation.

For each one of these cases some variants
can be described according to the basic strate-
gies that they choose to combine. We shall
now brie�y describe a variant combining in-
terfaces with emancipation (variant 1) and an-
other that combines interfaces with emancipa-
tion and composition (variant 2) for the Java
case. There are equivalent variants for the gen-
eral case but they change interfaces by the use
of expansion.

Given an original hierarchy, this can be
represented using Java interfaces maintaining
all inheritance relationships, but neither non-
constant attributes nor methods bodies can not
be included in these interfaces. Therefore, it
is necessary that some classes implement those
interfaces. In order to simulate the existence
of attributes using interfaces there must be de-
�ned methods signatures for getting and setting
the required attributes.

In the variant 1, classes for implementing in-
terfaces are obtained as a result of the emanci-
pation process. The polymorphic assignments
are achieved by declaring the variables man-
aging objects with the interfaces. The corre-
sponding polymorphic behavior is achieved by
creating these objects with the emancipated
classes. The emancipation process generates
methods duplication in the set of resultant
classes.

In the more complex variant 2, a new group
of classes resulting from the application of the
composition process to the original hierarchy is
introduced. The whole process includes �lter-
ing emancipated and aggregated classes in the
following way: keep in the classes resulting from
composition only the methods and according to
this, keep in the emancipated classes only the
attributes. The interfaces obtention from the
original hierarchy does not change.

Relating the 3 groups we have: each method
class implements its corresponding interface

Comparing

basic strategies
Emancipation Composition Expansion Variant

Hierarchy
preservation

None Some kind of com-
position hierarchy

Much None

Code duplication Much None Some None

Coherence
maintenance

No problem Some problem Some No problem

Polymorphic
assignments and

behavior

Problems. It could
be simulated but
with problems of
overhead and
coherence
maintenance.

Problems. It could
be simulated
without overhead
but it leads to
problems with
coherence
maintenance and
polymorphic
behavior.

Problems only in
some cases. For
this cases it could
be simulated but it
leads to coherence
maintenance
problems.

No problems but
with nuances. OO
language compilers
checkers and
automatic
dispatchers are
lost. They must
be manually
simulated.

Application area
Languages with
Objects + Classes

Languages with
Objects + Classes

Languages with
Objects + Classes
+ Inheritance

Languages with
Objects + Classes

Application
complexity

Simple Simple Complex Fairly complex

Table 1: Evaluation of basic transformation strategies

and each attribute class is a component of its
corresponding method class (this is the same
as to say that each method class has an at-
tribute that is representing an object of the cor-
responding attribute class). When an object of
a method class is created, the attributes of its
components classes keep null, i.e. only the ob-
ject of attributes directly related with it is cre-
ated. The interfaces are shells for dispatching
calls to objects.

Between method classes and interfaces an as-
sociation named Delegates is established which
indicates which object is delegating in its cor-
responding method class. This association is
needed in order to maintain the self reference
and to work without loss of polymorphic be-
havior. Calls to methods of the class itself are
always sent to the delegator.

This is a brief strategy evaluation. For lan-
guages with single subclassing and multiple
subtyping, all basic and combined strategies are
applicable but the former, described as vari-
ants of the Java case, are the ones which bet-
ter exploit the language characteristics. Both
variants 1 and 2 resolve correctly the original
inheritance classi�cation (using interfaces) and
preserve polymorphic assignments and behav-

ior without coherence maintenance problems.
Variant 1 presents code duplication but variant
2 does not.

All of the mentioned strategies are algorith-
mically detailed and presented with examples
in [15].

3 Some related works

The strategy here named expansion was pro-
posed by Marqués in [9]. The strategy named
emancipation takes the idea from the notion of
the �at form of a class [10], in the same way as
the composition strategy is based on the works
of Stein concerning delegation [17]. The strat-
egy which is called �variant types or . . . � is an
idea starting from part of the automatic cod-
i�cation of conceptual OO-METHOD models
works [14]. The work on types of Cardelli and
Wegner [2, 4] were also a basis for its confor-
mation. In [15] can be found a detailed and
broader description of related works.

4 Conclusions y future work

In this paper several approaches to the prob-
lem of transforming multiple inheritance hierar-
chies into single inheritance hierarchies are an-

alyzed. These approaches are coarsely divided
into: basic strategies and combined strategies.
Some strategies were brie�y presented and each
of these were analyzed according to the de-
�ned ideal characteristic to be accomplished by
a transformation mechanism, to its application
complexity and to its application area for dif-
ferent languages.

An immediate work to be developed consists
in the analysis of the strategies in the light of
real examples. This will allow us to make a
comparison of them but according to how they
�xed to the type of model that is wanted to
transform. As described in [14], when modeling
with OO-METHOD, several situations appear
that can lead to multiple inheritance solution
designs. In the current version of the genera-
tor similar situations to the Java case variant 1
and the basic strategies named composition and
�variant types or . . . � are used. Exploiting this
coincidence, we think it would be interesting to
try the fusion of the tendencies OO-METHOD
CASE follows with the study that is presented
here in order to obtain a more concrete evalua-
tion of strategies.

Experimental and test works developed or in
progress take into account other important as-
pects like creation methods, access control and
abstract classes that are not presented here for
reasons of brevity .

References

[1] K. Arnold and J. Gosling. The Java Programming
Language. Java Series. Sun Microsystems, 1996.

[2] L. Cardelli. A semantics of multiple inheritance.
Information and Computation, 76:138�164, 1988.

[3] L. Cardelli, J. Donahue, L. Glassman, M. Jordan,
B. Kalsow, and G. Nelson. Modula-3 report (re-
vised). Technical Report 52, Systems Research
Center, Digital Equipment Corporation, Palo Alto,
1989.

[4] L. Cardelli and P. Wegner. On understanding
types, data abstraction and polymorphism. Com-
puting Surveys, 17(4), Dec 1985.

[5] Delphi 4. Object pascal language guide.
Inprise Corporation, available on the web:
http://www.inprise.com/delphi.

[6] B.N. Freeman-Benson and A. Borning. The de-
sign and implementation of Kaleidoscope'90, a
constraint imperative programming language. In
Proceedings of the IEEE Computer Society Inter-
national Conference on Programming Languages,
pages 174�180, April 1992.

[7] F.J. García, J.M. Marqués, and J.M. Maudes.
Mecanos as basis of compositional/generative
mixed reuse model. II European Reuse Workshop,
Madrid, Spain, November 1998.

[8] B. Liskov. A history of CLU. SIGPLAN No-
tices, 28(2), March 1993. Contents of History
of Programming Languages Conference (HOPL-
II), Cambridge, Massachusetts, USA, April 20-23,
1993.

[9] J.M. Marqués. Jerarquías de herencia en el dis-
eño de software orientado al objeto. PhD thesis,
Universidad de Valladolid, 1995.

[10] B. Meyer. Tools for a new culture: Lessons from
the design of the Ei�el libraries. CACM, 33(9),
Sept 1990.

[11] B. Meyer. Ei�el: the language. Prentice-Hall
Object-Oriented Series, 1991. second revised print-
ing 1992.

[12] B. Meyer. Object-Oriented Software Construction.
Prentice-Hall, 2nd edition, 1997.

[13] O. Pastor, E. Insfrán, V. Pelechano, J. Romero,
and J. Merseguer. OO-METHOD: An OO
software production environment combining con-
ventional and formal methods. In Conference
on Advanced Information Systems Engineering
(CAiSE'97). Barcelona, Spain, 1997.

[14] V. Pelechano. Fundamentos metodológicos para el
tratamiento de la herencia múltiple en un entorno
de producción automática de software. Aspectos
de notación, semántica y generación automática
de código. Technical report, Departamento de Sis-
temas Informáticos y Computación (DSIC). Uni-
versidad Politécnica de Valencia, 1998.

[15] J.J. Rodríguez, Y. Crespo, and J.M. Marqués.
Transformación de jerarquías de herencia múlti-
ple en jerarquías de herencia sencilla. Technical
Report TR-GIRO-03-98, Departamento de Infor-
mática, Universidad de Valladolid, 1998.

[16] G.L. Steele. Common Lisp: The Language. Digital
Press, 2nd edition, 1990.

[17] L. Stein. Delegation is inheritance. In Proceedings
of OOPSLA'87, 1987.

[18] B. Stroustrup. The C++ Programming Language.
Addison-Wesley, 2nd edition, 1991.

[19] P. Wegner. Dimensions of object-based language
design. In Proceedings of OOPSLA'87, 1987.

